首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friend leukaemic cells (FLC) were induced to differentiate with dimethyl sulfoxyde (DMSO), hexamethylenbis-acetamide (HMBA) and sodium butyrate (SB) and the phospholipid composition was analyzed. The phospholipid composition of differentiated cells differed from that of non differentiated cells and also varied according to inducer. The ratios of the percentage of phosphatidyl choline (PC) to that of phosphatidyl ethanolamine (PE) or sphingomyelin (SPH) increased by about 2-fold in DMSO or SB induced FLC. These ratios did not vary in HMBa induced FLC. Furthermore the fatty acid composition of PC and PE obtained from differentiated cells varied according to the inducer. Although these changes appeared to be related to the inducers, it can not be excluded that the differentiated state also contributes to these changes.  相似文献   

2.
The phospholipid composition of Micrococcus denitrificans was unusual in that phosphatidyl choline (PC) was a major phospholipid (30.9%). Other phospholipids were phosphatidyl glycerol (PG, 52.4%), phosphatidyl ethanolamine (PE, 5.8%), an unknown phospholipid (5.3%), cardiolipin (CL, 3.2%), phosphatidyl dimethylethanolamine (PDME, 0.9%), phosphatidyl monomethylethanolamine (PMME, 0.6%), phosphatidyl serine (PS, 0.5%), and phosphatidic acid (0.4%). Kinetics of 32P incorporation suggested that PC was formed by the successive methylations of PE. Pulse-chase experiments with pulses of 32P or acetate-1-14C to exponentially growing cells showed loss of isotopes from PMME, PDME, PS, and CL with biphasic kinetics suggesting the same type of multiple pools of these lipids as proposed in other bacteria. The major phospholipids, PC, PG, and PE, were metabolically stable under these conditions. The fatty acids isolated from the complex lipids were also unusual in being a simple mixture of seven fatty acids with oleic acid representing 86% of the total. Few free fatty acids and no non-extractable fatty acids associated with the cell wall or membrane were found.  相似文献   

3.
The phospholipid fatty acid composition of Porphyridium purpureum on a solid medium was studied in the presence of sodium dodecyl sulphate (SDS) and cetyl trimethylammonium bromide (CTAB). The most common fatty acids in phosphatidyl choline (PC) and phosphatidyl ethanolamine (PE) were palmitic (16:0), stearic (18: 0), linoleic (18:2ω 6), arachidonic (20:4ω 6) and eicosapentaenoic (20:5ω 3) acids, 20:4ω 6 being very abundant. In phosphatidyl glycerol (PG) the most common acids were 16:0, trans-hexadecenoic acid (tr 16:1ω 13), oleic acid (18:1) and 20:4ω 6. Both detergents increased the saturation grade of PC and PE by decreasing the relative amount of the polyunsaturated acids, especially 20:4ω 6. A corresponding increase in the amounts of saturated acids was observed in PC and PE. The changes in PG fatty acid composition were not very significant: a slight increase was observed in the amounts of 16:0 and tr 16:1ω 13 , with a corresponding decrease in the amounts of 20:4ω 6 and 20:5ω 3. Both detergents decreased the PC/PE and the (PC + PE)/PG ratios very markedly, most probably as a result of increases in the amounts of PE and PG. In the presence of CTAB the cells seemed to contain much more phospholipids than in the presence of SDS, perhaps as a result of the mucilage-precipitating effect of CTAB. The significance of the findings is discussed.  相似文献   

4.
This investigation was conducted to observe changes in the fatty acid distributions of glycolipids (GL) and phospholipids (PL) in cotyledons of soybean seeds which were germinated either in the dark or the light at 28°C for 8 days. The GL isolated from the total lipids of cotyledons at different germinating stages were : acyl sterylglycoside (ASG), monogalactosyl diglyceride (MGD), digalactosyl diglyceride (DGD) and sulfolipid (SL). The PL isolated from the same total lipids as described above were : diphosphatidyl glycerol (DPG), phosphatidic acid (PA), phosphatidyl ethanolamine (PE), phosphatidyl glycerol (PG), phosphatidyl choline (PC) and phosphatidyl inositol (PI).

