首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
 The DNA from human papillomavirus (HPV) can be detected in 90% of cervical carcinomas. To address whether patients infected with HPV can mount efficient T cell responses to this pathogen we examined the cytotoxic T lymphocyte (CTL) response of peripheral blood mononuclear cells (PBMC) from patients with abnormal genital epithelial cells. PBMC from 11 HLA-A2+ patients were stimulated with CaSki, a cervical carcinoma cell line that is HPV 16+ and HLA-A2+. The CTL were screened for reactivity to the cervical carcinoma cell line C33A (HPV – , HLA-A2+) transfected with the HPV 16 E6 or E7 genes or the plasmid without insert. The CTL of 1 patient showed particularly strong CaSki and HPV E6 or E7 protein-specific cytotoxicity in a HLA-A2-restricted fashion. In contrast, these CTL lysed neither a vector-only transfectant, the natural killer cell (NK) target, K562 nor the lymphokine-activated killer cell (LAK) target, Daudi. HLA-A2 restriction was demonstrated by the lack of recognition of a HLA-A2 –  CaSki cell line developed in our laboratory. The CTL line was cloned and 99 clones were harvested and screened; 51 clones lysed CaSki, of which 17 did not lyse the A2 –  CaSki. Of these HLA-A2 –  restricted clones, 8 did not lyse C33A transfectants, 6 lysed all C33A transfectants, 3 lysed C33A-E7 only and none lysed C33A-E6 only. These data imply that, within the bulk CTL line, HLA-A2-restricted recognition of antigens was restricted to CaSki antigens, antigens common to cervical carcinoma (CaSki plus C33A), or HPV-16-E7-derived antigen on the clonal level. The E7-restricted clones were negative for recognition of known HLA-A2-binding peptides from E7. Received: 16 November 1995 / Accepted: 15 January 1996  相似文献   

2.
In order to broaden the possibility for anti-HER-2/neu (HER-2) immune targeting, it is important to identify HLA-A24 restricted peptide epitopes derived from HER-2, since HLA-A24 is one of the most common alleles in Japanese and Asian people. In the present study, we have screened HER-2-derived, HLA-A24 binding peptides for cytotoxic T lymphocyte (CTL) epitopes. A panel of HER-2-derived peptides with HLA-A24 binding motifs and the corresponding analogs designed to enhance HLA-A24 binding affinity were selected. Identification of HER-2-reactive and HLA-A24 restricted CTL epitopes were performed by a reverse immunology approach. To induce HER-2-reactive and HLA-A24 restricted CTLs, PBMCs from healthy donors were repeatedly stimulated with monocytes-derived, mature DCs pulsed with HER-2 peptide. Subsequent peptide-induced T cells were tested for the specificity by enzyme linked immunospot, cytotoxicity and tetramer assays. CTL clones were then obtained from the CTL lines by limiting dilution. Of the peptides containing HLA-A24 binding motifs, 16 peptides (nine mers) including wild type peptides (IC50<1,000 nM) and substituted analog peptides (IC50<50 nM) were selected for the present study. Our studies show that an analog peptide, HER-2(905AA), derived from HER-2(905) could efficiently induce HER-2-reactive and HLA-A24 restricted CTLs. The reactivity of the HER-2(905AA)-induced CTL (CTL905AA) was confirmed by different CTL assays. The CTL905AA clones also were able to lyse HER-2(+), HLA-A24(+) tumor cells and cytotoxicity could be significantly reduced in cold target inhibition assays using cold targets pulsed with the HER-2(905) wild type peptide as well as the inducing HER-2(905AA) analog peptide. A newly identified HER-2(905) peptide epitope is naturally processed and presented as a CTL epitope on HER-2 overexpressing tumor cells, and an MHC anchor-substituted analog, HER-2(905AA), can efficiently induce HER-2-specific, HLA-A24 restricted CTLs.  相似文献   

