首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Group I grass pollen allergens make up a subgroup of the beta-expansin family of cell wall loosening proteins in plants. A recent study reported that recombinant Phl p 1, the group I allergen from timothy grass pollen, was associated with papain-like proteinase activity and suggested that expansins loosen the plant cell wall via proteolysis. We tested this idea with three experimental approaches. First, we evaluated three purified native group I allergens from timothy grass, ryegrass and maize (Phl p 1, Lol p 1, Zea m 1) using five proteinase assays with a variety of substrates. The proteins had substantial wall loosening activity, but no detectable proteolytic activity. Thus we cannot confirm proteolytic activity in the pollen allergen class of beta-expansins. Second, we tested the ability of proteinases to induce cell wall extension in vitro. Tests included cysteine proteinases, serine proteinases, aspartic proteinases, metallo proteinases, and aggressive proteinase mixtures, none of which induced wall extension in vitro. Thus, wall proteins are unlikely to be important load-bearing components of the plant cell wall. Third, we tested the sensitivity of beta-expansin activity and native wall extension activity to proteinase inhibitors. The results show that a wide range of proteinase inhibitors (phenylmethanesulfonyl fluoride, N-ethylmaleimide, iodoacetic acid, Pefabloc SC, and others) inhibited neither activity. From these three sets of results we conclude proteolysis is not a likely mechanism of plant cell wall loosening and that the pollen allergen class of beta-expansins do not loosen cell walls via a proteolytic mechanism.  相似文献   

2.
Worldwide, 400 million people suffer from hay fever and seasonal asthma. The major causative agents of these allergies are pollen specific proteins called the group-1 grass pollen allergens. Although details of their antigenicity have been studied for 40 years with an eye towards immunotherapy, their function in the plant has drawn scant attention. Zea m 1 constitutes a class of abundant grass pollen allergens coded for by several genes that loosen the walls of grass cells, including the maize stigma and style. We have examined the impact of a transposon insertion into one of these genes (EXPB1, the most abundant isoform of Zea m 1) on the production of Zea m 1 protein, pollen viability, and pollen tube growth, both in vitro and in vivo. We also examined the effect of the insertional mutation on the competitive ability of the pollen by experimentally varying the sizes of the pollen load deposited onto stigmas using pollen from heterozygous plants and then screening the progeny for the presence of the transposon using PCR. We found that the insertional mutation reduced the levels of Zea m 1 in maize pollen, but had no effect on pollen viability, in vitro pollen tube growth or the proportion of progeny sired when small pollen loads are deposited onto stigmas. However, when large pollen loads are deposited onto the stigmas, the transposon mutation is vastly underrepresented in the progeny, indicating that this major pollen allergen has a large effect on pollen tube growth rates in vivo, and plays an important role in determining the outcome of the pollen-pollen competition for access to the ovules. We propose that the extraordinary abundance (4% of the extractable protein in maize pollen) of this major pollen allergen is the result of selection for a trait that functions primarily in providing differential access to ovules.  相似文献   

3.
The dominant allergenic components of grass pollen are known by immunologists as group 1 allergens. These constitute a set of closely related proteins from the beta-expansin family and have been shown to have cell wall-loosening activity. Group 1 allergens may facilitate the penetration of pollen tubes through the grass stigma and style. In maize (Zea mays), group 1 allergens are divided into two classes, A and B. We have identified 15 genes encoding group 1 allergens in maize, 11 genes in class A and four genes in class B, as well as seven pseudogenes. The genes in class A can be divided by sequence relatedness into two complexes, whereas the genes in class B constitute a single complex. Most of the genes identified are represented in pollen-specific expressed sequence tag libraries and are under purifying selection, despite the presence of multiple copies that are nearly identical. Group 1 allergen genes are clustered in at least six different genomic locations. The single class B location and one of the class A locations show synteny with the rice (Oryza sativa) regions where orthologous genes are found. Both classes are expressed at high levels in mature pollen but at low levels in immature flowers. The set of genes encoding maize group 1 allergens is more complex than originally anticipated. If this situation is common in grasses, it may account for the large number of protein variants, or group 1 isoallergens, identified previously in turf grass pollen by immunologists.  相似文献   

