首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of Swiss mouse 3T3 cells at 37 degrees C with bovine brain-derived growth factor (BDGF) decrease the cell surface 125I-EGF binding activity of these cells by 70-80%. This down-modulation of the EGF receptor by BDGF was time, temperature, and dose dependent. Scatchard plot analysis indicated that BDGF binding led to a selective decrease in the number of high-affinity EGF receptors. The BDGF-induced down-modulation of the EGF receptor was completely blocked by protamine, a potent inhibitor of receptor binding and mitogenic activities of BDGF. BDGF down-modulated the EGF receptor in phorbol myristic acetate (PMA)-pretreated cells, as well as in control cells. Furthermore, PMA-pretreated cells responded mitogenically to BDGF, whereas PMA itself failed to stimulate the mitogenic response of PMA-pretreated cells. This BDGF-induced down-modulation of the EGF receptor in PMA-desensitized cells suggests that BDGF down-regulates the EGF receptor by a mechanism distinct from that of PMA. Incubation of cells with compounds which are known to inhibit pinocytosis blocked the down-modulation induced either by BDGF or by platelet-derived growth factor (PDGF) but had no effect on the PMA-induced down-modulation. Incubation of cells with inhibitors of receptor recycling enhanced the BDGF-induced down-modulation of the EGF receptor. These results suggest that BDGF and PDGF induce down-modulation of the EGF receptor by increasing the internalization of cell surface high-affinity receptors and that the internalization process may not be required for down-modulation induced by PMA.  相似文献   

2.
Preincubation of Swiss 3T3 cells or human fibroblasts with purified platelet-derived growth factor (PDGF) at 4 degrees C or 37 degrees C rapidly inhibits subsequent binding of 125I-epidermal growth factor (125I-EGF). The effect does not result from competition by PDGF for binding to the EGF receptor since (a) very low concentrations of PDGF are effective, (b) cells with EGF receptors but no PDGF receptors are not affected, and (c) the inhibition persists even if the bound PDGF is eluted before incubating the cells with 125I-EGF. PDGF does not affect 125I-insulin binding nor does EGF affect 125I-PDGF binding under these conditions. Endothelial cell-derived growth factor also competes for binding to PDGF receptors and inhibits 125I-EGF binding. The inhibition demonstrated by PDGF seems to result from an increase in the Kd for 125I-EGF binding with no change in the number of EGF receptors.  相似文献   

3.
Human platelet ionophore release-products (IRP) inhibit the binding of 125I-labelled epidermal growth factor (125I-EGF) to its receptors on Swiss 3T3 cells. The inhibition appears to be caused by platelet-derived growth factor (PDGF) in the IRP and results from a decrease in the apparent affinity of cellular receptors for 125I-EGF. However, our results indicate that PDGF does not bind directly to EGF receptors, since (1) PDGF does not down-regulate EGF receptors; (2) the PDGF-mediated inhibition of 125I-EGF binding is temperature-dependent; (3) cells which possess EGF receptors but lack PDGF receptors do not exhibit a PDGF-mediated inhibition of 125I-EGF binding.  相似文献   

4.
Heterologous regulation of the epidermal growth factor (EGF) receptor by platelet-derived growth factor (PDGF) was studied in FS4 human skin fibroblasts. The addition of PDGF to FS4 cells inhibited high affinity binding of 125I-EGF and stimulated phosphorylation of the EGF receptor. Phosphopeptide analysis by high performance liquid chromatography revealed that PDGF treatment of cells increased phosphorylation at several distinct sites of the EGF receptor. However, PDGF did not stimulate phosphorylation of threonine 654, a residue previously shown to be phosphorylated when protein kinase C is activated. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also stimulated phosphorylation of the same peptides from the EGF receptor as PDGF, and, in addition, induced phosphorylation of threonine 654. TPA inhibited both high and low affinity 125I-EGF binding by these cells. PDGF treatment of cells had no effect on EGF-dependent, tyrosine-specific autophosphorylation of the receptor, whereas TPA treatment was inhibitory. TPA, but not PDGF, stimulated phosphorylation of a Mr = 80,000 protein, known to be a substrate for protein kinase C, even though PDGF appeared to mediate breakdown of phosphoinositides. These data suggest that regulation of EGF receptor function by PDGF and TPA are distinct in these cells, even though some elements of regulation are shared. The results differ from those previously reported for a human lung fibroblast isolate, indicating that cell type-specific differences may exist in metabolism of the EGF receptor.  相似文献   