3.
To study DNA vaccination directed against human HER-2 in the HHD mouse Tg strain, we created a novel HER-2-expressing syngeneic tumor transplantation model. We found that a DNA vaccine encoding the full length HER-2 DNA protected HHD mice from HER-2+ tumor challenge by a CTL independent mechanism. A more efficient approach to induce HLA-A2 restricted CTLs, through immunization with a multi-epitope DNA vaccine expressing the HLA-A2 restricted HER-2 369–377, 435–443 and 689–697 epitopes, resulted in high numbers of peptide specific T cells but failed to induce tumor protection. Subsequently we discovered that HER-2 transfected tumor cells down-regulated MHC class I antigen expression and exhibited a series of defects in the antigen processing pathway which impaired the capacity to produce and display MHC class I peptide-ligands to specific CTLs. Our data demonstrate that HER-2 transfection is associated with defects in the MHC class I presentation pathway, which may be the underlying mechanism behind the inability of CTLs to recognize tumors in this HLA-A2 transgenic model. As defective MHC class I presentation may be a common characteristic of HER-2 expressing tumors, vaccines targeting HER-2 should aim at inducing an integrated immune response where also CD4+ T cells and antibodies are important components. S. Vertuani and C. Triulzi contributed equally to this work.  相似文献   

4.
Human Papillomavirus 16 (HPV-16) has been identified as the causative agent of 50% of cervical cancers and many other HPV-associated tumors. The transforming potential/tumor maintenance capacity of this high risk HPV is mediated by two viral oncoproteins, E6 and E7, making them attractive targets for therapeutic vaccines. Of 21 E6 and E7 peptides computed to bind HLA-A*0201, 10 were confirmed through TAP-deficient T2 cell HLA stabilization assay. Those scoring positive were investigated to ascertain which were naturally processed and presented by surface HLA molecules for CTL recognition. Because IFNγ ELISpot frequencies from healthy HPV-exposed blood donors against HLA-A*0201-binding peptides were unable to identify specificities for tumor targeting, their physical presence among peptides eluted from HPV-16-transformed epithelial tumor HLA-A*0201 immunoprecipitates was analyzed by MS3 Poisson detection mass spectrometry. Only one epitope (E711–19) highly conserved among HPV-16 strains was detected. This 9-mer serves to direct cytolysis by T cell lines, whereas a related 10-mer (E711–20), previously used as a vaccine candidate, was neither detected by MS3 on HPV-transformed tumor cells nor effectively recognized by 9-mer specific CTL. These data underscore the importance of precisely defining CTL epitopes on tumor cells and offer a paradigm for T cell-based vaccine design.  相似文献   

5.
HER-2/neu oncoprotein is overexpressed in a variety of human tumors and is associated with malignant transformation and aggressive disease. Due to its overexpression in tumor cells and because it has been shown to be immunogenic, this protein represents an excellent target for T-cell immunotherapy. Peptide extracts derived from primary HLA-A*0201-positive (+) HER-2/neu+ human tumors by acid elution (acid cell extracts (ACEs)) were tested for their capacity to elicit in HLA-A*0201 transgenic mice, cytotoxic T lymphocytes (CTLs) lysing HLA-A*0201+ HER-2/neu+ tumor cells. Injections of ACE in transgenic mice induced CTLs capable of specifically lysing HER-2/neu+ tumor cell lines (also including the original HER-2/neu+ primary tumor cells from which the ACEs were derived) in an HLA-A*0201–restricted fashion. Adoptive transfer of ACE-induced CTLs was sufficient to significantly prolong survival of SCID mice inoculated with HLA-A*0201+ HER-2/neu+ human tumor cell lines. Cytotoxicity of such ACE-induced CTL lines was directed, at least as detected herein, also against the HER-2/neu peptides HER-2 (9369) and HER-2 (9435) demonstrating the immunodominance of these epitopes. HER-2 peptide–specific CTLs generated in the HLA-A*0201–transgenic mice, upon peptide immunization, lysed in vitro HER-2/neu+ human tumor cell lines in an HLA-A*0201–restricted manner and, when adoptively transferred, conferred sufficient protection in SCID mice inoculated with the same human tumor cell lines as above. However, CTLs induced by ACEs displayed enhanced efficacy in the therapy of xenografted SCID mice compared with the HER-2 peptide–specific CTLs (i.e., HER-2 [9369] or HER-2 [9435]). Even by administering mixtures of CTLs specific for each of these peptides, the prolongation of survival achieved was still inferior compared with that obtained with ACE-induced CTLs. This suggested that additional epitopes may contribute to the immunogenicity of such tumor-derived ACEs. Thus, immunization with ACEs from HER-2/neu+ primary tumor cells appears to be an effective approach to generate multiple and potent CTL-mediated immune responses against HER-2/neu+ tumors expressing the appropriate HLA allele(s). By screening ACE-induced CTL lines with synthetic peptides encompassing the HER-2/neu sequence, it is feasible to identify immunodominant epitopes which may be used in mixtures as vaccines with enhanced efficacy in both the prevention and therapy of HER-2/neu+ malignancies.This work was supported by grants from the Regional Operational Program Attika (No. 20, MIS code 59605GR) to M.P., and from the GSRT Program (No. PENED 01ED55) to C.N.B.  相似文献   