4.
Over the last few decades, the cultivation of maize (Zea mays) has strongly increased in Central Europe. We therefore decided to study the allergen composition and the allergenic potency of its pollen in comparison with pollen from timothy grass (Phleum pratense), a typical representative of the native grasses. We found that 65% of the sera reactive to timothy pollen also bound to maize pollen proteins. By using 2-DE immunoblotting, followed by incubation with mAbs directed against known allergens or protein sequencing, those IgE-reactive components were further classified. Although novel, maize-specific pollen allergens could not be found, the presence of crossreacting allergens belonging to groups 1 and 13 (Zea m 1 and 13), both having high IgE prevalence, as well as the presence of the less important group 3 and 12 allergens was found. The structural variability of Zea m 1 and Zea m 13 was determined by sequencing clones isolated from a maize pollen cDNA library. This revealed sequence identities of 72 and 70%, respectively, to the corresponding Phl p 1 and Phl p 13 allergens of timothy grass pollen. IgE-crossreactivity was further studied using immunoblot inhibition tests. Here, timothy pollen extract completely blocked IgE binding to maize, whereas maize pollen extract blocked IgE reactivity to only some timothy pollen allergens.  相似文献   

5.
Expansins are a family of proteins that catalyze pH-dependent long-term extension of isolated plant cell walls. They are divided into two groups, alpha and beta, the latter consisting of the grass group I pollen allergens and their vegetative homologs. Expansins are suggested to mediate plant cell growth by interfering with either structural proteins or the polysaccharide network in the cell wall. Our group reported papain-like properties of beta-expansin of Timothy grass (Phleum pratense) pollen, Phl p 1, and suggested that cleavage of cell wall structural proteins may be the underlying mechanism of expansin-mediated wall extension. Here, we report additional data showing that beta-expansins resemble ancient and modern cathepsin B, which is a member of the papain (C1) family of cysteine proteinases. Using the Pichia pastoris expression system, we show that cleavage of inhibitory prosequences from the recombinant allergen is facilitated by its N-glycosylation and that the truncated, activated allergen shows proteolytic activity, resulting in very low stability of the protein. We also show that deglycosylated, full-length allergen is not activated efficiently and therefore is relatively stable. Motif and homology search tools detected significant similarity between beta-expansins and cathepsins of modern animals as well as the archezoa Giardia lamblia, confirming the presence of inhibitory prosequences, active site and other functional amino-acid residues, as well as a conserved location of these features within these molecules. Lastly, we demonstrate by site-directed mutagenesis that the conserved His104 residue is involved in the catalytic activity of beta-expansins. These results indicate a common origin of cathepsin B and beta-expansins, especially if taken together with their previously known biochemical properties.  相似文献   

6.
7.
A novel immunoreactive isoallergen of a major Bermuda grass pollen allergen, Cyn d 1, was purified by the use of a combination of various chromatographic techniques, including high-performance liquid chromatography. This new isoallergen has a pI value of 9.1 and shows significant N-terminal sequence homology with other isoforms. Carbohydrate composition analysis revealed a 10.4% carbohydrate content consisting of 7 different sugar moieties, including arabinose, fucose, galactose, glucose, mannose, xylose and N-acetylglucosamine, as well as a trace amount of rhamnose. Upon periodate oxidation, the binding activities of the Cyn d 1 isoform to murine monoclonal antibodies and human serum IgE and IgG were reduced, suggesting the importance of the carbohydrate moiety in the immune response. The availability of the purified Cyn d 1 basic isoform will allow for further structural and immunological characterization, and ultimately for the design of an appropriate therapy.  相似文献   

