首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory mechanism of high levels of exogenously added arachidonic acid on activation of washed human platelets was investigated. While low levels of arachidonic acid (5-10 microM) induced aggregation, ATP secretion and increase in cytoplasmic free Ca2+ concentration (first phase of activation), these platelet responses did not occur significantly at high concentrations (30-50 microM). However, much higher concentrations than 80 microM again elicited these responses (second phase). The first phase of platelet activation was inhibited by cyclooxygenase inhibitor, indomethacin, whereas the second one was independent of such treatment. Thromboxane B2 was produced dose-dependently until reaching a plateau at arachidonic acid concentrations higher than 20 microM, irrespective of the lack of aggregation and secretion at high concentrations. After that the amount of free arachidonic acid which remained unmetabolized in platelets gradually increased. High concentrations of arachidonic acid as well as other polyunsaturated fatty acids caused desensitization of platelets in response to U46619, and also depressed the specific [3H]U46619-binding to the receptor as well as other polyunsaturated fatty acids. The amount free arachidonic acid needed in platelets to suppress [3H]U46619 binding corresponded to that needed to inhibit platelet aggregation. Furthermore, arachidonic acid dose-dependently induced fluidization of lipid phase of platelet membranes as detected by 1,6-diphenyl-1,3,5-hexatriene. These results suggest that the inhibition of platelet response by high levels of arachidonic acid can be attributed to interference with endoperoxide/thromboxane A2 binding to the receptor, probably due to perturbation of the membrane lipid phase due to excess amounts of free arachidonic acid remaining in the membranes.  相似文献   

2.
S-145 (5Z-7-(3-endo-phenylsulfonylamino-(2.2.1.)-bicyclohept -2-exo-yl) heptenoic acid) is a potent and selective antagonist for thromboxane A2/prostaglandin H2 receptor. Using this compound as an immobilized ligand for affinity chromatography and [3H]S-145 as a radioligand, we have purified the thromboxane A2/prostaglandin H2 receptor from the membranes of human blood platelets. The purification procedures consisted of solubilization of the receptor with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), affinity chromatographies on columns of S-145 affinity gel, wheat germ agglutinin agarose and red agarose, and repeated gel filtration high performance liquid chromatography on a TSK gel G-3000SW column. On the second gel filtration high performance liquid chromatography, the [3H]S-145 binding activity was eluted as a symmetrical peak which overlapped exactly with a peak of ultraviolet absorption at 280 nm. By these procedures, the receptor was purified about 8700-fold from the solubilized extract with a recovery of 6%. The final preparation showed a broad protein band at Mr 57,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and maximally bound 19.2 nmol of [3H]S-145/mg protein with a Kd of 29.8 nM. The [3H]S-145 binding to the purified receptor was specifically displaced by several thromboxane A2/prostaglandin H2 analogues.  相似文献   

3.
A photoactive iodoarylazide derivative (I-APA-PhN3) of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist 13-azaprostanoic acid is evaluated. Upon photoactivation, the compound was found to inhibit specifically and irreversibly human platelet aggregation induced by the TXA2/PGH2 mimetic U46619. In receptor-binding studies using [3H]U46619, I-APA-PhN3 exhibited an IC50 of 300 nM for inhibition of U46619 binding. Photoactivation of I-APA-PhN3 resulted in an irreversible 58% reduction in specific binding of U46619. This compound and its corresponding ratio-iodinated form will prove to be useful tools for the isolation and purification of the TXA2/PGH2-binding protein in human platelets.  相似文献   

4.
Prostaglandin E (PGE) receptor density in hepatic plasma membranes can be down-regulated by in vivo exposure to the 16,16-dimethyl analog of PGE2, and this is associated with desensitization of PGE-sensitive adenylate cyclase. These studies examined adenylate cyclase response to other agonists in membranes whose PGE receptor density was 51% decreased and whose maximal PGE-stimulated adenylate cyclase activity was 31% decreased. Down-regulated membranes had a 37% decrease in their maximal response to glucagon, indicating that treatment with the PGE analog had induced both homologous and heterologous desensitization. To determine whether adenylate cyclase had been affected, stimulation with NaF, guanyl 5'-yl imidodiphosphate (GppNHp), and forskolin was examined in both intact and solubilized membranes. Intact membranes had decreased adenylate cyclase responses to all three stimulators (NaF, -41%; GppNHp, -25%; forskolin, -41%) as did solubilized membranes (NaF, -51%; GppNHp, -50%; forskolin, -50%), suggesting alterations in adenylate cyclase rather than indirect membrane effects. Cholera toxin activation and labeling were examined to more directly assess whether the guanine nucleotide (G/F) regulatory component of adenylate cyclase had been affected. Cholera toxin activation was 42% less in down-regulated membranes, and these membranes incorporated less label when the incubation was performed in the presence of [32]NAD. Solubilized G/F subunit activity from down-regulated membranes was less effective in reconstitution of adenylate cyclase activity from cyc- cell membranes than G/F activity from control membranes. These data indicate that in vivo exposure to the PGE analog causes both homologous and heterologous desensitization of adenylate cyclase as well as an apparent quantitative decrease in G/F.  相似文献   