6.
HER-2/neu is an immunogenic protein eliciting both humoral and cellular immune responses in patients with HER-2/neu-positive (+) tumors. Preexisting cytotoxic T lymphocyte (CTL) immunity to HER-2/neu has so far been mainly evaluated in terms of detection of CTL precursor (CTLp) frequencies to the immunogenic HLA-A2–binding nona-peptide 369-377 (HER-2(9369)). In the present study, we examined patients with HER-2/neu+ breast, ovarian, lung, colorectal, and prostate cancers for preexisting CTL immunity to four recently described HER-2/neu–derived and HLA-A2–restricted "cytotoxic" peptides and to a novel one spanning amino acids 777–785 also with HLA-A2–binding motif. We utilized enzyme-linked immunosorbent spot (ELISpot) assay, which allows a quantitative and functional assessment of T cells directed against specific peptides after only brief in vitro incubation. CTL reactivity was determined with an interferon (IFN-) ELISpot assay detecting T cells at the single cell level secreting IFN-. CTLp were defined as peptide-specific precursors per 106 peripheral blood mononuclear cells (PBMCs). Patients' PBMCs with increased CTLp were also tested against autologous tumor targets and peptide-pulsed dendritic cells (DCs) in cytotoxicity assays. We also studied patients with HER-2/neu-negative (-) tumors and healthy individuals. Of the HER-2/neu+ patients examined, 31% had increased CTLp to HER-2(9952), 19% to HER-2(9665), 16% to HER-2(9689), and 12.5% HER-2(9435), whereas only 2 of 32 patients (6%) responded to HER-2(9777). The CTLp recognizing HER-2(9952) were extremely high in two patients with breast cancer, one with lung cancer, and one with prostate cancer. None of the HER-2/neu- patients or healthy donors exhibited increased CTLp to any of these peptides. Besides IFN- production, preexisting CTL immunity to all five HER-2/neu peptides was also shown in cytotoxicity assays where patients' PBMCs with increased CTLp specifically lysed autologous tumor targets and autologous peptide-pulsed DCs. Our results demonstrate for the first time that (1) preexisting immunity to peptides HER-2(9435), HER-2(9952), HER-2(9689), HER-2(9665), and HER-2(9777) is present in patients with HER-2/neu+ tumors of distinct histology, (2) HER-2(9777) is a naturally processed peptide expressed on the surface of HER-2/neu+ tumors, as are the other four peptides, and (3) HER-2/neu+ prostate tumor cells can be recognized and lysed by autologous HER-2 peptide-specific CTL. Our findings broaden the potential application of HER-2/neu-based immunotherapy.  相似文献   

7.
Our aim is to develop peptide vaccines that stimulate tumor antigen-specific T-lymphocyte responses against frequently detected cancers. We describe herein a novel HLA-A*0201-restricted epitope, encompassing amino acids 828–836 (residues QIAKGMSYL), which is naturally presented by various HER-2/neu + tumor cell lines. HER-2/neu(828-836), [HER-2(9828)], possesses two anchor residues and stabilized HLA-A*0201 on T2 cells in a concentration-dependent Class I binding assay. This peptide was stable for 3.5 h in an off-kinetic assay. HER-2(9828) was found to be immunogenic in HLA-A*0201 transgenic (HHD) mice inducing peptide-specific and functionally potent CTL and long-lasting anti-tumor immunity. Most important, using HLA-A*0201 pentamer analysis we could detect increased ex vivo frequencies of CD8+ T-lymphocytes specifically recognizing HER-2(9828) in 8 out of 20 HLA-A*0201+ HER-2/neu + breast cancer patients. Moreover, HER-2(9828)-specific human CTL recognized the tumor cell line SKOV3.A2 as well as the primary RS.A2.1.DR1 tumor cell line both expressing HER-2/neu and HLA-A*0201. Finally, therapeutic vaccination with HER-2(9828) in HHD mice was proven effective against established transplantable ALC.A2.1.HER tumors, inducing complete tumor regression in 50% of mice. Our data encourage further exploitation of HER-2(9828) as a promising candidate for peptide-based cancer vaccines.  相似文献   

