首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traumatic injury to the central nervous system (CNS) is highly debilitating, with the clinical need for regenerative therapies apparent. Neural stem/progenitor cells (NSPCs) are promising because they can repopulate lost or damaged cells and tissues. However, the adult CNS does not provide an optimal milieu for exogenous NSPCs to survive, engraft, differentiate, and integrate with host tissues. This review provides an overview of tissue engineering strategies to improve stem cell therapies by providing a defined microenvironment during transplantation. The use of biomaterials for physical support, growth factor delivery, and cellular co-transplantation are discussed. Providing the proper environment for stem cell survival and host tissue integration is crucial in realizing the full potential of these cells in CNS repair strategies.  相似文献   

2.
Tissue engineering strategies rely on suitable membranes and scaffolds, providing the necessary physicochemical stimuli to specific cells. This review summarizes the main results on piezoelectric polymers, in particular poly(vinylidene fluoride), for muscle and bone cell culture. Further, the relevance of polymer microstructure and surface charge on cell response is demonstrated. Together with the necessary biochemical cues, the proper design of piezoelectric polymers can open the way to novel and more reliable tissue engineering strategies for cells in which electromechanical stimuli are present in their environment.  相似文献   

3.
组织工程和再生医学是基础研究和转化医学的热点,传统的组织工程和再生医学方法依赖体外构建组织、外源性干细胞移植至靶部位等方法,尽管这些方法在体外细胞研究、动物研究中证实可以达到组织修复和再生等作用,然而,临床实践尚存在一定问题,无法有效转化。基于干细胞、发育生物学、免疫学、生物工程和材料科学的最新进展,新一代体内再生的医学疗法,即自体疗法得以应用。自体疗法是一种基于优化内源性组织反应,利用干细胞和内源性组织微环境,促进组织愈合和再生的策略。本文将对自体疗法的概念、作用、微环境及优化自体疗法途径做一综述。  相似文献   

4.
Vascularization is a key process in skin tissue engineering, determining the biological function of artificial skin implants. Hence, efficient vascularization strategies are a major prerequisite for the safe application of these implants in clinical practice. Current approaches include (i) modification of structural and physicochemical properties of dermal scaffolds, (ii) biological scaffold activation with growth factor-releasing systems or gene vectors, and (iii) generation of prevascularized skin substitutes by seeding scaffolds with vessel-forming cells. These conventional approaches may be further supplemented by emerging strategies, such as transplantation of adipose tissue-derived microvascular fragments, 3D bioprinting and microfluidics, miRNA modulation, cell sheet engineering, and fabrication of photosynthetic scaffolds. The successful translation of these vascularization strategies from bench to bedside may pave the way for a broad clinical implementation of skin tissue engineering.  相似文献   

5.
The adult central nervous system (CNS) contains a population of neural stem cells, yet unlike many other tissues, has a very limited capacity for self-repair. Promoting tissue repair and functional recovery following CNS injury or disease is a high priority as there are currently no effective treatments towards this end for the treatment of disorders such as stroke, traumatic brain injury and spinal cord injury. Recent advances in stem cell biology have offered a number of enticing potential avenues and we will discuss these possibilities along with the associated challenges as they pertain to stroke. We will consider exogenous therapies involving the transplantation of adult stem cells, and the mobilization of endogenous stem cells, as well as drug delivery and tissue engineering strategies that enhance and complement the cell based strategies.  相似文献   