5.
The synthetic diacylglycerol 1-oleoyl-2-acetyl glycerol (OAG) and phorbol esters activate protein kinase C in intact cells. We report here that OAG inhibits the binding of 125I-labelled epidermal growth factor (125I-EGF) to Swiss 3T3 cells. The inhibition was detected as early as 1 min after treatment at 37 degrees C and persisted for at least 120 min. The effect of OAG was reversed upon removal of this diacylglycerol. Detailed Scatchard analysis of 125I-EGF binding to Swiss 3T3 cells at 4 degrees C after a 1 h incubation with a saturating dose of OAG at 37 degrees C, demonstrates that this OAG pretreatment does not change the apparent number of EGF receptors but causes a marked decrease in their apparent affinity for the ligand. Prolonged treatment (40 h) of the cells with phorbol dibutyrate (PBt2) which causes a marked decrease in the number of phorbol ester binding sites and in the activity of protein kinase C, prevented the inhibition of 125I-EGF binding by both PBt2 and OAG. The results support the possibility that protein kinase C plays a role in the transmodulation of the EGF receptor in intact cells.  相似文献   

6.
Protamine sulfate blocked 125I-PDGF binding to its specific physiological receptor on Swiss mouse 3T3 cells. Reduced 125I-PDGF binding in the presence of protamine sulfate correlated directly with a protamine sulfate dose-dependent decrease in the PDGF-dependent incorporation of [3H]-thymidine into 3T3 cells and a decreased PDGF-stimulated tyrosine-specific protein kinase activity in isolated membrane preparations of 3T3 cells. Protamine sulfate blocked 125I-PDGF binding to simian sarcoma virus transformed cells (SSV-NIH 3T3 and SSV-NP1 cells) and to nontransformed cells in a manner qualitatively identical to unlabelled PDGF. In contrast, protamine sulfate enhanced the specific binding of 125I-EGF by increasing the apparent number of EGF receptors on the cell surface. The increase in 125I-EGF receptor binding was not prevented by cycloheximide nor by actinomycin D. Protamine sulfate did not affect 125I-EGF binding to membranes from 3T3 cells or the EGF-stimulated 3T3 cell membrane tyrosine specific protein kinase activity, suggesting that protamine sulfate may have exposed a population of cryptic EGF receptors otherwise not accessible. Protamine sulfate was fractionated into four active fractions by Sephadex G-50 gel filtration columns; the half maximum inhibition concentration of 125I-PDGF binding to 3T3 cells of protamines I and II (MW approximately 11,000 daltons and 7,000 daltons, respectively) is approximately 0.4 microM. Protamine II (MW approximately 4,800 daltons) was equally active (half maximum inhibition concentration approximately 0.4 microM); protamine IV (MW approximately 3,300 daltons) was substantially less active (half maximum inhibition concentration approximately 2.8 microM). These investigations have extended previous observations that protamine sulfate is a potent inhibitor of PDGF binding and establish that protamine sulfate blocks PDGF binding at the physiological receptor, preventing PDGF initiated biological activities. Protamine sulfate can be used as a reagent to separate the influence of PDGF and EGF on cells with high specificity and has been used to demonstrate that the receptors on simian sarcoma virus transformed 3T3 cells qualitatively respond identically to protamine sulfate as to unlabelled PDGF and are likely identical to those on nontransformed 3T3 cells.  相似文献   