8.
Background: Ovarian cancer commonly relapses after remission and new strategies to target microscopic residual diseases are required. One approach is to activate tumor-specific cytotoxic T cells with dendritic cells loaded with tumor cells. In order to enhance their immunogenicity, ovarian tumor cells (SK-OV-3, which express two well-characterized antigens HER-2/neu and MUC-1) were killed by oxidation with hypochlorous acid (HOCl). Results: Treatment for 1 h with 60 μM HOCl was found to induce necrosis in all SK-OV-3 cells. Oxidized, but not live, SK-OV-3 was rapidly taken up by monocyte-derived dendritic cells, and induced partial dendritic cell maturation. Dendritic cells cultured from HLA-A2 healthy volunteers were loaded with oxidized SK-OV-3 (HLA-A2) and co-cultured with autologous T cells. Responding T cells were tested for specificity after a further round of antigen stimulation. In ELISPOT assays, T cells produced interferon-gamma (IFN-γ) in response to the immunizing cellular antigen, and also to peptides coding for MUC-1 and HER-2/neu HLA-A2 restricted epitopes, demonstrating efficient cross-presentation of cell-associated antigens. In contrast, no responses were seen after priming with heat-killed or HCl-killed SK-OV-3, indicating that HOCl oxidation and not cell death/necrosis per se enhanced the immunogenicity of SK-OV-3. Finally, T cells stimulated with oxidized SK-OV-3 showed no cross-reaction to oxidized melanoma cells, nor vice versa, demonstrating that the response was tumor-type specific. Conclusions: Immunization with oxidized ovarian tumor cell lines may represent an improved therapeutic strategy to stimulate a polyclonal anti-tumor cellular immune response and hence extend remission in ovarian cancer.  相似文献   

9.
STEAP is a recently identified protein shown to be particularly overexpressed in prostate cancer and also present in numerous human cancer cell lines from prostate, pancreas, colon, breast, testicular, cervical, bladder and ovarian carcinoma, acute lymphocytic leukemia and Ewing sarcoma. This expression profile renders STEAP an appealing candidate for broad cancer immunotherapy. In order to investigate if STEAP is a tumor antigen that can be targeted by specific CD8+ T cells, we identified two high affinity HLA-A*0201 restricted peptides (STEAP86–94 and STEAP262–270). These peptides were immunogenic in vivo in HLA-A*0201 transgenic HHD mice. Peptide specific murine CD8 T cells recognized COS-7 cells co-transfected with HHD (HLA-A*0201) and STEAP cDNA constructs and also HLA-A*0201+ STEAP+ human tumor cells. Furthermore, STEAP86–94 and STEAP262–270 stimulated specific CD8+ T cells from HLA-A*0201+ healthy donors, and these peptide specific CD8+ T cells recognized STEAP positive human tumor cells in an HLA-A*0201-restricted manner. Importantly, STEAP86–94-specific T cells were detected and reactive in the peripheral blood mononuclear cells in NSCLC and prostate cancer patients ex vivo. These results show that STEAP can be a target of anti-tumor CD8+ T cells and that STEAP peptides can be used for a broad-spectrum-tumor immunotherapy.  相似文献   

10.
We have previously reported that a single-chain T cell receptor/IL-2 fusion protein (scTCR-IL2) exhibits potent targeted antitumor activity in nude mice bearing human tumor xenografts that display cognate peptide/HLA complexes. In this study, we further explore the mechanism of action of this molecule. We compared the biological activities of c264scTCR-IL2, a scTCR-IL2 protein recognizing the aa264–272 peptide of human p53, with that of MART-1scTCR-IL2, which recognizes the MART-1 melanoma antigen (aa27–35). In vitro studies showed that c264scTCR-IL2 and MART-1scTCR-IL2 were equivalent in their ability to bind cell-surface IL-2 receptors and stimulate NK cell responses. In mice, MART-1scTCR-IL2 was found to have a twofold longer serum half-life than c264scTCR-IL2. However, despite its shorter serum half-life, c264scTCR-IL2 showed significantly better antitumor activity than MART-1scTCR-IL2 against p53+/HLA-A2+ tumor xenografts. The more potent antitumor activity of c264scTCR-IL2 correlated with an enhanced capacity to promote NK cell infiltration into tumors. Similar differences in antigen-dependent tumor infiltration were observed with activated splenocytes pre-treated in vitro with c264scTCR-IL2 or MART-1scTCR-IL2 and then transferred into p53+/HLA-A2+ tumor bearing recipients. The data support a model where c264scTCR-IL2 activates immune cells to express IL-2 receptors. Following stable interactions with cell-surface IL-2 receptors, c264scTCR-IL2 fusion molecule enhances the trafficking of immune cells to tumors displaying target peptide/HLA complexes where the immune cells mediate antitumor effects. Thus, this type of fusion molecule could be used directly as a targeted immunotherapeutic or in adoptive cell transfer approaches to activate and improve the anti-cancer activities of immune cells by providing them with pre-selected antigen recognition capability.  相似文献   