During germination of soybean seeds, the content of linoleic and linolenic acids in MGD or DGD was markedly higher than that of the other GL. The positional distribution of fatty acids in PE, PC and PI was shown in all PL, in which saturated fatty acids, especially palmitic acid, were highly concentrated in position 1 and unsaturated fatty acids, especially linoleic acid, mainly occupied position 2. A remarkable difference in the changing patterns of fatty acid composition, which depended on the germinating conditions tested, was observed between GL and PL. The changes in fatty acid composition of GL were more marked in the light-grown seedlings than in the dark-grown, whereas those of PL were more remarkable in the latter than in the former. Therefore, the positional distribution of fatty acids in PL was more evident in the light-grown seedlings than in the dark-grown ones.

These results suggest the metabolic fate of GL and PL in cotyledons of soybean seeds, probably owing to the differences in the two germinating conditions tested.  相似文献   

5.
Changes in the composition and contents of phospholipids and free fatty acids were observed and compared in three groups: (A) unpreconditoned normal controls, (B) exposure to 1 run of hypoxia and (C) exposure to 4 runs of hypoxia. In group B, the content of phosphatidyl ethanolamine (PE), phosphatidyl serine (PS) and free fatty acids (FFAs) increased significantly and the content of phosphatidyl choline (PC) and sphingomyelin (SM) decreased significantly. While in group C the content of PE, PS, PC and FFAs changed significantly when compared with that of group B, all phospholipid (except SM) and FFA contents tended to decrease to the level of group A. No new FFA was seen in the brain homogenates in any of the three groups. These results suggest that the changes in the content of mouse brain phospholipids and FFAs may be adaptive and involved in the animals' tolerance to hypoxia.  相似文献   

6.
This investigation was conducted to observe changes in the compositions of fatty acids, glycolipids (GL) and phospholipids (PL) in cotyledons of soybean seeds which were germinated either in the dark or the light at 28°C for 8 days. The patterns of changes in lipid composition depended on the germinating conditions tested. In general, non-polar lipids were metabolized at a faster rate than polar lipids. Changes in lipid contents in cotyledons were also observed more clearly with the polar lipids than with the non-polar ones, especially in the light-grown seedlings. The major component of lipid, GL in chloroplasts, appeared rapidly at an earlier stage in the cotyledons of light-grown seedlings. During germination of soybean seeds, acyl sterylglucoside in cotyledons decreased rapidly, but monogalactosyl diglyceride and digalactosyl diglyceride (DGD) increased in the light-grown seedlings, whereas sterylglucoside and DGD increased in the dark-grown seedlings.

The major PL present immediately after immersion were phosphatidyl ethanolamine (PE), phosphatidyl choline (PC) and phosphatidyl inositol (PI). During germination under both conditions, light and dark, PE in cotyledons decreased with PC or PI, while phosphatidic acid increased rapidly, and phosphatidyl glycerol and diphosphatidyl glycerol also increased slightly. These changes in glycolipid and phospholipid compositions during germination seem to occur from the formation of photosynthetic tissues and the metabolic interconversion of phospholipids.  相似文献   

