首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mature snRNP (small nuclear ribonucleoprotein) particles are localized quantitatively in the interphase nucleus. Like many nuclear antigens, they distribute throughout the cytoplasm after the nuclear envelope breaks down during mitosis and then return to the newly formed daughter nuclei in early G1. Their abundance and stability and the availability of monoclonal antibodies that recognize them, make the snRNP particles a useful model system for studying the reformation of the nucleus at the completion of mitosis. A wide variety of metabolic inhibitors and alterations in normal culture conditions were investigated for their ability to interfere with the return of the snRNP particles to daughter nuclei after mitosis. None of the well-characterized cytoskeletal inhibitors, biosynthetic inhibitors, calcium antagonists, nor ionophores were effective in interfering with this return. However, the removal of cellular water by exposure of cells to hypertonic medium during mitosis blocked the reformation of the nucleus and trapped the snRNP particles in the cytoplasm. In medium of twice the normal tonicity, the function of the mitotic spindle and the cleavage furrow are inhibited, however, the cells reattach to the substratum as if returning to interphase. The chromatin stays condensed and does not form a normal interphase nucleus and the snRNP particles stay dispersed throughout the cytoplasm. This condition is reversible and after return to normal medium the nucleus reforms and the snRNP particles collect in the new nuclei. After gentle extraction of metaphase cells, about 30% of the snRNP particles are soluble, however, the remainder are associated with an insoluble remnant. These data are consistent with the notion that the snRNP particles accumulate in the nucleus due to both preferential solubility and specific binding sites in the interphase nucleus.  相似文献   

2.
Newly synthesized snRNAs appear transiently in the cytoplasm where they assemble into ribonucleoprotein particles, the snRNP particles, before returning permanently to the interphase nucleus. In this report, bona fide cytoplasmic fractions, prepared by cell enucleation, are used for a quantitative analysis of snRNP assembly in growing mouse fibroblasts. The half-lives and abundances of the snRNP precursors in the cytoplasm and the rates of snRNP assembly are calculated in L929 cells. With the exception of U6, the major snRNAs are stable RNA species; U1 is almost totally stable while U2 has a half-life of about two cell cycles. In contrast, the majority of newly synthesized U6 decays with a half-life of about 15 h. The relative abundances of the newly synthesized snRNA species U1, U2, U3, U4 and U6 in the cytoplasm are determined by Northern hybridization using cloned probes and are approximately 2% of their nuclear abundance. The half-lives of the two major snRNA precursors in the cytoplasm (U1 and U2) are approximately 20 min as determined by labeling to steady state. The relative abundance of the snRNP B protein in the cytoplasm is determined by Western blotting with the Sm class of autoantibodies and is approximately 25% of the nuclear abundance. Kinetic studies, using the Sm antiserum to immunoprecipitate the methionine-labeled snRNP proteins, suggest that the B protein has a half-life of 90 to 120 min in the cytoplasm. These data are discussed and suggest that there is a large pool of more stable snRNP proteins in the cytoplasm available for assembly with the less abundant but more rapidly turning-over snRNAs.  相似文献   

3.
Amebas contain 7 electrophoretically distinct species of small nuclear RNAs (snRNAs), some of which are known to associate in a striking manner with mitotic chromosomes. These RNAs can be divided into 2 classes, one consisting of 4 snRNA species that shuttle in a non-random way between nucleus and cytoplasm during interphase and one consisting of 3 snRNA species that do not leave the nucleus at all during interphase. In the work reported here we sought to determine which class is associated with mitotic chromosomes. Through a series of micromanipulative procedures we arranged for the shuttling snRNAs to be the only radioactive molecules in the cell. Such cells were allowed to enter mitosis, whereupon they were fixed and subjected to autoradiography. In those cells no radioactive snRNAs were found associated with mitotic chromosomes. It is concluded, therefore, that those snRNAs that do associate with mitotic chromosomes must be one or more of the non-shuttling species. — In the Discussion, how the non-shuttling snRNAs may function in cell activities is considered.  相似文献   