7.
Fibroblast-derived growth factor (FDGF), a basic, heat- and acid-stable polypeptide partially purified from the serum-free conditioned medium of BHK cells transformed by simian virus 40, is a potent mitogen for Swiss 3T3 cells and causes a marked reduction in 125I-labeled epidermal growth factor (125I-EGF) binding to these cells. The activity which inhibits EGF binding coelutes with the growth-stimulating activity after gel filtration, ion exchange chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Both cellular responses are elicited by the same range of FDGF concentration in several murine cell types. The inhibition of EGF binding is rapid and results from a decrease in the apparent affinity of cellular receptors for 125I-EGF. FDGF does not affect the rate of cell-mediated 125I-EGF degradation. Several lines of evidence suggest that FDGF does not bind directly to EGF receptor. First, the effect of FDGF is dependent on the temperature of the assay; furthermore, treatment of cells with EGF results in loss of EGF receptors while exposure to FDGF for up to 24 h does not induce "down-regulation" of EGF receptors. Further, in A431 cells which display a large number of specific EGF receptors, 125I-EGF binding is not sensitive to FDGF. Finally, the effect of FDGF on 125I-EGF binding is not observed with isolated plasma membranes. Taken together, these findings suggest that FDGF binds to sites which are separate from EGF receptors. The results show a novel mechanism whereby a growth-promoting factor produced by a tumor cell line can rapidly modulate the affinity of the cellular receptors for EGF in an indirect manner.  相似文献   

8.
Pre-colostrum and colostrum from goats cause a marked inhibition of the binding of 125I-labelled epidermal growth factor (125I-EGF) to Swiss 3T3 cells. The ability of these secretions to inhibit 125I-EGF binding is closely correlated with the ability to stimulate DNA synthesis in quiescent 3T3 cell cultures, suggesting that goat mammary secretions may contain an EGF-related mitogen. However, the material in colostrum which inhibits 125I-EGF binding to Swiss 3T3 cells is a basic protein with Mr greater than 20000 and is thus quite different from mouse and human EGF. Furthermore, the colostral-mediated inhibition of 125I-EGF binding, although rapid and apparently competitive, differs from the inhibition of binding induced by native, unlabelled EGF. Thus, the inhibitory effect of colostrum is markedly decreased when the assay temperature is shifted from 37 degrees C to 4 degrees C whereas unlabelled EGF is an effective competitive inhibitor at both 37 degrees C and 4 degrees C. Incubation of cells with EGF causes a reduction in cell surface EGF receptors whereas exposure to colostrum does not induce down-regulation of the EGF receptor. Our results suggest that the colostral factor does not bind directly to EGF receptors but inhibits 125I-EGF binding by an indirect mechanism which involves a temperature-sensitive step.  相似文献   

9.
Addition of tumor promoting phorbol esters, such as phorbol 12-myristate 13-acetate (PMA), to many cell lines results in a decrease of 125I-epidermal growth factor (EGF) binding and increased serine/threonine phosphorylation of the EGF receptor in a process termed transmodulation. It is, however, unclear whether or not receptor phosphorylation is causally related to the inhibition of high affinity EGF binding. We have investigated the significance of phosphorylation/dephosphorylation events in the mechanism of PMA-induced transmodulation using the adenylate cyclase activator cholera toxin and the serine/threonine protein phosphatase inhibitor okadaic acid. In Rat-1 fibroblasts treated at 37 degrees C, PMA induced a rapid decrease in EGF binding which persisted for 3 hours. In contrast, cells exposed to PMA in the presence of cholera toxin exhibited a marked recovery of binding within 60 minutes. The PMA-stimulated decrease in binding correlated with a rapid increase in the phosphorylation state of the EGF receptor. While phosphorylation of the receptor was sustained at an elevated level for at least three hours in cells receiving PMA alone, EGF receptor phosphorylation decreased between 1 and 3 hours in cells treated with PMA and cholera toxin. Furthermore, the cholera toxin-stimulated return of EGF binding was inhibited by treatment with the phosphatase inhibitor okadaic acid. These results suggest that a cholera toxin-activated phosphatase can increase binding capacity of the transmodulated EGF receptor in Rat-1 cells. Cholera toxin treatment elicited a qualitatively similar response in cells transmodulated by platelet-derived growth factor (PDGF). Okadaic acid antagonized the natural return of binding observed in cells stimulated with PDGF alone, indicating that a dephosphorylation event may be required for the recovery of normal EGF binding after receptor transmodulation.  相似文献   