8.
gaMS-2 is a gametophytic male-sterile mutant of maize, with sterile pollen grains developmentally blocked at the binucleate stage. To characterise differentially expressed proteins in gaMS-2 pollen, we compared protein profiles of anthers and mature pollen from heterozygous GaMS-2/gaMS-2 plants and wild type (wt) plants by two-dimensional electrophoresis (2-DE). A basic protein present at a greatly reduced level in GaMS-2/gaMS-2 anthers was subsequently identified by tandem mass spectrometry as Zea m 1 (a glycoprotein of 31 kDa), the major group-1 allergen of maize pollen and a member of the -expansin 1 family. Moreover, we show that Zea m 1 can be deglycosylated by peptide N-glycosidase F. After deglycosylation, four major isoforms—Zea m 1a (more acetic), Zea m 1b, Zea m1c and Zea m 1d (more basic)—can be discriminated in wt anther in 2-DE immunoblots probed with a monoclonal antibody against the group-1 pollen allergen, whereas all the isoforms, especially Zea m 1a, exist at reduced levels in GaMS-2/gaMS-2 anthers. Furthermore, the reduced Zea m 1 accumulation in the mutant appears to occur in immature pollen but not in anther sporophytic tissues. Finally, we separated sterile pollen grains (at the mononucleate stage) from fertile ones using 42% Percoll solution, and found that Zea m 1 is barely detectable in sterile pollen grains. Together, our results indicate that a reduced Zea m 1 level is associated with the sterile phenotype of gaMS-2.W. Wang and M. Scali contributed equally to this study  相似文献   

9.
Expansins and coleoptile elongation in wheat   总被引:2,自引:0,他引:2  
Gao Q  Zhao M  Li F  Guo Q  Xing S  Wang W 《Protoplasma》2008,233(1-2):73-81
Expansins are now generally accepted to be the key regulators of wall extension during plant growth. The aim of this study was to characterize expansins in wheat coleoptiles and determine their roles in regulating cell growth. Endogenous and reconstituted wall extension activities of wheat coleoptiles were measured. The identification of beta-expansins was confirmed on the basis of expansin activity, immunoblot analysis, and beta-expansin inhibition. Expansin activities of wheat coleoptiles were shown to be sensitive to pH and a number of exogenously applied factors, and their optimum pH range was found to be 4.0 to 4.5, close to that of alpha-expansins. They were induced by dithiothreitol, K(+), and Mg(2+), but inhibited by Zn(2+), Cu(2+), Al(3+), and Ca(2+), similar to those found in cucumber hypocotyls. An expansin antibody raised against TaEXPB23, a vegetative expansin of the beta-expansin family, greatly inhibited acid-induced extension of native wheat coleoptiles and only one protein band was recognized in Western blot experiments, suggesting that beta-expansins are the main members affecting cell wall extension of wheat coleoptiles. The growth of wheat coleoptiles was closely related to the activity and expression of expansins. In conclusion, our results suggest the presence of expansins in wheat coleoptiles, and it is possible that most of them are members of the beta-expansin family, but are not group 1 grass pollen allergens. The growth of wheat coleoptiles is intimately correlated with expansin expression, in particularly that of beta-expansins.  相似文献   

10.
The isolation, characterization and regulation of expression of a maize silk-specific gene is described. zmgrp5 (Zea mays glycine-rich protein 5) encodes a 187 amino acid glycine-rich protein that displays developmentally regulated silk-specific expression. Northern, Western, in situ mRNA hybridization and transient gene expression analyses indicate that zmgrp5 is expressed in silk hair and in cells of the vascular bundle and pollen tube transmitting tissue elements. The protein is secreted into the extracellular matrix and is localized in the cell wall fraction mainly through interactions mediated by covalent disulphide bridges. Taken together, these results suggest that the protein may play a role in maintaining silk structure during development. This is the first documented isolation of a stigma-specific gene from maize, an important agronomic member of the Poaceae family.Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accessions nos. AY095207, AY095208 and AAM16282.1).  相似文献   

