首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys2nd and Cys6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be applied in both health care and agricultural industries, and could lead to new methods for breeding fungus-resistant transgenic crops and antifungal transgenic silkworm strains.  相似文献   

2.
Microbial surfactants are amphipathic molecules that consist of hydrophilic and hydrophobic domains, which allow partition of two fluid phases of varying degree of polarity. They are classified into two main groups: bioemulsifier and biosurfactant, depending on their molecular weight. Microbial surfactants occur in various categories according to their chemical nature and producing organisms. These biomolecules are produced by diverse groups of microorganisms including fungi, bacteria, and yeasts. Their production is significantly influenced by substrate type, fermentation technology and microbial strains. Owing to inherent multifunctional properties and assorted synthetic aptitude of the microbes, microbial surfactants are mostly preferred than their chemical counterparts for various industrial and biomedical applications including bioremediation, oil recovery; as supplements in laundry formulations and as emulsion-stabilizers in food and cosmetic industries as well as therapeutic agents in medicine. The present review discusses on production of microbial surfactants as promising and alternative broad-functional biomolecules for various biotechnological applications.  相似文献   

3.
Barley grains contain two imrnunochemically distinct inhibitors of chymotrypsin and microbial serine proteases. Both inhibitors are rich in lysine (9.5 and 11.5 g Lys/g protein). Hiproly high-lysine barley contains twenty-fold higher, high-lysine mutant 1508 five-fold higher amounts of these inhibitors than normally cultivated varieties. Inhibitors were extracted from Hiproly barley, and ammonium sulfate fractionation followed by gel filtration resulted in a neariy complete separation of the two inhibitors. No inactive protein impurities could be detected in a number of isoinhibitor preparations obtained in subsequent cation exchange chrotnatography steps. One inhibitor (CI-1) was composed of at leas# 4 molecular forms with isoelecfric points in the range 4.75–5.55 and a monomer molecular size of about 9 000. Most of this inhibitor was apparently present as dimer forms in grain extracts. The other inhibitor (CI-2) included at least 7 different molecular forms with isoelectric points in the range 6.05–7.90 and different molecular sizes in the range 6 500–9 000. Both dimer and monomer forms were present in grain extracts. In contrast to previously purified protease inhibitors of plant origin, the two barley inhibitors contain no cysteine. No interactions between the two inhibitors and trypsin were observed, but the inhibitors were immediately inactivated by pepsin at pH 2.0. Monospecific antibodies towards the two inhibitors were obtained after immunization with glutaraldehyde-polymerized inhibitor.
Inhibitor CI-1 is identical with an inhibitor of microbial alkaline proteases previously purified (Mikola and Suolinna 1971. Arch. Biochem. Biophys. 144: 566–575).  相似文献   

4.
Proteases have a broad range of applications in industrial processes and products and are representative of most worldwide enzyme sales. The genus Bacillus is probably the most important bacterial source of proteases and is capable of producing high yields of neutral and alkaline proteolytic enzymes with remarkable properties, such as high stability towards extreme temperatures, pH, organic solvents, detergents and oxidizing compounds. Therefore, several strategies have been developed for the cost-effective production of Bacillus proteases, including optimization of the fermentation parameters. Moreover, there are many studies on the use of low-cost substrates for submerged and solid state fermentation. Other alternatives include genetic tools such as protein engineering in order to obtain more active and stable proteases and strain engineering to better secrete recombinant proteases from Bacillus through homologous and heterologous protein expression. There has been extensive research on proteases because of the broad number of applications for these enzymes, such as in detergent formulations for the removal of blood stains from fabrics, production of bioactive peptides, food processing, enantioselective reactions, and dehairing of skins. Moreover, many commercial proteases have been characterized and purified from different Bacillus species. Therefore, this review highlights the production, purification, characterization, and application of proteases from a number of Bacillus species.  相似文献   

5.
A Gustchina  I T Weber 《Proteins》1991,10(4):325-339
The different isolates available for HIV-1 and HIV-2 were compared for the region of the protease (PR) sequence, and the variations in amino acids were analyzed with respect to the crystal structure of HIV-1 PR with inhibitor. Based on the extensive homology (39 identical out of 99 residues), models were built of the HIV-2 PR complexed with two different aspartic protease inhibitors, acetylpepstatin and a renin inhibitor, H-261. Comparison of the HIV-1 PR crystal structure and the HIV-2 PR model structure and the analysis of the changes found in different isolates showed that correlated substitutions occur in the hydrophobic interior of the molecule and at surface residues involved in ionic or hydrogen bond interactions. The substrate binding residues of HIV-1 and HIV-2 PRs show conservative substitutions of four residues. The difference in affinity of HIV-1 and HIV-2 PRs for the two inhibitors appears to be due in part to the change of Val 32 in HIV-1 PR to Ile in HIV-2 PR.  相似文献   