6.
Laboratory and clinical studies have provided evidence of feasibility, safety and efficacy of cell transplantation to treat a wide variety of diseases characterized by tissue and cell dysfunction ranging from diabetes to spinal cord injury. However, major hurdles remain and limit pursuing large clinical trials, including the availability of a universal cell source that can be differentiated into specific cellular phenotypes, methods to protect the transplanted allogeneic or xenogeneic cells from rejection by the host immune system, techniques to enhance cellular integration of the transplant within the host tissue, strategies for in vivo detection and monitoring of the cellular implants, and new techniques to deliver genes to cells without eliciting a host immune response. Finding ways to circumvent these obstacles will benefit considerably from being able to understand, visualize, and control cellular interactions at a sub-micron level. Cutting-edge discoveries in the multidisciplinary field of nanotechnology have provided us a platform to manipulate materials, tissues, cells, and DNA at the level of and within the individual cell. Clearly, the scientific innovations achieved with nanotechnology are a welcome strategy for enhancing the generally encouraging results already achieved in cell transplantation. This review article discusses recent progress in the field of nanotechnology as a tool for tissue engineering, gene therapy, cell immunoisolation, and cell imaging, highlighting its direct applications in cell transplantation therapy.  相似文献   

7.
Regenerative therapies, including cell injection and bioengineered tissue transplantation, have the potential to treat severe heart failure. Direct implantation of isolated skeletal myoblasts and bone-marrow-derived cells has already been clinically performed and research on fabricating three-dimensional (3-D) cardiac grafts using tissue engineering technologies has also now been initiated. In contrast to conventional scaffold-based methods, we have proposed cell sheet-based tissue engineering, which involves stacking confluently cultured cell sheets to construct 3-D cell-dense tissues. Upon layering, individual cardiac cell sheets integrate to form a single, continuous, cell-dense tissue that resembles native cardiac tissue. The transplantation of layered cardiac cell sheets is able to repair damaged hearts. As the next step, we have attempted to promote neovascularization within bioengineered myocardial tissues to overcome the longstanding limitations of engineered tissue thickness. Finally, as a possible advanced therapy, we are now trying to fabricate functional myocardial tubes that may have a potential for circulatory support. Cell sheet-based tissue engineering technologies therefore show an enormous promise as a novel approach in the field of myocardial tissue engineering.  相似文献   

8.
Tissue engineering and regenerative medicine aim to produce tissue substitutes to restore lost functions of tissues and organs. This includes cell therapies, induction of tissue/organ regeneration by biologically active molecules, or transplantation of in vitro grown tissues. This review article discusses advanced cell therapies that make use of scaffolds and scaffold-free approaches. The first part of this article covers the basic characteristics of scaffolds, including characteristics of scaffold material, fabrication and surface functionalization, and their applications in the construction of hard (bone and cartilage) and soft (nerve, skin, blood vessel, heart muscle) tissue substitutes. In addition, cell sources as well as bioreactive agents, such as growth factors, that guide cell functions are presented. The second part in turn, examines scaffold-free applications, with a focus on the recently discovered cell sheet engineering. This article serves as a good reference for all applications of advanced cell therapies and as well as advantages and limitations of scaffold-based and scaffold-free strategies.  相似文献   

9.
This paper reviews our research in developing novel matrices for cell transplantation using bioresorbable polymers. We focus on applications to liver and cartilage as paradigms for regeneration of metabolic and structural tissue, but review the approach in the context of cell transplantation as a whole. Important engineering issues in the design of successful devices are the surface chemistry and surface microstructure, which influence the ability of the cells to attach, grow, and function normally; the porosity and macroscopic dimensions, which affect the transport of nutrients to the implanted cells; the shape, which may be necessary for proper function in tissues like cartilage; and the choice of implantation site, which may be dictated by the total mass of the implant and which may influence the dimensions of the device by the available vascularity. Studies show that both liver and cartilage cells can be transplanted in small animals using this approach.  相似文献   