11.
甘蔗乙烯合成酶基因家族三个成员的克隆与序列分析   总被引:4,自引:0,他引:4  
ACC(1-aminocyclopropane-1-carboxylic acid)合成酶是高等植物乙烯生物合成途径中的限速酶.根据已克隆的植物ACS(1-aminocyclopropane-1-carboxylic acid synthase)基因同源序列,设计简并引物,以甘蔗叶片总DNA为模板,通过PCR扩增,得到3条特异性强的扩增片段:Sc-ACS1为1 041 bp、Sc-ACS2为1 345 bp和Sc-ACS3为1 707 bp.将序列在GenBank核酸数据库进行同源性搜索,结果表明,3个片段均为ACS基因,推导编码的蛋白质序列分别包含326、242和310个氨基酸.其中,Sc-A CS1和Sc-ACS3同源性最高,核苷酸序列和蛋白质氨基酸序列分别有98%和96%同源,与禾本科植物玉米Zm ACS6、水稻OS-ACS2、毛竹等ACS基因家族也有很高的同源性,核苷酸序列同源性为88%-98%,蛋白质氨基酸序列同源性为73%-81%.甘蔗Sc-ACS2与水稻OS-ACS5在核苷酸和氨基酸序列上分别有91%和79%同源性,但与甘蔗Sc-ACS1和Sc-ACS3基因成员之间,氨基酸同源性分别只有45%和49%.系统进化分析表明,Sc-ACS1和Sc-ACS3基因与玉米Zm ACS6基因亲缘关系最近,而Sc-ACS2基因与水稻OS-ACS5基因亲缘关系最近.Southern杂交表明三基因在基因组中确实存在而且是多拷贝基因.三个片段已在GenBank数据库中注册,注册号分别为AY620985、AY620986和AY788919.  相似文献   

12.
Beta-expansins accumulate to high levels in grass pollen, a feature apparently unique to grasses. These proteins, which are major human allergens, facilitate pollen tube penetration of the maize stigma and style (the silk). Here we report that treatment of maize silk cell walls with purified β-expansin from maize pollen led to solubilization of wall matrix polysaccharides, dominated by feruloyated highly substituted glucuronoarabinoxylan (60%) and homogalacturonan (35%). Such action was selective for cell walls of grasses, and indicated a target preferentially found in grass cell walls, probably the highly substituted glucuronoarabinoxylan. Several tests for lytic activities by β-expansin were negative and polysaccharide solubilization had weak temperature dependence, which indicated a non-enzymatic process. Concomitant with matrix solubilization, β-expansin treatment induced creep, reduced the breaking force and increased the plastic compliance of wall specimens. From comparisons of the pH dependencies of these processes, we conclude that matrix solubilization was linked closely to changes in wall plasticity and breaking force, but not so closely coupled to cell wall creep. Because matrix solubilization and increased wall plasticity have not been found with other expansins, we infer that these novel activities are linked to the specialized role of grass pollen β-expansins in promotion of penetration of the pollen tube through the stigma and style, most likely by weakening the middle lamella.  相似文献   

13.
In the C4 plant Guinea grass (Panicum maximum), phosphoenolpyruvate carboxykinase (PEPCK) is phosphorylated in darkened leaves and dephosphorylated in illuminated leaves. To determine whether the properties of phosphorylated and non-phosphorylated PEPCK were different, PEPCK was purified to homogeneity from both illuminated and darkened leaves. The final step of the purification procedure, gel filtration chromatography, further separated phosphorylated and non-phosphorylated forms. In the presence of a high ratio of ATP to ADP, the non-phosphorylated enzyme had a higher affinity for its substrates, oxaloacetate and phosphoenolpyruvate. The activity of the non-phosphorylated form was up to 6-fold higher when measured at low substrate concentrations. Comparison of proteoloytically cleaved PEPCK from Guinea grass, which lacked its N-terminal extension, from yeast (Saccharomyces cerevisiae), which does not possess an N-terminal extension, and from the C4 plant Urochloa panicoides, which possesses an N-terminal extension but is not subject to phosphorylation, revealed similar properties to the non-phosphorylated full-length form from Guinea grass. Assay of PEPCK activity in crude extracts of Guinea grass leaves, showed a large difference between illuminated and darkened leaves when measured in a selective assay (a low concentration of phosphoenolpyruvate and a high ratio of ATP to ADP), but there was no difference under assay conditions used to estimate maximum activity. Immunoblots of sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed no difference in the abundance of PEPCK protein in illuminated and darkened leaves. There were no light/dark differences in activity detected in maize (Zea mays) leaves, in which PEPCK is not subject to phosphorylation.  相似文献   