6.
C‐terminal domains widely exist in the C‐terminal region of multidomain proteases. As a β‐sandwich domain in multidomain protease, the C‐terminal domain plays an important role in proteolysis including regulation of the secretory process, anchoring and swelling the substrate molecule, presenting as an inhibitor for the preprotease and adapting the protein structural flexibility and stability. In this review, the diversity, structural characteristics and biological function of C‐terminal protease domains are described. Furthermore, the application prospects of C‐terminal domains, including polycystic kidney disease, prepeptidase C‐terminal and collagen‐binding domain, in the area of medicine and biological artificial materials are also discussed.  相似文献   

7.
The caseinolytic enzymes of the midgut lumina and epithelia of Leucophaea were purified through precipitation by 60% saturated (NH4)2SO4, followed by gel permeation on Sephadex G-200 and subsequent DEAE anionexchange chromatography. At least four peaks with enzyme activity were eluted from anionexchange chromatography columns. Gregarines of the midgut lumen apparently do not contribute to the caseinolytic activity within the midgut. Elution profiles of lumen and epithelial enzymes were nearly identical. The same enzymes were identified in the lumina of epithelial microsomal vesicles. This allows the conclusion that these enzymes are produced by the midgut epithelia.Practically all protease activity of the midgut was found in the posterior half, both in the lumen and epithelium. Feeding stimulated protease production primarily in the posterior midgut. The pH optimum of the proteases lay between 9.0 and 9.5 which was closely matched by the observed pH of the posterior midgut where most of the activity is seen. The anterior midgut pH was determined to be around 8.0.The anterior midgut of Leucophaea contained a heatstable protease inhibitor with characteristics of a competitive inhibitor. This inhibitor was precipitable by 60% saturated (NH4)2SO4 and eluted from a Sephadex G-200 column more or less together with the proteases. From a DEAE anionexchange column it was eluted by 0.8 M NaCl, i.e. after the main portion of the proteases. The biological significance of the protease inhibitor in the anterior portion of the midgut is obscure.  相似文献   

8.
We have developed novel enzymatic methods for the optical resolution of unusual amino acids. In this work, we tried two microbial proteases, available inexpensively in a crude state, from Aspergillus oryzae and from Bacillus subtilis. The enantioselective hydrolysis of the methyl esters of the N-benzyloxycarbonyl (Z) derivatives of a number of amino acids, both aliphatic and aromatic, was examined using these microbial proteases. The enantiomeric purities of the resolved Z-amino acids were determined accurately by methods based on the reversed-phase HPLC separation of diastereomeric derivatives or the HPLC separation of enantiomeric derivatives on chiral stationary phases. In general, B. subtilis protease yielded better results than A. oryzae protease. Using the former protease, the amino acids bearing aliphatic side chains were resolved with good to excellent enantioselectivities and reasonable hydrolysis rates. The speed of hydrolysis was reduced significantly when the length of the side chain was longer than 5 carbon atoms. Phenylalanine, halogenated phenylalanines, and phenylalanine homologs were also resolved, generally with high enantiomeric purities, though the hydrolysis rates were not always reasonably fast. In all the cases examined, the L -enantiomers were preferentially hydrolyzed as in the lipase-catalyzed enantioselective hydrolysis reported previously. © 1992 Wiley-Liss, Inc.  相似文献   