10.
Thyrotropin releasing hormone (TRH) causes phosphatidylinositol bisphosphate hydrolysis to form inositol trisphosphate and diacylglycerol. Since diacylglycerol activates protein kinase C (Ca2+/phospholipid-dependent enzyme), this enzyme may be involved in mediating the physiological response to TRH. Activation of protein kinase C leads to phosphorylation of receptors for epidermal growth factor (EGF) and decreased EGF affinity. The present study examined the effect of TRH on EGF binding to intact GH4C1 rat pituitary tumor cells to test whether TRH activates protein kinase C. Cells were incubated with TRH at 37 degrees C and specific 125I-EGF binding was then measured at 4 degrees C. 125I-EGF binding was decreased by a 10-min treatment with 0.1-100 nM TRH to 30-40% of control in a dose-dependent manner. 125I-EGF binding was not altered if cells were incubated at 4 degrees C, although TRH receptors were saturated or in a variant pituitary cell line without TRH receptors. TRH (10 min at 37 degrees C) decreased EGF receptor affinity but caused little change in receptor density, 125I-EGF internalization, or degradation. When cells were incubated continuously with TRH, there was a recovery of 125I-EGF binding after 24 h. Incubation with the protein kinase C activating phorbol ester TPA caused an immediate (less than 10 min) profound (greater than 85%) decrease in 125I-EGF binding followed by partial recovery at 24 h. Maximally effective doses of TRH and TPA decreased EGF receptor affinity with half-times of 3 min. EGF treatment (5 min) caused an increase in the tyrosine phosphate content of several proteins; prior incubation with TRH resulted in a small decline in the EGF response. GH4C1 cells were incubated with 500 nM TPA for 24 h in order to down-regulate protein kinase C. Protein kinase C depletion was confirmed by immunoblots and the effects of TRH and TPA on 125I-EGF binding were tested. TRH and TPA were both much less effective in cells pretreated with phorbol esters. TRH increased cytoplasmic pH measured with an intracellularly trapped pH sensitive dye after mild acidification with nigericin. This TRH response is presumed to be the result of protein kinase C-mediated activation of the amiloride-sensitive Na+/H+ exchanger and was blunted in protein kinase C-depleted cells. All of these results are consistent with the view that TRH acts rapidly in the intact cell to activate protein kinase C and that a consequence of this activation is EGF receptor phosphorylation and Na+/H+ exchanger activation.  相似文献   

11.
Cell surface tyrosine kinase receptors are subject to a rapid activation by their ligand, which is followed by secondary regulatory processes. The IHE2 cell line is a unique model system to study the regulation of EGF binding to EGF receptors after activation of the EGF receptor kinase. IHE2 cells express both a chimeric insulin-EGF receptor kinase (IER) and a kinase-deficient EGF receptor (HER K721A). We have previously reported that IER is an insulin-responsive EGF receptor tyrosine kinase that activates one or several serine/threonine kinases, which in turn phosphorylate(s) the unoccupied HER K721A. In this article we show that insulin through IER activation induces a decrease in 125I-EGF binding to IHE2 cells. Scatchard analysis indicates that, as for TPA, the effect of insulin can be accounted for by a loss of the high affinity binding of EGF to HER K721A. Since this receptor transmodulation persists in protein kinase C downregulated IHE2 cells, it is likely to be due to a mechanism independent of protein kinase C activation. Using an in vitro system of 125I-EGF binding to transmodulated IHE2 membranes, we illustrate that the inhibition of EGF binding induced by IER activation is related to the phosphorylation state of HER K721A. Further, studies with phosphatase 2A, or at a temperature (4 degrees C) where only IER is functional, strongly suggest that the loss of high affinity EGF binding is related to the serine/threonine phosphorylation of HER K721A after IER activation. Our results provide evidence for a "homologous desensitization" of EGF receptor binding after activation of the EGF receptor kinase of the IER receptor.  相似文献   