14.
15.
Expansins comprise a multigene family of proteins in maize (Zea mays). We isolated and characterized 13 different maize expansin cDNAs, five of which are alpha-expansins and eight of which are beta-expansins. This paper presents an analysis of these 13 expansins, as well as an expression analysis by northern blotting with materials from young and mature maize plants. Some expansins were expressed in restricted regions, such as the beta-expansins ExpB1 (specifically expressed in maize pollen) and ExpB4 (expressed principally in young husks). Other expansins such as alpha-expansin Exp1 and beta-expansin ExpB2 were expressed in several organs. The expression of yet a third group was not detected in the selected organs and tissues. An analysis of expansin sequences from the maize expressed sequence tag collection is also presented. Our results indicate that expansin genes may have general, overlapping expression in some instances, whereas in other cases the expression may be highly specific and limited to a single organ or cell type. In contrast to the situation in Arabidopsis, beta-expansins in maize seem to be more numerous and more highly expressed than are alpha-expansins. The results support the concept that beta-expansins multiplied and evolved special functions in the grasses.  相似文献   

16.
Expansins are wall‐loosening proteins that promote the extension of primary cell walls without the hydrolysis of major structural components. Previously, proteins from the EXPA (α–expansin) family were found to loosen eudicot cell walls but to be less effective on grass cell walls, whereas the reverse pattern was found for EXPB (β–expansin) proteins obtained from grass pollen. To understand the evolutionary and structural bases for the selectivity of EXPB action, we assessed the extension (creep) response of cell walls from diverse monocot families to EXPA and EXPB treatments. Cell walls from Cyperaceae and Juncaceae (families closely related to grasses) displayed a typical grass response (‘β–response’). Walls from more distant monocots, including some species that share with grasses high levels of arabinoxylan, responded preferentially to α–expansins (‘α–response’), behaving in this regard like eudicots. An expansin with selective activity for grass cell walls was detected in Cyperaceae pollen, coinciding with the expression of genes from the divergent EXPB–I branch that includes grass pollen β–expansins. The evolutionary origin of this branch was located within Poales on the basis of phylogenetic analyses and its association with the ‘sigma’ whole‐genome duplication. Accelerated evolution in this branch has remodeled the protein surface in contact with the substrate, potentially for binding highly substituted arabinoxylan. We propose that the evolution of the divergent EXPB–I group made a fundamental change in the target and mechanism of wall loosening in the grass lineage possible, involving a new structural role for xylans and the expansins that target them.  相似文献   

17.
Group 1 grass pollen allergens comprise a distinctive clade within the β-expansin family of cell wall-loosening proteins and are divided by sequence divergence into two phylogenetically separable classes (A and B). They have been proposed to loosen the walls of the stigma and style. Supporting this idea, we recently showed that a transposon insertion in one of the maize group-1 allergen genes reduces the ability of pollen to effect fertilization under conditions of pollen competition. In this work, we provide additional information on the phenotype of this mutant, showing that pollen deficient in β-expansin gene expression tended to form large aggregates, leading to poor pollen dispersal on anther dehiscence, and that emerging pollen tubes had difficulties entering the silk. In addition, a silencing construct was created to reduce expression of all the class B genes with results that are consistent with those seen with the transposon insertional line, including reduced transgene transmission through the pollen. Our results provide a more detailed understanding of the role of group 1 allergens (pollen β-expansins) in maize pollen development, pollen dispersal, pollen tube penetration into the style, and pollen tube growth through the transmitting tract. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The effect of light irradiance on the amount of ATP synthase alpha-subunit in mesophyll (M) and bundle sheath (BS) chloroplasts of C(4) species such as maize (Zea mays L., type NADP-ME), millet (Panicum miliaceum, type NAD-ME) and guinea grass (Panicum maximum, type PEP-CK) was investigated in plants grown under high, moderate and low light intensities equal to 800, 350 and 50 micromol photons m(-2) s(-1), respectively. The results demonstrate that alpha-subunit of ATP synthase in both M and BS chloroplasts is altered by light intensity, but differently in the investigated species. Moreover, we identified two isoforms of the CF(1) alpha-subunit, called alpha and alpha. The CF(1) alpha-subunit was the major isoform and was present in all light conditions, whereas alpha was the minor isoform in low light. A strong increase in the level of the alpha-subunit in maize mesophyll and bundle sheath thylakoids was observed after 50 h of high light treatment. The alpha and alpha-subunits from investigated C(4) species displayed apparent molecular masses of 64 and 67 kDa, respectively, on SDS/PAGE. The presence of the alpha-subunit of ATPase was confirmed in isolated CF(1) complex, where it was recognized by antisera to the alpha-subunit. The N-terminal sequence of alpha-subunit is nearly identical to that of alpha. Our results indicate that both isoforms coexist in M and BS chloroplasts during plant growth at all irradiances. We suggest the existence in M and BS chloroplasts of C(4) plants of a mechanism(s) regulating the ATPase composition in response to light irradiance. Accumulation of the alpha isoform may have a protective role under high light stress against over protonation of the thylakoid lumen and photooxidative damage of PSII.  相似文献   