9.
Evolution in the structure and function of aspartic proteases   总被引:22,自引:0,他引:22  
Aspartic proteases (EC3.4.23) are a group of proteolytic enzymes of the pepsin family that share the same catalytic apparatus and usually function in acid solutions. This latter aspect limits the function of aspartic proteases to some specific locations in different organisms; thus the occurrence of aspartic proteases is less abundant than other groups of proteases, such as serine proteases. The best known sources of aspartic proteases are stomach (for pepsin, gastricsin, and chymosin), lysosomes (for cathepsins D and E), kidney (for renin), yeast granules, and fungi (for secreted proteases such as rhizopuspepsin, penicillopepsin, and endothiapepsin). These aspartic proteases have been extensively studied for their structure and function relationships and have been the topics of several reviews or monographs (Tang: Acid Proteases, Structure, Function and Biology. New York: Plenum Press, 1977; Tang: J Mol Cell Biochem 26:93-109, 1979; Kostka: Aspartic Proteinases and Their Inhibitors. Berlin: Walter de Gruyter, 1985). All mammalian aspartic proteases are synthesized as zymogens and are subsequently activated to active proteases. Although a zymogen for a fungal aspartic protease has not been found, the cDNA structure of rhizopuspepsin suggests the presence of a "pro" enzyme (Wong et al: Fed Proc 44:2725, 1985). It is probable that other fungal aspartic proteases are also synthesized as zymogens. It is the aim of this article to summarize the major models of structure-function relationships of aspartic proteases and their zymogens with emphasis on more recent findings. Attempts will also be made to relate these models to other aspartic proteases.  相似文献   

10.
Calcium-free calmodulin-(CaM) is rapidly hydrolyzed by proteases from both human immunodeficiency viruses (HIV) 1 and 2. Kinetic analysis reveals a sequential order of cleavage by both proteases which initiates in regions of the molecule known from X-ray crystallographic analysis of Ca2+/CaM to be associated with calcium binding. Although HIV-1 and HIV-2 proteases hydrolyze two bonds in common, the initial site of cleavage required for subsequent events differs in each case. The first bond hydrolyzed by the HIV-1 protease is the Asn-Tyr linkage in the sequence, -N-I-D-G-D-G-Q-V-N-Y-E-E-, found in the fourth calcium binding loop. In contrast, it is an Ala-Ala bond in the third calcium loop, -D-K-D-G-N-G-Y-I-S-A-A-E-, that is first hydrolyzed by the HIV-2 enzyme, followed in short order by cleavage of the same Asn-Tyr linkage described above. Thereafter, both enzymes proceed to hydrolyze additional peptide bonds, some in common, some not. Considerable evidence exists that inhibitors are bound to the protease in an extended conformation and yet all of the cleavages we observed occur within, or at the beginning of helices in Ca2+/CaM, regions that also appear to be insufficiently exposed for protease binding. Molecular modeling studies indicate that CaM in solution must adopt a conformation in which the first cleavage site observed for each enzyme is unshielded and extended, and that subsequent cleavages involve further unwinding of helices.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Naegleria fowleri is the etiologic agent of primary amoebic meningoencephalitis (PAM). Proteases have been suggested to be involved in tissue invasion and destruction during infection. We analyzed and compared the complete protease profiles of total crude extract and conditioned medium of both pathogenic N. fowleri and non-pathogenic Naegleria gruberi trophozoites. Using SDS-PAGE, we found differences in the number and molecular weight of proteolytic bands between the two strains. The proteases showed optimal activity at pH 7.0 and 35 degrees C for both strains. Inhibition assays showed that the main proteolytic activity in both strains is due to cysteine proteases although serine proteases were also detected. Both N. fowleri and N. gruberi have a variety of different protease activities at different pH levels and temperatures. These proteases may allow the amoebae to acquire nutrients from different sources, including those from the host. Although, the role of the amoebic proteases in the pathogenesis of PAM is not clearly defined, it seems that proteases and other molecules of the parasite as well as those from the host, could be participating in the damage to the human central nervous system.  相似文献   

12.
Cruzain is the major cysteine protease of Trypanosoma cruzi, the infectious agent responsible for Chagas disease, and cruzain inhibitors display considerable antitrypanosomal activity. In the present work we elucidated crystallographic data of fukugetin, a biflavone isolated from Garcinia brasiliensis, and investigated the role of this molecule as cysteine protease inhibitor. The kinetic analyses demonstrated that fukugetin inhibited cruzain and papain by a slow reversible type inhibition with KI of 1.1 and 13.4 µM, respectively. However, cruzain inhibition was about 12 times faster than papain inhibition. Lineweaver–Burk plots demonstrated partial competitive inhibition for cruzain and hyperbolic mixed-type inhibition for papain. Furthermore, the docking results showed that the biflavone binds to ring C′ in the S2 pocket and to ring C in the S3 pocket through hydrophobic interactions and hydrogen bonds. Finally, fukugetin also presented inhibitory activity on proteases of the T. cruzi extract, with IC50 of 7 µM.  相似文献   