10.
Monogenic diseases are ideal candidates for treatment by the emerging advanced therapies, which are capable of correcting alterations in protein expression that result from genetic mutation. In hemophilia A and B such alterations affect the activity of coagulation factors VIII and IX, respectively, and are responsible for the development of the disease. Advanced therapies may involve the replacement of a deficient gene by a healthy gene so that it generates a certain functional, structural or transport protein (gene therapy); the incorporation of a full array of healthy genes and proteins through perfusion or transplantation of healthy cells (cell therapy); or tissue transplantation and formation of healthy organs (tissue engineering). For their part, induced pluripotent stem cells have recently been shown to also play a significant role in the fields of cell therapy and tissue engineering. Hemophilia is optimally suited for advanced therapies owing to the fact that, as a monogenic condition, it does not require very high expression levels of a coagulation factor to reach moderate disease status. As a result, significant progress has been possible with respect to these kinds of strategies, especially in the fields of gene therapy (by using viral and non-viral vectors) and cell therapy (by means of several types of target cells). Thus, although still considered a rare disorder, hemophilia is now recognized as a condition amenable to gene therapy, which can be administered in the form of lentiviral and adeno-associated vectors applied to adult stem cells, autologous fibroblasts, platelets and hematopoietic stem cells; by means of non-viral vectors; or through the repair of mutations by chimeric oligonucleotides. In hemophilia, cell therapy approaches have been based mainly on transplantation of healthy cells (adult stem cells or induced pluripotent cell-derived progenitor cells) in order to restore alterations in coagulation factor expression.  相似文献   

11.
Tissue engineering offers the possibility for soft tissue reconstruction and augmentation without autologous grafting or conventional synthetic materials. Two critical challenges have been addressed in a number of recent studies: a biology challenge of angiogenesis and an engineering challenge of shape maintenance. These two challenges are inter-related and are effectively addressed by integrated bioengineering strategies. Recently, several integrated bioengineering strategies have been applied to improve bioengineered adipose tissue grafts, including internalized microchannels, delivery of angiogenic growth factors, tailored biomaterials and transplantation of precursor cells with continuing differentiation potential. Bioengineered soft tissue grafts are only clinically meaningful if they are vascularized, maintain shape and dimensions, and remodel with the host. Ongoing studies have begun to demonstrate the feasibility towards an ultimate goal to generate vascularized soft tissue grafts that maintain anatomically desirable shape and dimensions.  相似文献   

12.
Current liver transplantation strategies face severe shortcomings owing to scarcity of donors, immunogenicity, prohibitive costs and poor survival rates. Due to the lengthy list of patients requiring transplant, high mortality rates are observed during the endless waiting period. Tissue engineering could be an alternative strategy to regenerate the damaged liver and improve the survival and quality of life of the patient. The development of an ideal scaffold for liver tissue engineering depends on the nature of the scaffold, its architecture and the presence of growth factors and recognition motifs. Biomimetic scaffolds can simulate the native extracellular matrix for the culture of hepatocytes to enable them to exhibit their functionality both in vitro and in vivo. This review highlights the physiology and pathophysiology of liver, the current treatment strategies, use of various scaffolds, incorporation of adhesion motifs, growth factors and stem cells that can stabilize and maintain hepatocyte cultures for a long period.  相似文献   

13.
Specific tissues, such as cartilage, undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation—amplitude and frequency—to three-dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.  相似文献   

14.
Tissue engineering is rapidly progressing from a research‐based discipline to clinical applications. Emerging technologies could be utilized to develop therapeutics for a wide range of diseases, but many are contingent on a cell scaffold that can produce proper tissue ultrastructure. The extracellular matrix, which a cell scaffold simulates, is not merely a foundation for tissue growth but a dynamic participant in cellular crosstalk and organ homeostasis. Cells change their growth rates, recruitment, and differentiation in response to the composition, modulus, and patterning of the substrate on which they reside. Cell scaffolds can regulate these factors through precision design, functionalization, and application. The ideal therapy would utilize highly specialized cell scaffolds to best mimic the tissue of interest. This paper discusses advantages and challenges of optimized cell scaffold design in the endoderm, mesoderm, and ectoderm for clinical applications in tracheal transplant, cardiac regeneration, and skin grafts, respectively.  相似文献   