11.
12.
Disrupting tumor-mediated mechanisms suppressing host immunity represents a novel approach to tumor immunotherapy. Depletion of regulatory T cells (Tregs) increases endogenous anti-tumor immunity and the efficacy of active immunotherapy in experimental tumor models. HLA-A2.1/HLA-DR1 (A2.1/DR1) × BALB- neuT + (neuT +) triple transgenic mice represent an improvement over neuT + mice for evaluating vaccination regimens to overcome tolerance against HER-2/neu. We questioned whether depletion of Tregs with Denileukin diftitox (Ontak) enhances the efficacy of a therapeutic vaccine consisting of HER-2(85–94) (p85) CTL and HER-2(776–790) (p776) Th peptides against the growth of TUBO.A2 transplantable tumor in male A2.1/DR1 × neuT + Tg mice. While the therapeutic vaccine primed the tumor-reactive CD8+ CTLs and CD4+ effector T lymphocytes (Teffs) compartment, inducing activation, tumor infiltration, and tumor rejection or delay in tumor growth, treatment with Ontak 1 day prior to vaccination resulted in enhanced CD4+ and CD8+ T-cell-mediated vaccine-specific immune responses in the periphery. This was closely associated with greater infiltration and a striking change in the intratumor balance of Tregs and vaccine-specific CTLs/Teffs that directly correlated with markedly enhanced antitumor activity. The data suggest that Tregs control both CD4+ and CD8+ T-cell activity within the tumor, emphasize the importance of the intratumor ratio of vaccine-specific lymphocytes to Tregs, and demonstrate significant inversion of this ratio and correlation with tumor rejection during Ontak/vaccine immunotherapy.  相似文献   

13.
Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94+ NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94+ NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL+ CD56dim NK cells, in contrast to the efficient responses by CD56bright NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94+ KIR2DL- NK cells may be uniquely beneficial.  相似文献   

14.

Background

Prostate cancer is the most common cancer among elderly men in the US, and immunotherapy has been shown to be a promising strategy to treat patients with metastatic castration-resistant prostate cancer. Efforts to identify novel prostate specific tumor antigens will facilitate the development of effective cancer vaccines against prostate cancer. Prostate-specific G-protein coupled receptor (PSGR) is a novel antigen that has been shown to be specifically over-expressed in human prostate cancer tissues. In this study, we describe the identification of PSGR-derived peptide epitopes recognized by CD8+ T cells in an HLA-A2 dependent manner.

Methodology/Principal Findings

Twenty-one PSGR-derived peptides were predicted by an immuno-informatics approach based on the HLA-A2 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from either HLA-A2+ healthy donors or HLA-A2+ prostate cancer patients. The recognition of HLA-A2 positive and PSGR expressing LNCaP cells was also tested. Among the 21 PSGR-derived peptides, three peptides, PSGR3, PSGR4 and PSGR14 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and prostate cancer patients. Importantly, these peptide-specific T cells recognized and killed LNCaP prostate cancer cells in an HLA class I-restricted manner.

Conclusions/Significance

We have identified three novel HLA-A2-restricted PSGR-derived peptides recognized by CD8+ T cells, which, in turn, recognize HLA-A2+ and PSGR+ tumor cells. The PSGR-derived peptides identified may be used as diagnostic markers as well as immune targets for development of anticancer vaccines.  相似文献   

15.

Background

A large number of human tumor-associated antigens that are recognized by CD8+ T cells in a human leukocyte antigen class I (HLA-I)-restricted fashion have been identified. Special AT-rich sequence binding protein 1 (SATB1) is highly expressed in many types of human cancers as part of their neoplastic phenotype, and up-regulation of SATB1 expression is essential for tumor survival and metastasis, thus this protein may serve as a rational target for cancer vaccines.