19.
In maize (Zea mays L.) three isoforms of starch-branching enzyme (SBEI, SBEIIa, and SBEIIb) are involved in the synthesis of amylopectin, the branched component of starch. To isolate a cDNA encoding SBEIIa, degenerate oligonucleotides based on domains highly conserved in Sbe2 family members were used to amplify Sbe2-family cDNA from tissues lacking SBEIIb activity. The predicted amino acid sequence of Sbe2a cDNA matches the N-terminal sequence of SBEIIa protein purified from maize endosperm. The size of the mature protein deduced from the cDNA also matches that of SBEIIa. Features of the predicted protein are most similar to members of the SBEII family; however, it differs from maize SBEIIb in having a 49-amino acid N-terminal extension and a region of substantial sequence divergence. Sbe2a mRNA levels are 10-fold higher in embryonic than in endosperm tissue, and are much lower than Sbe2b in both tissues. Unlike Sbe2b, Sbe2a-hybridizing mRNA accumulates in leaf and other vegetative tissues, consistent with the known distribution of SBEIIa and SBEIIb activities.  相似文献   

20.
Wu S  Yu Z  Wang F  Li W  Ye C  Li J  Tang J  Ding J  Zhao J  Wang B 《Molecular biotechnology》2007,36(2):102-112
N-methylation of phosphoethanolamine, the committing step in choline (Cho) biosynthesis in plants, is catalyzed by S-adenosyl-l-methionine: phosphoethanolamine N-methyltransferase (PEAMT, EC 2.1.1.103). Herein we report the cloning and characterization of the novel maize phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) using a combination of bioinformatics and a PCR-based allele mining strategy. The cDNA sequence of ZmPEAMT1 gene is 1,806 bp in length and translates a 495 amino acids peptide. The upstream promoter sequence of ZmPEAMT1 were obtained by TAIL-PCR, and contained four kinds of putative cis-acting regulatory elements, including stress-responsive elements, phytohormone-responsive elements, pollen developmental special activation elements, and light-induced signal transduction elements, as well as several other structural features in common with the promoter of rice and Arabidopsis homologies. RT-PCR analysis showed that expression of ZmPEAMT1 was induced by salt stress and suppressed by high temperature. Over-expression of ZmPEAMT1 enhanced the salt tolerance, root length, and silique number in transgenic Arabidopsis. These data indicated that ZmPEAMT1 maybe involved in maize root development and stress resistance, and maybe having a potential application in maize genetic engineering. Note: Nucleotide sequence data are available in GenBank under the following accession numbers: maize (Zea mays, ZmPEAMT1, AY626156; ZmPEAMT2, AY103779); rice (Oryza sativa, OsPEAMT1/Os01g50030, NM_192178; OsPEAMT2/Os05g47540, XM_475841); wheat (Triticum aestivum, TaPEAMT, AY065971); Arabidopsis (Arabidopsis thaliana, AtNMT1/At3g18000, AY091683; AtNMT2/At1g48600, NM_202264; AtNMT3/At1g73600, NM_106018); oilseed rape (Brassica napus, BnPEAMT, AY319479), tomato (Lycopersicon esculentum, AF328858), spinach (Spinacia oleracea, AF237633).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号