5.
Lutropin-sensitive adenylate cyclase ((EC 4.6.1.1) ATP pyrophosphate-lyase (cyclizing)) in purified rat ovarian plasma membranes is stimulated by lutropin 2- to 3-fold in the absence, but 15- to 20-fold in the presence of GTP or p(NH)ppG. Following 10 to 15 min of incubation at 30 degrees C in the presence of lutropin, enzyme activity declined (50%) in the presence of GTP but not in the presence of p(NH)ppG. This desensitizing process induced by lutropin and GTP is not seen if NaF is also included in the incubation medium. The desensitized state of the enzyme persists at 4 degrees C in membranes washed free of the incubation medium. In this state the enzyme is characterized by: (i) a reduced response to lutropin even in the presence of p(NH)ppG; (ii) its response to NaF is not different from that of untreated enzyme; (iii) it reconverts to a fully responsive state following incubation (10 min, 30 degrees C) in GTP-free medium, a process accelerated by p(NH)ppG; (iv) the receptor content as well as the stability of the receptor.hormone complex does not differ from that of untreated fully responsive enzyme. It is proposed that desensitization results from a GTP-dependent, hormone-stimulated reaction that leads to impaired coupling of the enzyme system. The desensitized state induced is transient and may revert to a responsive one under specified conditions.  相似文献   

6.
We recently demonstrated that heterologous desensitization of adenylate cyclase in turkey erythrocytes is highly correlated with phosphorylation of the beta-adrenergic receptor. In contrast, little is known of the biochemical mechanisms underlying the homologous form of beta-adrenergic receptor desensitization, which is agonist-specific and not cAMP-mediated. Accordingly, the present studies were undertaken to examine if phosphorylation of the beta-adrenergic receptor is also associated with this form of desensitization in a well studied model system, the frog erythrocyte. Preincubation of these cells with the beta-adrenergic agonist isoproterenol leads to a 45% decline in isoproterenol-stimulated adenylate cyclase activity without significant changes in basal, prostaglandin E1-, NaF-, guanyl-5'-yl-imidodiphosphate-, forskolin-, or MnCl2-stimulated enzyme activities. There is also a 48% decline in [125I]iodocyanopindolol membrane binding sites. Conversely, preincubation of the cells with prostaglandin E1 attenuates only the prostaglandin E1-stimulated enzyme activity and does not affect [125I]iodocyanopindolol binding. Phosphorylation of the beta-adrenergic receptor was assessed by preincubating the cells with 32Pi and desensitizing them, and subsequently purifying the receptors by affinity chromatography. Under basal conditions there is about 0.62 mol of phosphate/mol of receptor whereas after desensitization with isoproterenol this increases to 1.9 mol/mol. This isoproterenol-induced receptor phosphorylation exhibits stereospecificity and is blocked by the beta-adrenergic antagonist propranolol. In addition, preincubation with prostaglandin E1 does not promote beta-adrenergic receptor phosphorylation. These data suggest that receptor phosphorylation is involved in homologous as well as heterologous forms of desensitization and may provide a unifying mechanism for desensitization of adenylate cyclase-coupled hormone receptors.  相似文献   

7.
F2-isoprostanes are a recently discovered series of prostaglandin (PG)F2-like compounds that are produced in vivo in humans by nonenzymatic free radical catalyzed peroxidation of arachidonic acid. One of the compounds that can be produced in abundance by this mechanism is 8-epi-PGF2 alpha. 8-epi-PGF2 alpha is a potent vasoconstrictor in the rat, an effect that has been shown to be mediated via interaction with vascular thromboxane (TxA2)/endoperoxide (PGH2) receptors. In an effort to further understand the biological properties of this prostanoid in relation to its ability to interact with TxA2/PGH2 receptors, we examined its effects on human and rat platelets. At concentrations of 10(-6) M and 10(-5) M, 8-epi-PGF2 alpha induced only a shape change in human platelets and at higher concentrations (10(-4) M) induced reversible but not irreversible aggregation. Both the shape change and reversible aggregation were unaffected by indomethacin but were inhibited by the TxA2/PGH2 receptor antagonist SQ29548. Conversely, 8-epi-PGF2 alpha inhibited platelet aggregation induced by the TxA2/PGH2 receptor agonists U46619 (10(-6) M) and IBOP (3.3 x 10(-7) M) with an IC50 of 1.6 x 10(-6) M and 1.8 x 10(-6) M, respectively. 8-epi-PGF2 alpha also inhibited platelet aggregation induced by arachidonic acid. Similarly, in rat platelets, 8-epi-PGF2 alpha alone induced only modest reversible aggregation but completely inhibited U46619-induced aggregation.  相似文献   