Methodology/Principal Findings

Twelve SATB1-derived peptides were predicted by an immuno-informatics approach based on the HLA-A*02 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from HLA-A*02+ healthy donors and/or HLA-A*02+ cancer patients. The recognition of HLA-A*02+ SATB1-expressing cancer cells was also tested. Among the twelve SATB1-derived peptides, SATB1565–574 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and cancer patients. Importantly, SATB1565–574-specific T cells recognized and killed HLA-A*02+ SATB1+ cancer cells in an HLA-I-restricted manner.

Conclusions/Significance

We have identified a novel HLA-A*02-restricted SATB1-derived peptide epitope recognized by CD8+ T cells, which, in turn, recognizes and kills HLA-A*02+ SATB1+ tumor cells. The SATB1-derived epitope identified may be used as a diagnostic marker as well as an immune target for development of cancer vaccines.  相似文献   

16.
Identification of cytotoxic T lymphocyte (CTL) epitopes from additional tumor antigens is essential for the development of specific immunotherapy of malignant tumors. CML28, a recently discovered cancer-testis (CT) antigen from chronic myelogenous leukemia, is considered to be a promising target of tumor-specific immunotherapy. Because HLA-A*0201 is one of the most common histocompatibility molecule in Chinese, we aim at identifying CML28 peptides presented by HLA-A*0201. A panel of CML28-derived antigenic peptides was predicted using a computer-based program. Four peptides with highest predicted score were synthesized and tested for their binding affinities to HLA-A*0201 molecule. Then these peptides were assessed for their immunogenicity to elicit specific immune responses mediated by CTLs both in vitro, from PBMCs sourced from four healthy HLA-A*0201+ donors, and in vivo, in HLA-A*0201 transgenic mice. One of the tested peptides, CML28(173–181), induced peptide-specific CTLs in vitro as well as in vivo, which could specifically secrete IFN-γ and lyse major histocompatibility complex (MHC)-matched tumor cell lines endogenously expressing CML28 antigen and CML28(173–181) pulsed Jurkat-A2/Kb cells, respectively. These results demonstrate that CML28(173–181) is a naturally processed and presented CTL epitope with HLA-A*0201 motif and has a promising immunogenicity both in vitro and in vivo. As CML28 is expressed in a large variety of histological tumors besides chronic myelogenous leukemia, we propose that the newly identified epitope, CML28(173–181), would be of potential use in peptide-based, cancer-specific immunotherapy against a broad spectrum of tumors.  相似文献   

17.
The TP53 tumor suppressor gene contains a well-studied polymorphism that encodes either proline (P) or arginine (R) at codon 72, and over half of the world’s population is homozygous for R at this codon. The wild-type sequence (wt) p53 peptide, p5365–73, has been identified as a CD8+ T cell-defined tumor antigen for use in broadly applicable cancer vaccines. However, depending on the TP53 codon 72 polymorphism of the recipient, the induced responses to the peptides incorporating R (p5372R) or P (p5372P) can be “self” or “non-self.” Thus, we sought to determine which wt p5365–73 peptide should be used in wt p53-based cancer vaccines. Despite similar predicted HLA-A2-binding affinities, the p5372P peptide was more efficient than the p5372R peptide in HLA-A2 stabilization assays. In vitro stimulation (IVS) of CD8+ T cells obtained from healthy HLA-A2+ donors with these two peptides led to the generation of CD8+ T cell effectors in one-third of the samples tested, at a frequency similar to the responsiveness to other wt p53 peptides. Interestingly, regardless of their p53 codon 72 genotype, CD8+ T cells stimulated with either p5372P or p5372R peptide were cross-reactive against T2 cells pulsed with either peptide, as well as HLA-A2+ head and neck cancer (HNC) cell lines presenting p5372P and/or p5372R peptides for T cell recognition. Therefore, the cross-reactivity of CD8+ T cells for the polymorphic wt p5365–73 peptides, irrespective of their p53 codon 72 polymorphism, suggests that employing either peptide in wt p53-based vaccines can result in efficient targeting of this epitope.  相似文献   