4.
L Goldstein  C Ko 《Cell》1974,2(4):259-269
  相似文献   

5.
Summary The ultrastructure of isolated generative cells ofAllemanda neriifolia at interphase and prophase was studied. The microtubule organization of the isolated cells was also investigated by immunofluorescence microscopy with a monoclonal anti--tubulin. After the generative cells had been isolated from the growing pollen tubes by osmotic shock, most of the cells were at prophase and only a few were at interphase. The interphase cell is spindle shaped and contains an ellipsoidal nucleus. In addition to the usual organelles, the cytoplasm of the interphase cell contains numerous vesicles (each measuring 40–50 nm in diameter) and two sets of longitudinally oriented microtubule bundles — one in the cortical region and the other near the nucleus. Most of the prophase cells are spherical in shape. Based on the ultrastructure and the pattern of microtubule cytoskeleton organization three types of prophase cells can be recognized. (1) Early prophase cell, which contains the usual organelles, numerous vesicles, and a spherical nucleus with condensed chromosomes. Longitudinally oriented microtubule bundles can no longer be seen present in the early prophase cell. A new type of structure resembling a microtubule aggregate appears in the cytoplasm. (2) Mid prophase cell, which has a spherical nucleus containing chromosomes that appear more condensed than those seen in the early prophase cell. In addition to containing the usual organelles, the cytoplasm of this cell contains numerous apparently randomly oriented microtubules. Few vesicles are seen and microtubule aggregates are no longer present. (3) Late prophase cell, typified by the lack of a nuclear envelope. Consequently, the chromosomes become randomly scattered in the cytoplasm. Microtubules are still present and some become closely associated with the chromosomes. The changes in the ultrastructure and in the pattern of microtubule organization in the interphase and prophase cells are discussed in relation to the method of isolation of the generative cells.  相似文献   

6.
It was shown by autoradiography in previous papers that RNA which is synthesized before mitosis and located in the nuclei, enters the cytoplasm at the onset of mitosis and returns to the nuclei of the daughter cells after mitosis. In order to study thenature of this migrating RNA we performed a sedimentation analysis of RNA isolated from the cytoplasm and chromosomes (nuclei) of metaphase and interphase cells in the synchronized culture of the Chinese hamster. Whereas the cytoplasm of interphase cells is found to contain RNA with sedimentation constants not higher than 28S, the cytoplasm of metaphase cells includes precursors of ribosomal and messenger RNA with sedimentation constants 32S, 45S and even higher. This means that RNA migrating from nuclei to cytoplasm during cell division retains its nuclear character. It is suggested that this property provides for the return of RNA synthesized before mitosis to the nuclei of the daughter cells.  相似文献   

7.
When vertebrate somatic cells are selectively irradiated in the nucleus during late prophase (<30 min before nuclear envelope breakdown) they progress normally through mitosis even if they contain broken chromosomes. However, if early prophase nuclei are similarly irradiated, chromosome condensation is reversed and the cells return to interphase. Thus, the G2 checkpoint that prevents entry into mitosis in response to nuclear damage ceases to function in late prophase. If one nucleus in a cell containing two early prophase nuclei is selectively irradiated, both return to interphase, and prophase cells that have been induced to returned to interphase retain a normal cytoplasmic microtubule complex. Thus, damage to an early prophase nucleus is converted into a signal that not only reverses the nuclear events of prophase, but this signal also enters the cytoplasm where it inhibits e.g., centrosome maturation and the formation of asters. Immunofluorescent analyses reveal that the irradiation-induced reversion of prophase is correlated with the dephosphorylation of histone H1, histone H3, and the MPM2 epitopes. Together, these data reveal that a checkpoint control exists in early but not late prophase in vertebrate cells that, when triggered, reverses the cell cycle by apparently downregulating existing cyclin-dependent kinase (CDK1) activity.  相似文献   