7.
It has been demonstrated that the alkenylacyl class of ethanolamine phospholipid (PE) represents one of the major forms of eicosapentaenoic acid (EPA)-containing phospholipid in the circulating platelets isolated from human subjects consuming a fish oil concentrate. Since the alkenylacyl PE from human platelets is enriched in the eicosanoid precursor arachidonic acid (AA) and the n-6 polyunsaturate adrenic acid (AdA), it was of interest to study changes in alkenylacyl PE fatty acid composition upon fish oil supplementation. Healthy volunteers were given 20 capsules of MaxEPA daily (3.6 g of EPA plus 2.4 g of docosahexaenoic acid, DHA) for 6 weeks followed by a 6-week recovery period. Washed platelet suspensions were prepared and the fatty acid compositions of the phospholipid components were evaluated by thin-layer and gas-liquid chromatography at weeks 0, 3, 6, 9, and 12. Fatty acid composition changes were more pronounced in the alkenylacyl PE than in other platelet phospholipids as a result of fish oil consumption. The alkenylacyl PE exhibited a greater drop (by 20.3 mol%, i.e., from 72.0 to 51.7 mol%) in AA than diacyl PE (by 1.6 mol%) or total (predominantly diacyl) choline phospholipids (PC) (by 4.5 mol%). In alkenylacyl PE, the predominant reservoir of AdA in human platelet phospholipid, a dramatic reduction in the level of AdA also resulted with MaxEPA supplementation (from 7.9 to 3.1 mol%); diacyl PE and total PC decreased by 0.6 and 0.3 mol%, respectively. With respect to the n-3 fatty acids, EPA rose by 12.5 mol% in alkenylacyl PE, compared to only 3.8 and 2.5 mol% in diacyl PE and total PC, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
《Small Ruminant Research》2003,47(3):213-219
Three groups of five indigenous male goats 5–6 months of age, were offered control concentrate mixture (Group I) and those of Groups II and III were fed experimental concentrates containing 15 and 25% of water washed neem (Azadirachta indica) seed kernel cake (NKC). After 180 days of feeding the goats were slaughtered. Longissimus dorsi (LD) muscle from lumbar region was analysed for certain physico-chemical characteristics, organoleptic quality, detailed lipid profile and fatty acid composition; phosopholipids were fractionated into phosphatidyl inositide (PI), phosphatidyl serine (PS), lysophosphatidyl choline (LPC), lysophosphatidyl ethanolamine (LPE), sphingomyelin (SPH), phosphatidyl choline (PC) phosphatidyl ethanolamine (PE) and phosphatidic acid (PA). Fatty acids; capric, lauric, myristic, myristoleic, palmitic, palmitoleic, heptadecanoic, stearic, oleic, linoleic acid were also identified. Feeding of NKC did not affect slaughter weight and dressing out yield. The dressing percentage ranged between 42.2 and 43.8%. The pH, colour, moisture, total crude protein, different protein fractions; water extractable, salt extractable and content of NPN did not differ among the groups. There was a significant decrease in the total lipid content of LD of experimental groups. PC and PE were the major fractions accounting for 60% of total phospholipids. There was a significant increase in PC and LPC fractions while LPE+SPH, PE and PA fractions decreased in goats fed NKC. A significant increase was noticed in unsaturated fatty acid content and decrease in total saturates. It is concluded that NKC feeding has the ability of reducing lipid content and increasing the unsaturated fatty acids, which are considered to be beneficial in reducing the cholesterol level. It may be used beneficially as an alternative for costly conventional oil cakes for economic lean chevon production without affecting the quality of goat meat.  相似文献   

9.
Effect of protein deficient diet on hepatic plasma membrane fluidity has been studied in rats using (i) steady state fluorescence polarization and anisotropy, (ii) phospholipid and cholesterol contents, (iii) phospholipid fatty acid composition, (iv) turnover of phosphatidyl choline (PC), and (v) activities of membrane-bound enzymes as parameters and rats fed casein (20%) diet as standard group. A significant increase in steady state fluorescence and anisotropy values was registered in the deficient group, indicating increased resistance and hence decrease in fluidity of the plasma membrane. Supplementation of the diet with lysine and threonine improved these values, thereby suggesting the significance of diet for membrane fluidity. Simultaneous significant alterations in other parameters, viz. (i) decrease in PC, PE and free cholesterol and increase in esterified cholesterol contents, (ii) decrease in unsaturation of fatty acids of PC, (iii) decrease in incorporation of NaH2 32PO4, [CH3-14C]choline and [CH3-14C]methionine into plasma membrane PC, and (iv) decrease in activities of plasma membrane 5'-nucleotidase and phosphodiesterase along with increase of (Na(+)-K+)ATPase and adenyl cyclase, were observed in the deficient group which on supplementation with lysine and threonine showed improvement over alterations.  相似文献   