12.
Platelet-derived growth factor (PDGF) increases the mitogenic activity of epidermal growth factor (EGF) in several cells lines, including BALB/C-3T3. PDGF-treated BALB/C-3T3 cells manifest a reduced capacity to bind 125I-labeled EGF due to a loss of high affinity EGF receptors. Cholera toxin potentiates the ability of PDGF to both decrease EGF binding and initiate mitogenesis. Whether PDGF increases EGF sensitivity via its effects on EGF receptors is not known and requires a more complete understanding of the mechanism by which PDGF decreases EGF binding. 12-O-tetradecanoylphorbol 13-acetate (TPA) also reduces EGF binding in BALB/C-3T3 and other cells, presumably by activating protein kinase C and, consequently, inducing the phosphorylation of EGF receptors at threonine-654. PDGF indirectly activates protein kinase C, and EGF receptors in PDGF-treated WI-38 cells are phosphorylated at threonine-654. Thus, the effects of PDGF on EGF binding may also be mediated by protein kinase C. We investigated this hypothesis by comparing the actions of PDGF and TPA on EGF binding in density-arrested BALB/C-3T3 cells. Both PDGF and TPA caused a rapid, transient, cycloheximide-independent loss of 125I-EGF binding capacity. The actions of both agents were potentiated by cholera toxin. However, whereas TPA allowed EGF binding to recover, PDGF induced a secondary and cycloheximide-dependent loss of binding capacity. Most importantly, PDGF effectively reduced binding in cells refractory to TPA and devoid of detectable protein kinase C activity. These findings indicate that PDGF decreases EGF binding by a mechanism that involves protein synthesis and is distinct from that of TPA.  相似文献   

13.
The functional integration of growth factor signaling occurs at several levels in target cells. One of the most proximal mechanisms is receptor transmodulation, by which one activated receptor can regulate the expression of other receptors in the same cells. Well-established transregulatory loops involve platelet-derived growth factor (PDGF) down-regulation of epidermal growth factor (EGF) receptors and beta-type transforming growth factors modulation of PDGF receptors. We have studied the relationship between neu tyrosine kinase activation and the expression of the PDGF receptors in transfected NIH/3T3 cells. Expression of the neu oncogene, but not of the neu proto-oncogene, was associated with a decrease of PDGF alpha- and beta-receptors on the cell surface, as measured by [125-I]PDGF-AA and -BB binding. These results were corroborated by metabolic labeling and immunoprecipitation of the PDGF beta-receptors. PDGF alpha- and beta-receptor mRNAs were strongly decreased in the neu oncogene-transformed cells in comparison with control cells expressing the neu proto-oncogene. Down-regulation of the PDGF receptors and their mRNAs was also observed after EGF treatment of cells expressing a chimeric EGF receptor/neu receptor, where the neu tyrosine kinase is activated by EGF binding. These results show that the neu tyrosine kinase can down-modulate PDGF receptor expression, and the effect is mediated via decreased PDGF receptor mRNA levels.  相似文献   