8.
Brief (approximately 20-min) exposure of S49 lymphoma cells to beta-agonists such as isoproterenol leads to a homologous form of desensitization in which beta-agonist but not prostaglandin E1-sensitive or NaF-sensitive adenylate cyclase is reduced. The desensitized receptors (R) appear to be sequestered away from the effector system (guanine nucleotide regulatory protein (Ns) and adenylate cyclase (C)). Membrane perturbants such as polyethylene glycol are known to reorient membrane proteins and lipids. Thus, we fused agonist-desensitized S49 lymphoma cells to each other, using polyethylene glycol as fusogen, in an attempt to functionally reunite the R, N, and C components which might have become sequestered in microdomains of the plasma membrane during desensitization. Such treatment completely restored isoproterenol-stimulated adenylate cyclase to normal and re-established the ability of R and N to functionally couple as assessed by the ability to form a high affinity, guanine nucleotide-sensitive state of the receptor. These results support the concept that agonist-promoted sequestration plays a functionally significant role in the homologous desensitization of the beta-adrenergic receptor.  相似文献   

9.
S O Sage  J W Heemskerk 《FEBS letters》1992,298(2-3):199-202
Stimulation of human platelets with the thromboxane A2 analogue, U46619, after treatment with prostaglandin E1 or forskolin, reduced the inhibition of ADP-evoked Mn2+ influx and the release of Ca2+ from intracellular stores. U46619 decreased the elevated concentration of 3',5'-cyclic AMP in platelets that were pretreated with prostaglandin E1. These results suggest that occupation of prostaglandin H2/thromboxane A2 receptors, like those for other agonists, inhibits adenylate cyclase activity, which can contribute to the promotion of platelet activation.  相似文献   

10.
The effects of changes in pH on the binding of agonists and antagonists to the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were determined. Competition binding studies were performed with the TXA2/PGH2 mimetic [1S-1 alpha,2 beta (5Z), 3 alpha(1E,3R*),4 alpha)]-7-[3-(3-hydroxy-4'-iodophenoxy)-1-buteny) 7-oxabicyclo-[2.2.1]-heptan-2-yl]-5-heptenoic acid ([125I]BOP). The pH optimum for binding of [125I] BOP to washed human platelets was broad with a range of pH 4-6 in contrast to that of the TXA2/PGH2 receptor antagonist 9,11-dimethyl-methano-11,12-methano-16-(3-iodo-4-hydroxyl)-13-aza-15 alpha,beta-omega-tetranorthromboxane A2 ([125I]PTA-OH) which was 7.4. Scatchard analysis of [125I]BOP binding in washed platelets at pH 7.4, 6.0, and 5.0 revealed an increase in affinity (Kd = 1.16 +/- 0.06, 0.64 +/- 0.09, and 0.48 +/- 0.05 nM, respectively) and an increase in the number of receptors (Bmax = 2807 +/- 415, 5397 +/- 636, and 7265 +/- 753 sites/platelet, respectively). The potency of I-BOP to induce shape change in washed platelets at pH 6.0 was also significantly increased from an EC50 value of 0.34 +/- 0.016 nM at pH 7.4 to 0.174 +/- 0.014 nM at pH 6.0 (n = 6, p less than 0.05). In contrast, the EC50 value for thrombin was unaffected by the change in pH. In competition binding studies with [125I]BOP, the affinity of the agonists U46619 and ONO11113 were increased at pH 6.0 compared to 7.4. In contrast, the affinity of the TXA2/PGH2 receptor antagonists I-PTA-OH, SQ29548, and L657925 were either decreased or unchanged at pH 6.0 compared to 7.4. Diethyl pyrocarbonate and N-bromosuccinimide, reagents used to modify histidine residues, reversed the increase in affinity of [125I]BOP at pH 6.0 to values equivalent to those at pH 7.4. In solubilized platelet membranes, the effects of NBS were blocked by coincubation with the TXA2/PGH2 mimetic U46619. The results suggest that agonist and antagonist binding characteristics are different for the TXA2/PGH2 receptor and that histidine residue(s) may play an important role in the binding of TXA2/PGH2 ligands to the receptor.  相似文献   