8.
In the nucleus of HeLa cells late after infection with adenovirus type 2 mRNA-sequences which are processed via RNA splicing are attached to the nuclear matrix (Mariman et al., 1982). Although the mRNA, which codes for polypeptide IX, is not formed via splicing, about 70% of the non-polyadenylated pre-mRNA and the polyadenylated pIX mRNA are bound to the matrix structure, indicating that polyadenylation is performed while the RNA is associated with the matrix. Binding to the nuclear matrix seems to be a common property of all mRNA-sequences in the nucleus. At the late stage of infection most of the newly synthesized mRNAs which appear in the cytoplasm are viral specific (Beltz & Flint, 1979). Kinetic analysis of the newly synthesized poly(A)-containing mRNA on sucrose gradients reveals that 7-12 S messengers appear more rapidly in the cytoplasm than messengers larger than 13 S. More specifically, the nuclear exit time of the pIX-mRNA, which is the major 9 S adenoviral messenger late after infection, was determined to be about 4 min, while messengers transcribed from the late region 3 need more than 16 min to arrive in the cytoplasm. In the cytoplasm about 70% of the mRNA is bound to the cytoskeletal framework, while 30% remains as free mRNP. Analysis of the mRNA in both fractions reveals that L3-, E1B- and pIX-specific polyadenylated mRNA preferably exist as cytoskeleton-bound mRNA. However, significant differences occur in the partition of specific messengers over free and cytoskeletal RNA fractions.  相似文献   

9.
The transport of the stable form of newly synthesized RNA from the nucleus to the cytoplasm has been studied in the loach (Misgurnus fossilis) development. Following the pulse labelling with 3H-uridine, the embryos were cultivated in the medium with non-labelled uridine and actinomycin D. The cell homogenate was fractionated and the specific activity of nuclear and cytoplasmic RNAs was determined. It was shown that a great part of newly synthesized RNA degraded within the nucleus and its insignificant part was preserved in the nucleus for several hours. The exit of stable RNA in the cytoplasm depends on the developmental stage. This part of RNA was found to stay in the nucleus at the stages of early--midblastula and leave it in the beginning of gastrulation. At the later developmental stages the newly synthesized RNA passes in the cytoplasm immediately.  相似文献   

10.
The spliceosomal snRNAs U1, U2, U4, and U5 are synthesized in the nucleus, exported to the cytoplasm to assemble with Sm proteins, and reimported to the nucleus as ribonucleoprotein particles. Recently, two novel proteins involved in biogenesis of small nuclear ribonucleoproteins (snRNPs) were identified, the Spinal muscular atrophy disease gene product (SMN) and its associated protein SIP1. It was previously reported that in HeLa cells, SMN and SIP1 form discrete foci located next to Cajal (coiled) bodies, the so-called "gemini of coiled bodies" or "gems." An intriguing feature of gems is that they do not appear to contain snRNPs. Here we show that gems are present in a variable but small proportion of rapidly proliferating cells in culture. In the vast majority of cultured cells and in all primary neurons analyzed, SMN and SIP1 colocalize precisely with snRNPs in the Cajal body. The presence of SMN and SIP1 in Cajal bodies is confirmed by immunoelectron microscopy and by microinjection of antibodies that interfere with the integrity of the structure. The association of SMN with snRNPs and coilin persists during cell division, but at the end of mitosis there is a lag period between assembly of new Cajal bodies in the nucleus and detection of SMN in these structures, suggesting that SMN is targeted to preformed Cajal bodies. Finally, treatment of cells with leptomycin B (a drug that blocks export of U snRNAs to the cytoplasm and consequently import of new snRNPs into the nucleus) is shown to deplete snRNPs (but not SMN or SIP1) from the Cajal body. This suggests that snRNPs flow through the Cajal body during their biogenesis pathway.  相似文献   

11.
Immunofluorescence microscopy of flowering plant root cells indicates that the earliest interphase microtubules appear during cytokinesis, radiating from the former spindle poles and subsequently from the nuclear envelope. They form networks that have microtubule focal points in the cortex underlying cell faces and in the cytoplasm between the nucleus and cortex. Cortical networks are rapidly replaced by the highly aligned array normally associated with interphase. An antibody that in animal cells identifies the location of pericentriolar material, the site of microtubule initiation, is also localized around the plant cell nuclear envelope at the time that putative early interphase microtubule networks are seen.  相似文献   