13.
The natural flavonoids, especially their glycosides, are the most abundant polyphenols in foods and have diverse bioactivities. The biotransformation of flavonoid aglycones into their glycosides is vital in flavonoid biosynthesis. The main biological strategies that have been used to achieve flavonoid glycosylation in the laboratory involve metabolic pathway engineering and microbial biotransformation. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoid glycosides using biotechnology, as well as the impact of glycosylation on flavonoid bioactivity. Uridine diphosphate glycosyltransferases play key roles in decorating flavonoids with sugars. Modern metabolic engineering and proteomic tools have been used in an integrated fashion to generate numerous structurally diverse flavonoid glycosides. In vitro, enzymatic glycosylation tends to preferentially generate flavonoid 3- and 7-O-glucosides; microorganisms typically convert flavonoids into their 7-O-glycosides and will produce 3-O-glycosides if supplied with flavonoid substrates having a hydroxyl group at the C-3 position. In general, O-glycosylation reduces flavonoid bioactivity. However, C-glycosylation can enhance some of the benefits of flavonoids on human health, including their antioxidant and anti-diabetic potential.  相似文献   

14.
Proteases are the most important group of industrial enzymes and they can be used in several fields including biorefineries for the valorization of industrial byproducts. In this study, we purified and characterized novel extremophilic proteases produced by a Pseudomonas aeruginosa strain isolated from Mauritia flexuosa palm swamps soil samples in Peruvian Amazon. In addition, we tested their ability to hydrolyze distillers dried grains with solubles (DDGS) protein. Three alkaline and thermophilic serine proteases named EI, EII, and EIII with molecular weight of 35, 40, and 55 kDa, respectively, were purified. EI and EIII were strongly inhibited by EDTA and Pefabloc being classified as serine-metalloproteases, while EII was completely inhibited only by Pefabloc being classified as a serine protease. In addition, EI and EII exhibited highest enzymatic activity at pH 8, while EIII at pH 11 maintaining almost 100% of it at pH 12. All the enzymes demonstrated optimum activity at 60°C. Enzymatic activity of EI was strongly stimulated in presence of Mn2+ (6.9-fold), EII was stimulated by Mn2+ (3.7-fold), while EIII was slightly stimulated by Zn2+, Ca2+, and Mg2+. DDGS protein hydrolysis using purified Pseudomonas aeruginosa M211 proteases demonstrated that, based on glycine released, EIII presented the highest proteolytic activity toward DDGS. This enzyme enabled the release 63% of the total glycine content in wheat DDGS protein, 2.2-fold higher that when using the commercial Pronase®. Overall, our results indicate that this novel extremopreoteases have a great potential to be applied in DDGS hydrolysis. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2728, 2019  相似文献   

15.
提高微生物油脂生产能力的研究进展   总被引:1,自引:0,他引:1  
郭小宇  杨兰  李宪臻  杨帆 《微生物学通报》2013,40(12):2295-2305
微生物油脂是生物柴油生产领域具有广阔前景的新油脂资源。然而, 利用产油微生物进行油脂的工业化生产仍存在限氮条件下油脂生产强度不够高、对廉价高氮生物质原料的利用效率低等瓶颈问题。随着近年来发酵工程、生物信息学及分子生物学技术的发展, 国内外研究者利用不同策略优化微生物油脂的生产条件, 并对其油脂积累代谢途径进行改造, 旨在获得适用于工业化生产的产油性能优良的油脂菌。本综述总结了国内外利用生化工程、基因工程以及新兴的转录因子工程策略提高产油微生物油脂生产强度和扩大产油微生物廉价底物利用范围方面的研究进展, 并展望了基于组学研究、模块途径工程以及反向代谢工程的综合策略在理性改造产油微生物以提高其油脂发酵性能中的应用。  相似文献   

16.
Summary The production of extracellular alkaline proteases from Aspergillus clavatus was evaluated in a culture filtrate medium, with different carbon and nitrogen sources. The fungus was cultivated at three different temperatures during 10 days. The proteolytic activity was determined on casein pH 9.5 at 37 °C. The highest alkaline proteolytic activity (38 U/ml) was verified for culture medium containing glucose and casein at 1% (w/v) as substrates, obtained from cultures developed at 25 °C for 6 days. Cultures developed in Vogel medium with glucose at 2% (w/v) and 0.2% (w/v) NH4NO3 showed higher proteolytic activity (27 U/ml) when compared to the cultures with 1% of the same sugar. Optimum temperature was 40 °C and the half-lives at 40, 45 and 50 °C were 90, 25 and 18 min, respectively. Optimum pH of enzymatic activity was 9.5 and the enzyme was stable from pH 6.0 to 12.0.  相似文献   