11.
12.
13.
Preincubation of duck erythrocytes with tumor promoting phorbol diesters or catecholamines leads to attenuation of adenylate cyclase activity. 12-0-Tetradecanoyl phorbol-13-acetate (TPA) and phorbol 12,13-dibutyrate treatment induced a 38% and 30% desensitization of isoproterenol-stimulated adenylate cyclase activity, respectively. In contrast, the inactive phorbol diester, 4 alpha-phorbol 12,13-didecanoate, was without effect in promoting adenylate cyclase desensitization. The catecholamine isoproterenol induced a 51% desensitization. Incubation of 32Pi labeled erythrocytes with TPA promoted a 3- to 4-fold increase in phosphorylation of the beta-adrenergic receptor as did incubation with isoproterenol. Treatment of the cells with both TPA and isoproterenol together resulted in desensitization and receptor phosphorylation which were no greater than those observed with either agent alone. These data suggest a potential role for protein kinase C in regulating beta-adrenergic receptor function.  相似文献   

14.
The subcellular distribution of the alpha 2-adrenergic receptor, pertussis-toxin substrates (Gi, the inhibitory G-protein) and adenylate cyclase was determined in human platelets. The alpha 2-adrenergic receptor and pertussis-toxin substrate activity codistribute with surface membranes identified by a novel fluorescent-lectin method. The platelet granule fractions did not contain detectable Gi. Only 2-4% of the total pertussis-toxin substrate activity appears in soluble fractions, and this amount was not increased upon addition of purified beta gamma units or after pretreatment of platelets with adrenaline. There is no evidence for compartmentation of the alpha 2-adrenergic receptor or Gi to account for the low-affinity component of agonist binding to the alpha 2-adrenergic receptor in human platelet membranes. Translocation of Gi from plasma membrane to platelet cytosol or granules does not appear to play any significant role in the mechanism of alpha 2-receptor-mediated platelet activation.  相似文献   

15.
A hypothesis on the role of the hormone-induced desensitization of adenylate cyclase is proposed. It is suggested that the desensitization process could provide the cell with a highly efficient cyclic AMP system for transmitting hormone stimulus without requiring a large energy consumption. Theoretical considerations show that in fact the desensitization phenomenon allows the cyclic AMP system to present a good compromise between the efficiency and economy requirements of the cells.  相似文献   

16.
A series of 9-substituted adenine derivatives inhibited adenylate cyclase activity (ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1) of a particulate preparation of human blood platelets. A 3--6 fold elevation of adenylate cyclase activity by prostaglandin E1 (PGE1) was inhibited in a concentration-related manner by 9-(tetrahydro-5-methyl-2-furyl) adenine (SQ 22,538), 9-(tetrahydro-2-furyl) adenine (SQ 22,536), 9-cyclopentyladenine (SQ 22,534), 9-furfuryladenine (sQ 4647) and 9-benzyladenine (SQ 218611). The I50 values ranged from 21 microM for SQ 22,538 to 140 microM for SQ 21,611. These same adenine derivatives reversed the inhibition by PGE1 of ADP-induced aggregation and the PGE1-stimulated elevation of adenosine 3':5'-monophosphate (cyclic AMP). The reversal of platelet aggregation inhibition by SQ 22,536 and SQ 4647 was concentration-related with I50 values of 30 microM in each case, whereas SQ 22,534 and SQ 21,611 reversed inhibition by 30% at 100 microM. SQ 22,536, SQ 22,534 and SQ 21,611 also blocked the increase in cyclic AMP levels in a concentration-related manner with I50 values of 1, 4 and 60 microM, respectively. SQ 4647 inhibited the elevation of cyclic AMP by more than 85% at 1000 microM. The adenine derivatives had no effect on platelet aggregation or on cyclic AMP levels in the absence of PGE1. These results provide additional evidence that the inhibition of platelet aggregation by PGE1 is mediated by cyclic AMP.  相似文献   

17.
18.
The present study investigated the mechanism by which eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) inhibit platelet activation induced by thromboxane A2. DHA was found to be more potent than EPA in blocking platelet aggregation induced by the stable thromboxane A2 mimetic, U46619. Furthermore, this inhibition by DHA or EPA was competitive. Binding studies using 3H-U46619 demonstrated that both EPA and DHA interact with the platelet thromboxane receptor. The potency of the inhibition of binding corresponded with that seen for the inhibition of aggregation. These results suggest that thromboxane receptor antagonism may be an important mechanism by which EPA and DHA modulate platelet reactivity in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号