12.
Cellular dynamics of small RNAs   总被引:1,自引:0,他引:1  
This review highlights the unexpectedly complicated nuclear egress and nuclear import of small RNAs. Although nucleus/cytoplasm trafficking was thought to be restricted to snRNAs of many, but not all, eukaryotes, recent data indicate that such traffic may be more common than previously appreciated. First, in conflict with numerous previous reports, new information indicates that Saccharomyces cerevisiae snRNAs may cycle between the nucleus and the cytoplasm. Second, recent studies also provide evidence that other small RNAs that function exclusively in the nucleus-the budding yeast telomerase RNA and possibly small nucleolar RNAs-may exit to the cytoplasm, only to return to the nucleus. Third, nucleus/cytoplasm cycling of RNAs also occurs for RNAs that function solely in the cytoplasm, as it has been discovered that cytoplasmic tRNAs of budding yeast travel "retrograde" to the nucleus and, perhaps, back again to the cytoplasm to function in protein synthesis. Fourth, there is at least one example in ciliates of small double-stranded RNAs traveling multiple cycles between the cytoplasm and distinct nuclei to direct genome structure. This report discusses data that support or argue against nucleus/cytoplasm bidirectional movement for each category of small RNA and the possible roles that such movement may serve.  相似文献   

13.
We examined cytoplasmic intermediate filaments (IFs) and the nuclear lamina in cells of the mouse plasmacytoma cell line MPC-11 (lacking both IF proteins and lamins A and C) after induction of vimentin synthesis with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) by means of whole-mount immunogold electron microscopy (IEM). The technique of IEM was modified to allow analysis of the cytoskeleton and nuclear lamina of cells grown in suspension culture employing antibodies against vimentin and lamin B. IEM showed that newly synthesized vimentin assembled into IFs which formed anastomosing networks throughout the cytoplasm, radiating primarily from the nucleus. The filaments decorated by gold-conjugated antibodies appeared to make contact with the lipid-depleted nuclear envelope residue either by directly terminating on it or through an indirect link via short fibers of varying diameter. Some filaments terminated on the subunits of the nuclear pore complexes but they did not pass through the pores. In the absence of lamins A and C, lamin B formed a nuclear lamina consisting of a globular-filamentous network anchoring the nuclear pore complexes.  相似文献   

14.
The distribution of tubulin and centrin in vegetative cells and during gametogenesis of Ectocarpus siliculosus was studied by immunofluorescence. In interphase cells bundles of microtubules are focused on the centriolar region near the nuclear surface. Some of the bundles ensheath the nucleus while others traverse the cytoplasm in various directions, sometimes reaching the cell cortex. Evaluation of serial optical sections by confocal laser scanning microscopy (CLSM) revealed that the perinuclear and “cytoplasmic” microtubule bundles presumably constitute a single complex. In interphase cells centrin is localized as a single bright spot in the centriolar region. In dividing cells duplication and separation of the microtubular complex and the centrin spot takes place. In post-mitotic cells with two nuclei, the centrioles are located at opposite cell poles, short microtubule bundles emanate from them and partially encompass the nucleus. During gametogenesis a gradual transformation of the vegetative cytoskeleton to the gametic flagellar apparatus occurs.  相似文献   

15.
Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network. At this stage the secondary nucleus, which is located in the central region of the central cell, possesses an associated array of short actin filaments. Soon after pollination, the actin filaments become fragmented in the micropylar end and the secondary nucleus is located next to the egg apparatus. After fertilization, the primary endosperm nucleus moves away from the egg cell and actin filaments reorganize into a prominent network in the cytoplasm of the primary endosperm. Disruption of the actin cytoskeleton with latrunculin A and cytochalasin B indicates that actin is involved in the migration of the nucleus in the central cell. Our data also suggest that the dynamics of actin cytoskeleton may be responsible for the reorganization of the central cell and primary endosperm cytoplasm during fertilization.  相似文献   

16.
Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network. At this stage the secondary nucleus, which is located in the central region of the central cell, possesses an associated array of short actin filaments. Soon after pollination, the actin filaments become fragmented in the micropylar end and the secondary nucleus is located next to the egg apparatus. After fertilization, the primary endosperm nucleus moves away from the egg cell and actin filaments reorganize into a prominent network in the cytoplasm of the primary endosperm. Disruption of the actin cytoskeleton with latrunculin A and cytochalasin B indicates that actin is involved in the migration of the nucleus  相似文献   