10.
The fatty acid composition of wheat seedling roots changed in response to temperature. As temperature declined, the level of linolenic acid increased and the level of linoleic acid decreased. The distribution of phospholipid classes was not influenced by temperature. Phosphatidyl choline and phosphatidyl ethanolamine were the predominant phospholipids isolated and comprised 85% of the total lipid phosphorus. Smaller quantities of phosphatidyl glycerol, phosphatidyl inositol, phosphatidic acid, and phosphatidyl serine were isolated. The fatty acid composition of phosphatidyl choline and phosphatidyl ethanolamine were the same and temperature affected the fatty acid composition of both phospholipids in the same manner.Growth in the presence of the substituted pyridazinone, BASF 13 338 (4-chloro-5-dimethylamino-2-phenyl-3(2H)pyridazinone), reduced the level of linolenic acid and increased the level of linoleic acid in the phosphatidyl choline, phosphatidyl ethanolamine, and total polar lipid fractions. BASF 13 338 did not affect the levels of palmitate, stearate, and oleate or the distribution of phospholipid classes.Respiration rates of wheat root tips were measured over a range of temperatures. The respiration rate declined as the temperature decreased. Neither the temperature at which the tissue was grown nor BASF 13 338 treatment influenced the ability of root tips to respire at any temperature from 4 to 30 C. The results indicated that the relative proportion of linolenic acid to linoleic acid did not influence the plants ability to grow and respire over the range of temperatures tested.  相似文献   

11.
The phospholipids of the mitochondria of chiUing-sensitive (Zhang Dang No. 9) and chilling-tolerant (HD103×Ferumac) corn shoots are composed of phosphatidyl choline, phosphatidyl ethaaolamine, phosphatidic acid, phosphatidyl inositol, diphosphatidyl glycerol, lysophosphatidyl choline and so on. The weight per cent composition of various phospholipid components in there two varieties of corn are not apparently different. The fatty acid composition of the mitochondria of both corn shoots arc similar except the palmitic acid and linoleic acid.  相似文献   

12.
The lipid composition of leaves has been investigated in different genotypes of cucumber ( Cucumis sativus L.), which differ in temperature requirement for cultivation. In addition the effects of hardening by low but non-chilling temperature, soil heating and grafting (on the chilling-resistant C. ficifolia L.) on lipid composition have been studied. Content and composition of phospholipids and sterols were determined as well as phospholipid/sterol ratio, and fatty acid composition of total lipids and the different phospholipids.
The effects of genetic differentiation and of the various culture treatments on lipid composition of the leaves were very different. Genetic differentiation was evident as higher levels of Iinolenic acid in several phospholipids in the more cold-tolerant cultivars. Hardening the plants by low temperature resulted in a higher phospholipid level (especially phosphatidyl choline), more unsaturated phospholipid, and lowering of the sterol/phiospholipid ratio, all properties which may contribute to a higher membrane fluidity and lower growth temperature limit. Soil healing reduced the phospholipid level of the leaves slightly, and a higher content of 3- trans -hexadece-noic acid in phosphatidyl glycerol was observed. Grafting cucumber on the cold-resistant rootstock of C. ficifolia also raised the level of trans -hexadecenoic acid in phosphatidyl glycerol. The role of this fatty acid in the functioning of the chloroplast is discussed.  相似文献   

13.
Cytidine, as cytidine 5'-diphosphate choline (CDP-choline), is important for the synthesis of phosphatidylcholine in cell membranes. To investigate whether exogenous CDP-choline could affect brain phospholipid composition, we supplemented the diet of mice with this drug (500 mg/kg/day) for 27 months in 3-month-old mice and for 90, 42, and 3 days in 12-month-old mice, and measured their levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and the content of phosphatidylinositol plus phosphatidic acid in the cerebral cortex. After 27 months of treatment, PC and PE increased significantly by 19% (P < 0.05) and by 20% (P < 0.01), respectively. PS levels increased by 18% (not statistically significant). Similar elevations in PC and PE levels were obtained when older mice were treated for only 3 months (P < 0.05). No changes were observed with shorter treatment periods. These results suggest that chronic administration of CDP-choline can have effects on brain phospholipid composition that may underlie its reported utility in various neurologic disorders.  相似文献   