17.
Thermostable alkaline proteases from two haloalkaliphilic bacteria, Oceanobacillus iheyensis O.M.A18 (EU680961) and Haloalkaliphilic bacterium O.M.E12 (EU680960) were studied for enzymatic properties and amino acid sequences in comparative manner. The bacteria were isolated from salt enriched soil located in Okha, Coastal Gujarat, India. The unique aspect of the study was that alkaline protease from Haloalkaliphilic bacterium O.M.A18 optimally catalyzed the reaction over a wide range of temperature, 50-90 °C, with a half-life of 36 h at 90 °C. The molecular weights of O.M.A18 and O.M.E12 were 35 kDa and 25 kDa, respectively. The enzyme secretion was over the broader range of pH 8-11, with an optimum at 11. The alkaline proteases from the two haloalkaliphilic strains isolated from the same site reflected quite different characteristics features. To the best of our knowledge, we have not come across with any such report on the thermal stability of alkaline proteases from haloalkaliphiles. Amino acid sequences for both enzymes were deduced from the nucleotide sequences of their corresponding genes followed by the analysis of physico-chemical properties of the enzymes.  相似文献   

18.
Proteolytic degradation of recombinant proteins is an industry-wide challenge in host organisms such as Escherichia coli. These proteases have been linked to stresses, such as the stringent and heat-shock responses. This study reports the dramatic up-regulation of protease activity in an industrial recombinant E. coli fermentation upon induction. The objective of this project was to detect and characterize up-regulated proteases due to recombinant AXOKINE overexpression upon IPTG induction. AXOKINE is a 22-kDa protein currently in clinical trials as a therapeutic for obesity associated with diabetes. AXOKINE was expressed in both the soluble and inclusion body fractions in E. coli. Sodium dodecyl sulfate gelatin-polyacrylamide gel electrophoresis (SDS-GPAGE) was used to analyze the up-regulated protease activity. Western blot analysis showed degraded AXOKINE in both the soluble and insoluble fractions. Protease inhibitors were used to characterize the proteases. The proteases were ethylenediaminetetraacetic acid (EDTA) sensitive. The protease activity increased in the presence of phenyl-methyl sulfonyl-fluoride (PMSF), a serine protease inhibitor. The incubation buffer composition was varied with respect to Mg2+ and ATP, and the protease activity was ATP independent and Mg2+ dependent. A two-dimensional electrophoresis technique was used to estimate the pI of the proteases to be between 2.9 and 4.0.  相似文献   

19.
Summary We have been developing computational approaches to increase our ability to analyze the growing body of three-dimensional structural data with applications centered on the serine proteases and their natural inhibitors and substrates. It is essential that these approaches emphasize the comparison of these macromolecules at the separate levels of secondary, tertiary and quaternary structure. We assume in our analysis that in functionally related macromolecules (i.e., a family of evolutionarily related enzymes), regions of structural and/or physicochemical similarity will exhibit functional similarity; regions that are different in structure and/or physicochemical properties will function differently and, therefore, be the source of observed specificity. It is the intent of our research to encapsulate such knowledge in a form which is capable of observing patterns which may serve as generalizable rules for macrostructural analysis (Liebman, M.N. 1986. Enzyme 36: 150–163), and to serve as the essential tools for the rational design of modified serine proteases and/or their natural inhibitors by the methods available through genetic engineering.  相似文献   

20.
角蛋白作为家禽加工和农业废弃物的主要成分,因其结构中富含能抵抗普通蛋白酶和化学催化剂降解的稳定交联二硫键而难以被利用,因此每年都在环境中大量积累,造成了严重的环境污染。微生物角蛋白酶可将角蛋白废弃物转化为可再次利用的产物,带来了经济的可行性及环境的可持续发展。本文主要综述了角蛋白酶的生物化学特性、角蛋白酶的基本结构及其表达特性,总结了其应用价值及角蛋白降解机制,最后展望了微生物角蛋白酶的进一步研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号