17.
ABSTRACT

This review highlights the unexpectedly complicated nuclear egress and nuclear import of small RNAs. Although nucleus/cytoplasm trafficking was thought to be restricted to snRNAs of many, but not all, eukaryotes, recent data indicate that such traffic may be more common than previously appreciated. First, in conflict with numerous previous reports, new information indicates that Saccharomyces cerevisiae snRNAs may cycle between the nucleus and the cytoplasm. Second, recent studies also provide evidence that other small RNAs that function exclusively in the nucleus—the budding yeast telomerase RNA and possibly small nucleolar RNAs—may exit to the cytoplasm, only to return to the nucleus. Third, nucleus/cytoplasm cycling of RNAs also occurs for RNAs that function solely in the cytoplasm, as it has been discovered that cytoplasmic tRNAs of budding yeast travel “retrograde” to the nucleus and, perhaps, back again to the cytoplasm to function in protein synthesis. Fourth, there is at least one example in ciliates of small double-stranded RNAs traveling multiple cycles between the cytoplasm and distinct nuclei to direct genome structure. This report discusses data that support or argue against nucleus/cytoplasm bidirectional movement for each category of small RNA and the possible roles that such movement may serve.  相似文献   

18.
Changes in the morphology of the sperm nucleus in the egg cytoplasm are mong the immediate events in nucleocytoplasmic interactions during early embryogenesis. Soon after its entrance into the egg cytoplasm, the sperm nucleus of various organisms increases in size with the transformation of condensed chromatin to a diffuse state, resembling the chromatin of an interphase nucleus (2, 13, 15, 16). This is followed by a close association or fusion of male and female pronuclei (2, 13, 15, 16). Cytoplasmic influences on nuclear morphology have also been demonstrated clearly in nuclear transplantation and cell fusion studies (10, 11). Reactivation of the nucleus, such as the transplanted brain nucleus in Xenopus egg cytoplasm or the hen erythrocyte nucleus in interphase cytoplasm of HeLa cells, is accompanied by nuclear enlargement and chromatin dispersion (10, 11). However, premature mitotic-like chromosome condensation takes place in the nuclei of sperm or interphase cells fused with mitotic cells (9, 12). Thus, chromosome dispersion and condensation seem to depend on the state of the cytoplasm in which the nucleus is present. These observations imply that the initial morphological changes in the sperm nucleus after fertilization may very well be dependent on the state of maturation of eggs at the time of sperm entry. Unfertilized eggs of Urechis caupo, a marine echiuroid worm, are stored at the diakinesis stage. These eggs complete maturation division after insemination and this is followed by fusion of male and female pronuclei (5, 8). Therefore, Urechis caupo is a suitable organism in which to study the response of the sperm nucleus to the changing state of the egg cytoplasm during and after postfertilization maturation division.  相似文献   

19.
20.
The distribution of U snRNAs during mitosis was studied by indirect immunofluorescence microscopy with snRNA cap-specific anti-m3G antibodies. Whereas the snRNAs are strictly nuclear at late prophase, they become distributed in the cell plasm at metaphase and anaphase. They re-enter the newly formed nuclei of the two daughter cells at early telophase, producing speckled nuclear fluorescent patterns typical of interphase cells. While the snRNAs become concentrated at the rim of the condensing chromosomes and at interchromosomal regions at late prophase, essentially no association of the snRNAs was observed with the condensed chromosomes during metaphase and anaphase. Independent immunofluorescent studies with anti-(U1)RNP autoantibodies, which react specifically with proteins unique to the U1 snRNP species, showed the same distribution of snRNP antigens during mitosis as was observed with the snRNA-specific anti-m3G antibody. Immunoprecipitation studies with anti-(U1)RNP and anti-Sm autoantibodies, as well as protein analysis of snRNPs isolated from extracts of mitotic cells, demonstrate that the snRNAs remain associated in a specific manner with the same set of proteins during interphase and mitosis. The concept that the overall structure of the snRNPs is maintained during mitosis also applies to the coexistence of the snRNAs U4 and U6 in a single ribonucleoprotein complex. Particle sedimentation studies in sucrose gradients reveal that most of the snRNPs present in sonicates of mitotic cells do not sediment as free RNP particles, but remain associated with high molecular weight (HMW) structures other than chromatin, most probably with hnRNA/RNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号