14.
The effect of pretreatment of cucumber (Cucumis sativus L.) roots with choline chloride or ethanolamine on leaf phospholipid composition and light-induced leaf damage during chilling was studied. Photooxidative chlorophyll degradation was similarly inhibited by both amino alcohols. The decrease of the chlorophyll a/chlorophyll b ratio and the increase of polyunsaturated-fatty-acid degradation during chilling in the light were equally inhibited by pretreatment with choline chloride or ethanolamine. Treatment with choline chloride and ethanolamine caused, respectively, 43% and 26% increases in the total phospholipid contents of the leaves. After treatment with choline chloride, the phosphatidylcholine content was higher than the content of phosphatidylethanolamine; the reverse was true after treatment with ethanolamine. The chlorophyll concentration increased less than the phospholipid concentration, resulting in a decreased chlorophyll/phospholipid ratio of treated leaves. During chilling in the light, degradation of phosphatidylcholine, ethanolamine and phosphatidyl glycerol occurred. Phosphatidyl glycerol was less sensitive than phosphatidylcholine and ethanolamine. The degradation was equally inhibited by pretreatment with either amino alcohol. Possible connections between the phospholipid content of leaf membranes and the inhibition of chilling-induced photooxidative leaf damage are discussed.Abbreviations CC choline chloride - Chl chlorophyll - EA ethanolamine - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PG phosphatidyl glycerol  相似文献   

15.
Influence of NSE on lipid composition of metastases and the neighbouring conditionally normal lung tissue in mice with Lewis carcinoma was investigated. The processes of peroxidation in investigated tissues were also studied. It was shown that under the influence of NSE the high level of antioxidant activity in the metastases was decreased, while in the neighbouring conditionally normal lung tissue the catalase activity was increased. The content of the thiobarbituric acid-reactive substances in comparison with animals which were not fed by NSE was decreased. The development of carcinoma was accompanied by significant decrease of cholesterol level and by the increase of unsaturated fatty acids esterified in membrane phospholipids in both the metastases and the neighbouring conditionally normal lung tissue. An analysis of the phospholipid spectra shows that under tumor growth in investigated tissues the high-level lysophosphatidylcholine (LPC) was observed. The content of phosphatidyl choline (PC), phosphatidyl ethanolamine (PE), phosphatidyl serine (PS) was found to be significantly lower than in the lung of intact animals. It was found that administration of NSE to tumor-bearing mice contributed to the increase of cholesterol level, to the decrease of omega-6/omega-3 ratio polyunsaturated fatty acids of total phospholipids. NSE modulated the phospholipid membrane composition in both the metastases and the neighbouring conditionally normal lung tissue.  相似文献   

16.
Phosphatidyl choline (PC) is synthesised in wheat (Triticum aestivum L. cv. Flanders) aleurone tissue during early germination when new endomembranes are being formed. Although gibberellic acid does not ostensibly affect PC levels, it inhibits the incorporation of choline and differentially and specifically modulates the turnover of the N-methyl and methylene carbons of the choline headgroup of PC. Gibberellic acid has no effect on turnover of the phosphate moiety of either PC or the other major phosphatides. The possible biological importance of the findings is discussed.Abbreviations ER endoplasmic reticulum - GA gibberellin - GA3 gibberellic acid - PA phosphatidic acid - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PG phosphatidyl glycerol - PI phosphatidyl inositol - t1/2 half-life  相似文献   

17.
The distribution and fatty acid composition of cardiac choline and ethanolamine glycerophospholipids in both migratory and demersal fish and bovine and pig were determined. Phospholipid contents (mg/g heart) were 4.7-9.4 in demersal fish, 14.0-16.5 in migratory fish, and 16.8-20.6 in mammals. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were the major components in the phospholipid fraction. Diacyl forms represented 50.2-88.1% of PC in all animals, while plasmalogens comprised 47.0% in bovine, 8.2% in pig and 6.2-7.2% in four species of fish. In PE, plasmalogens varied from 45.0% in bovine and 57.9% in pig to 26.1-29.7% in fish. This glycerophospholipid subclass was identified as containing higher proportions of polyunsaturated fatty acids (PUFAs; 20:4, 20:5, and 22:6) than found in alkylacyl- and diacyl-glycerophospholipids. Qualitative and quantitative differences were found in PE-plasmalogen between land mammals and fish, especially with regard to n-3 fatty acid composition, but no significant difference was noted between migratory and demersal fish.  相似文献   