15.
Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment.  相似文献   

16.
Intervertebral disc degeneration (IDD) is a chronic, complex process associated with low back pain; mechanisms of its occurrence have not yet been fully elucidated. Its process is not only accompanied by morphological changes, but also by systematic changes in its histological and biochemical properties. Many cellular and molecular mechanisms have been reported to be related with IDD and to reverse degenerative trends, abnormal conditions of the living cells and altered cell phenotypes would need to be restored. Promising biological therapeutic strategies still rely on injection of active substances, gene therapy and cell transplantation. With advanced study of tissue engineering protocols based on cell therapy, combined use of seeding cells, bio‐active substances and bio‐compatible materials, are promising for IDD regeneration. Recently reported progenitor cells within discs themselves also hold prospects for future IDD studies. This article describes the background of IDD, current understanding and implications of potential therapeutic strategies.  相似文献   

17.
Orthotopic liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a donor shortage. Liver tissue engineering may offer a promising strategy to solve this problem by providing transplantable, bioartificial livers. Diverse types of cells, biomaterials, and growth factor delivery systems have been tested for efficient regeneration of liver tissues that possess hepatic functions comparable to native livers. This article reviews recent advances in liver tissue engineering and describes cell sources, biomaterial scaffolds, and growth factor delivery systems that are currently being used to improve the regenerative potential of tissue-engineered livers.  相似文献   

18.
Vascularization is fundamental for large‐scale tissue engineering. Most of the current vascularization strategies including microfluidics and three‐dimensional (3D) printing aim to precisely fabricate microchannels for individual microvessels. However, few studies have examined the remodeling capacity of the microvessels in the engineered constructs, which is important for transplantation in vivo. Here we present a method for patterning microvessels in a directional ice‐templated scaffold of decellularized porcine kidney extracellular matrix. The aligned microchannels made by directional ice templating allowed for fast and efficient cell seeding. The pure decellularized matrix without any fixatives or cross‐linkers maximized the potential of tissue remodeling. Dramatical microvascular remodeling happened in the scaffold in 2 weeks, from small primary microvessel segments to long patterned microvessels. The majority of the microvessels were aligned in parallel and interconnected with each other to form a network. This method is compatible with other engineering techniques, such as microfluidics and 3D printing, and multiple cell types can be co‐cultured to make complex vascularized tissue and organ models.  相似文献   

19.
Diabetes mellitus affects millions of people in the United States and worldwide. It has become clear over the past decade that the chronic complications of diabetes result from lack of proper blood glucose concentration regulation, and particularly the toxic effects of chronic hyperglycemia on organs and tissues. Pancreas transplants can cure insulin-dependent diabetes mellitus (IDDM). Furthermore, recent advances in pancreatic islet isolation and immunosuppressive regimens have resulted in dramatic improvements in the survival and function of islet allografts. Therefore, islet replacement strategies are becoming increasingly attractive options for patients at risk for severe diabetic complications. A major limitation of these approaches is the small number of organs available for transplantation or islet isolation. Thus, an important next step in developing curative treatments for type I diabetes will be the generation of a replenishable source of glucose-responsive, insulin-secreting cells that can be used for beta cell replacement. This review focuses on approaches to developing robust and widely applicable beta-cell replacement strategies with an emphasis on manipulating beta-cell growth and differentiation by genetic engineering.  相似文献   

20.
The promising concept of cell transplantation and cardiac tissue engineering has been developed in the last few years and focused on strategies attempting to replace dysfunctional, necrotic, and/or apoptotic cardiomyocytes with new cells of mesodermal origin. Transplantation of autologous cells minimizes the risk of neoplasia and avoids immune rejection associated with allogenic or xenogenic cells and recent data hold enormous hopes for short term clinical practices. Tissue engineering represents another promising approach that makes possible the creation of new functional tissues to replace the lost or failing one. Three-dimensional polymeric scaffolds provide the mechanical support for the candidate cells until the formation of cardiac-like tissue prior to surgical repair of the infarcted myocardium. For ultimate clinical applications, further investigations have to select the appropriate cell types, to determine the sufficient number of grafted cells and to provide the long term evaluation of these strategies in the global improvements of cardiac function (neoangiogenesis, synchronous contraction and extracellular matrix remodelling).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号