18.
 The antigenic peptides encoded by tumor-rejection antigen genes, MAGE-1 and -3, have been identified, and various methods have been utilized for the in vitro induction of MAGE-specific, cytotoxic T lymphocytes (CTL) from peripheral blood mononuclear cells (PBMC) using synthetic peptides. However, all of these methods are technically demanding and thus have a relatively limited usefulness. We herein report a simple and efficient method for the in vitro induction of specific CTL by using the HLA-A2-restricted MAGE-3 peptide from the PBMC of a healthy donor. CTL responses could thus be efficiently induced from unseparated PBMC by stimulation with freshly isolated, peptide-pulsed PBMC as antigen-presenting cells and by using interleukin-7 and keyhole limpet hemocyanin for the primary culture. The induced CTL could thus recognize and lyse not only HLA-A2 target cells pulsed with the peptide but also HLA-A2 tumor cells expressing MAGE-3, in an HLA-class-I-restricted manner. This simple method may, therefore, become a useful tool for investigating the potential peptides for tumor antigens as well as for developing various immunotherapeutic approaches for human malignant tumors. Received: 15 October 1996 / Accepted: 6 December 1996  相似文献   

19.
Liu W  Zhai M  Wu Z  Qi Y  Wu Y  Dai C  Sun M  Li L  Gao Y 《Amino acids》2012,42(6):2257-2265
Identification of cytotoxic T lymphocyte (CTL) epitopes from tumor antigens is essential for the development of peptide vaccines against tumor immunotherapy. Among all the tumor antigens, the caner-testis (CT) antigens are the most widely studied and promising targets. PLAC1 (placenta-specific 1, CT92) was considered as a novel member of caner-testis antigen, which expressed in a wide range of human malignancies, most frequently in breast cancer. In this study, three native peptides and their analogues derived from PLAC1 were predicted by T cell epitope prediction programs including SYFPEITHI, BIMAS and NetCTL 1.2. Binding affinity and stability assays in T2 cells showed that two native peptides, p28 and p31, and their analogues (p28-1Y9?V, p31-1Y2L) had more potent binding activity towards HLA-A*0201 molecule. In ELISPOT assay, the CTLs induced by these four peptides could release IFN-γ. The CTLs induced by these four peptides from the peripheral blood mononuclear cells (PBMCs) of HLA-A*02+ healthy donor could lyse MCF-7 breast cancer cells (HLA-A*0201+, PLAC1+) in vitro. When immunized in HLA-A2.1/Kb transgenic mice, the peptide p28 could induce the most potent peptide-specific CTLs among these peptides. Therefore, our results indicated that the peptide p28 (VLCSIDWFM) could serve as a novel candidate epitope for the development of peptide vaccines against PLAC1-positive breast cancer.  相似文献   

20.
Eleven patients with advanced cancer were treated in a clinical gene therapy trial by repeated intra- tumoral injections with different doses of xenogenic fibroblasts secreting high amounts of human interleukin-2 (Vero-IL2). Treatments in a total of 14 courses were well tolerated and resulted in clinical responses and measurable biological effects. Together with increases in serum interleukin-2 (IL-2), modifications of the V-β T cell receptor repertoire and induction of intratumoral T-cell infiltration were observed. When the intratumoral expression of endogenous cytokine genes and the persistence of the IL-2 transgene at the application site and in peripheral blood were investigated, rapid disappearance of the transgene at the application site appeared to be the most prominent biological effect. Tests detecting a single Vero-IL2 cell against a background of 105 non-transfected cells were not able to demonstrate significant expression of exogenous IL-2 (i.e. the transgene or transgene-carrying cells) in tumor biopsies or blood at different times. Therefore, further studies were performed to evaluate the mechanism(s) involved in the rapid disappearance of xenogenic carrier cells in more detail. We show here that significant in vitro cytotoxicity against transgene-carrying Vero cells can be observed in peripheral blood of all the patients before treatment as well as in healthy controls. “Cold” target inhibition shows that significant killing of Vero-IL2 cells is mediated by natural killer (NK) cells. This was confirmed by showing that established CD3/CD16 + /CD56 + peripheral blood NK cell clones kill both K562 and Vero-IL2 target cells. The failure of other mechanisms (complement, antibody-dependent cell cytotoxicity or cytotoxic T lymphocytes) to destroy xenogenic, histoincompatible Vero cells in vitro suggests that NK cells also might be responsible for the killing of Vero-IL2 in vivo and for the failure to detect the transgene at the application site. These results might also be of importance for some aspects of the current discussion of xenotransplantation. Received: 9 April 1999 / Accepted: 14 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号