14.
The phorbol ester tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) specifically inhibited the binding of radioiodinated epidermal growth factor (125I-EGF) to rat pheochromocytoma (PC12) cells in a noncompetitive fashion with an apparent Ki of 11–26 nM. Both TPA and EGF elicited similar biological responses in PC12 cells including enhanced incorporation of 3H-choline and 32P-orthophosphate into macromolecules, induction of ornithine decarboxylase, and stimulation of the phosphorylation of a 30,000 MW nonhistone, chromosome-associated protein. These effects were also elicited by nerve growth factor (NGF) which, in contrast to the former agents, is a differentiating stimulus for the PC12 cells. The effects of TPA were additive or more than additive to the effects of NGF and EGF. When PC12 cells were induced to differentiate by treatment with NGF for 72 hours, the binding of 125I-EGF and responses to EGF were reduced by approximately 70%. The response of PC12 cells to the tumor promoter TPA was unaffected by treatment with NGF. Thus, the qualitatively similar effects of TPA and EGF seemed to be mediated through separate receptor systems with only the EGF receptor system reduced by NGF treatment.  相似文献   

15.
A N Corps  K D Brown 《FEBS letters》1988,233(2):303-306
Insulin-like growth factor 1 and insulin reduced the binding of 125I-labelled epidermal growth factor (125I-EGF) to Swiss 3T3 cells by 15-20% at 37 degrees C, but not at 4 degrees C. Scatchard analysis indicated that IGF-1 and insulin affected the higher-affinity component of EGF binding, an effect previously associated with the activation of protein kinase C. However, the inhibition of 125I-EGF binding by IGF-1 and insulin was increased, not reduced, when the cells were treated with high concentrations of phorbol esters to down-modulate protein kinase C. We suggest that IGF-1 and insulin activate a protein kinase with similar or overlapping specificity to that of protein kinase C.  相似文献   

16.
We have prepared plasma membranes from Balb/c 3T3 fibroblasts to study the transmodulation of the high affinity epidermal growth factor (EGF) receptor. Although phorbol esters do not transmodulate the high affinity EGF receptors on these membranes, the addition of platelet-derived growth factor (PDGF) or EGF to the membranes leads to the loss of high affinity EGF binding and to the phosphorylation of several membrane proteins, including the EGF receptor. The EGF receptor is phosphorylated at tyrosine residues although we have not yet established if this represents direct phosphorylation by the PDGF receptor kinase or is mediated by activation of other cell membrane-associated tyrosine kinases. Upon treatment of the membranes with PDGF, four major phosphoproteins (of apparent molecular masses of 69, 56, 38, and 28 kDa) are released from the membrane and can be retrieved from the supernatant fluid using a reversed-phase cartridge. As assessed by immunoprecipitation with an anti-phosphotyrosine antibody, all four proteins appear to be phosphorylated on tyrosine. The time course of dissociation of these proteins from the membranes closely parallels the loss of high affinity EGF receptors. The high affinity EGF receptor can be reconstituted on PDGF-transmodulated membranes by treating the supernatant fluid with alkaline phosphatase and adding the mixture to the membranes. It appears that dephosphorylation of the released proteins is sufficient to allow reassociation with the membranes and formation of the high affinity EGF receptor complex.  相似文献   

17.
A monoclonal antibody to the epidermal growth factor (EGF) receptor of A431 cells was obtained after fusion of immunized BALB/c mouse spleen cells with NS-1 myeloma cells. Specific binding of the antibody to the plasma membrane of A431 cells was demonstrated by indirect immunofluorescence and electron microscopy. The antibody did not react with human KB cells, normal rat kidney cells, or Swiss 3T3 cells. The antibody is an IgG3K; it specifically immunoprecipitated a Mr approximately 170,000 protein from radiolabeled A431 cell extracts. This protein is phosphorylated in a EGF-dependent manner in intact A431 cells and in Triton X-100-solubilized plasma membranes. The specificity of the interaction of the antibody with the Mr = 170,000 protein was confirmed by electrophoretic transfer of A431 cell proteins to nitrocellulose followed by incubation with the antibody and 125I-protein A. When 125I-EGF was covalently cross-linked to its receptor, the 125I-EGF-receptor complex was specifically precipitated by the antibody. The monoclonal antibody did not inhibit the binding of 125I-EGF to its receptor in intact A431 cells and also failed to stimulate the phosphorylation of the Triton X-100-solubilized EGF receptor. The results indicate that the antibody and EGF bind to different sites on the EGF receptor. The antibody will be useful for isolating the EGF receptor in an unactivated form.  相似文献   