18.
R Bandyopadhyay  M K Basu 《Biochimie》1988,70(12):1841-1847
Total phospholipids were extracted from the heart, hepatopancreas, and hemolymph of the Indian horseshoe crab Carcinoscorpius rotundicauda by the conventional method. Characteristic group reaction and 2-dimensional thin-layer chromatography on silica gel were used for identification of different phospholipids. The phospholipid profile obtained from hemolymph and 2 major organs are comparable and show phosphatidyl choline (PC) and phosphatidyl ethanolamine to be the major phospholipids. A phospholipid has been consistently detected migrating immediately below the PC in the thin-layer chromatogram of lipids extracted from the hepatopancreas. When mixed methyl esters of this slower moving PC are resolved on a silica gel plate ran in hexane ether:acetic acid 80:20:1, with appropriate controls, an additional spot is seen just below the normal methyl ester, indicating a difference between the fatty acid compositions of 2 PC (e.g., regular and slower). The slower mixed methyl esters were found to comprise mainly the 4 saturated fatty acids: lauric, myristic, palmitic, and stearic. The slow moving PC seems to consist mainly of molecular species with the above-mentioned saturated fatty acids at both Sn 1 and Sn 2 positions.  相似文献   

19.
Cultured NIH 3T3 fibroblasts were employed to investigate the changes in the phospholipid metabolism induced by Ha-ras transformation. All phospholipid fractions were reduced in ras-transformed fibroblasts except phosphatidylethanolamine (PE). The incorporation of labeled choline and ethanolamine into phosphatidylcholine (PC), PE and their corresponding metabolites were elevated in a similar manner in the transformed cells. The enhanced uptake of choline and ethanolamine correlated with the activation of choline kinase and ethanolamine kinase. Similarly, the uptake of arachidonic, oleic and palmitic acids by PC and PE was higher in ras-cells. Acyl-CoA synthetases, which esterify fatty acid before their incorporation into lysophospholipids, were also activated. However, both CTP:phosphocholine-cytidylyltransferase and CTP:phosphoethanolamine-chytidyltransferase were inhibited in the transformed cells. This fact, taken together with the observed activation of choline- and ethanolamine kinases, led to accumulation of phosphocholine and phosphoethanolamine, which have been presumed to participate in the processes of tumor development. PC biosynthesis seemed to be carried out through the CDP-choline pathway, which was stimulated in the oncogenic cells, whereas PE was more likely, a product of phosphatidylserine decarboxylation rather than the CDP-ethanolamine pathway.  相似文献   

20.
Perturbation of the fatty acid composition of human lymphocytes in vitro was investigated by addition of linoleic acid complexed to bovine serum albumin (BSA-LA) and by mitogenic stimulation with phytohaemagglutinin (PHA). BSA-LA resulted in a 45% increase in linoleic acid in phosphatidylethanolamine (PE) and over 100% in phosphatidylcholine (PC) in peripheral blood cells. Supplementation with BSA-LA in PHA-stimulated lymphocytes produced even greater changes: 100% increase in linoleic acid content for PE and over 300% for PC. There was a large decrease in oleic acid: 40% for PE and almost 100% in PC. Significant decreases in arachidonic acid occurred in both phospholipid fractions. PHA alone also altered membrane phospholipid fatty acid composition, with reductions in palmitic, stearic and linoleic acid for PE and increases in oleic acid and arachidonic acid (almost 100%). For PC, there were large decreases in stearic (40%), linoleic (30%) and arachidonic (40%) acids, together with an increase in oleic acid (65%). Cells supplemented with linoleic acid grown in the presence of PHA, compared with those grown in linoleic acid-supplemented medium alone, showed a 40% decrease in palmitic acid and a 55% increase in arachidonic acid in PE. For PC, there were large decreases in stearic acid (40%) and arachidonic acid (57%). Antibody-induced redistribution of surface molecules ('capping') was inhibited by some 14% after incubation with BSA-LA. However, no consistent alterations in PHA-induced cell proliferation were observed. These data suggest that profound alterations of membrane fatty acid composition occur spontaneously during the mitotic cycle, and may be further induced by experimental manipulation, without gross perturbation of cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号