18.
Treatment of Swiss mouse 3T3 cells and human epidermoid carcinoma A431 cells with protamine at 37 degrees C increased the 125I-epidermal growth factor (EGF) binding activity at 4 degrees C. The effect of protamine on the increase of 125I-EGF binding activity appeared to be time, temperature, and dose dependent. This up-modulation of 125I-EGF binding by protamine correlated with protamine enhancement of EGF-stimulated mitogenesis, with respect to the magnitude of the effect and the dose response curves. Scatchard plot analyses indicated that protamine induced an increase in numbers of both high and low affinity EGF receptors without affecting their affinities. Protamine also increased functionally active EGF receptors in plasma membranes and solubilized membranes. This was evidenced by Scatchard plot analyses and by a protamine-induced increase of 125I-EGF-EGF receptor complex and an increase in EGF-stimulated phosphorylation of the EGF receptor. Combined with column chromatography of the solubilized EGF receptor on protamine-agarose gel, these results suggest that protamine may increase the EGF receptor number by directly activating cryptic EGF receptors in the plasma membrane.  相似文献   

19.
In this study the effects of retinoic acid on the binding and mitogenic activity of epidermal growth factor (EGF) in mouse fibroblast Balb/c 3T6 cells are further examined. Retinoic acid treatment of 3T6 cells results in a sixfold enhancement of 125I-labeled mouse EGF binding when assayed at 37 degrees C. In both retinoic acid-treated and control cells, cell-associated 125I-EGF is rapidly internalized, degraded, and secreted. Retinoic acid treatment does not seem to have a significant effect on the rate of internalization and degradation of EGF. At 0 degrees C, internalization of EGF is strongly inhibited in both retinoic acid-treated and control cells. Under these conditions retinoic acid-treated cells still exhibit a tenfold higher level of EGF binding compared to control cells. When exposed to high concentrations of EGF both retinoic acid-treated and control cells "down-regulate" their EGF receptors. And although the growth rate of retinoic acid-treated cells is about half that of control cells, the rate at which EGF binding capacity is restored after down-regulation is about three times as fast as in control cells. No direct antagonism on EGF binding was observed between the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and retinoic acid. EGF is a potent mitogen for 3T6 cells in serum-free medium; retinoic acid inhibits the mitogenic activity of EGF even though it increases EGF binding. Retinoic acid also inhibits cell proliferation induced by sarcoma growth factor (SGF) and insulin.  相似文献   

20.
Cholecystokinin-octapeptide (CCK8) inhibits 125I-labeled epidermal growth factor (EGF) cell-associated radioactivity in pancreatic acini, ostensibly as a result of its ability to mobilize cellular Ca2+. The phorbol ester tetradecanoyl phorbol acetate (TPA), a compound that activates protein kinase C, mimics the inhibitory action of CCK8. In the present study we examined the relationship between occupancy of the cholecystokinin (CCK) receptor, the subsequent inhibition of EGF binding, and the potential role of C-kinase activation in mediating this inhibition. Proglumide and dibutyryl cyclic GMP (dbGMP), two distinct competitive antagonists of CCK8, reversed the inhibitory actions of CCK8. Analysis of steady-state saturation kinetics of 125I-EGF binding indicated that CCK8 decreased the apparent affinity of the EGF receptor, mainly as a result of a marked decrease in the amount of internalized ligand. TPA also inhibited 125I-EGF internalization. Removal of CCK8 and TPA from incubation medium did not abolish their inhibitory actions. Carbachol, but not bombesin, exerted a similar residual inhibitory effect. It is suggested that in addition to acting via Ca2+, certain pancreatic secretagogues may also act through C-kinase to regulate EGF binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号