首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of flooding and lowland rice culture on soil chemical properties and subsequent maize growth were investigated in two contrasting rice soils of S.E. Australia. The effects of incorporating rice straw, either during or after flooding were also studied. The experiment was conducted in a glasshouse with the use of large intact soil cores.Previous flooding markedly reduced maize growth, leaf P concentration and P uptake, despite the application of a large quantity of P fertilizer after drainage. Soil analyses showed that previous flooding increased the Langmuir sorption terms for maximum P sorption and bonding energy. The availability of P was more closely related to the bonding energy between soil and P than to the capacity of the soils to sorb P. The increases, in the P sorption parameters, were associated with decreases in the crystallinity of the free iron oxides as determined by their oxalate solubility. It was concluded that depressed P supply to maize sown in previously flooded soils was due to stronger P sorption by the drained soils, rather than to P immobilization during flooding.Rice plants grown during flooding reduced the amount of N available to the subsequent maize crop, but did not significantly affect P availability. Rice straw added during flooding did not affect subsequent maize growth, but when added after flooding caused microbial immobilization of N.Salts, Fe or Mn from previous flooding did not affect maize growth.  相似文献   

2.
Seng  Vang  Bell  R.W.  Willett  I.R.  Nesbitt  <<>H.J. 《Plant and Soil》1999,207(2):121-132
In the rainfed lowlands, temporary loss of soil-water saturation during crop growth is a common factor limiting rice (Oryza sativa L.) yield but its effects on phosphorus (P) availability are poorly understood. Rice plants were transplanted into pots containing soils that were either continuously flooded, maintained at field capacity or flooded and then dried to field capacity for 3 weeks during the vegetative stage. A black clay soil (Kandic Plinthaquult) and a sandy soil (Plinthustalf) from south-east Cambodia were compared with or without amendments by rice straw and P fertilizer. Under continuously flooded conditions, the growth of rice was vigorous without straw addition and there was a strong response of rice growth to the addition of P fertilizer. The soil underwent reduction, which increased pH from 4.2 to 5.5 or 6.0, in the black clay or sandy soil, respectively. By contrast, a loss of soil-water saturation 3 weeks before panicle initiation (PI) markedly impaired the growth of rice. This was not through any effect of water stress, and the growth reductions were not as strong as with continued loss of soil-water saturation from transplanting to PI. Fluctuations in soil pH and Eh corresponded closely to changes in soil-water regimes. Growth reductions were attributed to reduced shoot P levels resulting from the decline in P availability during the loss of soil-water saturation. The addition of rice straw stimulated soil reduction and lessened changes in soil pH and Eh during the loss of soil-water saturation in both soils. Straw addition enhanced P uptake by the rice plants during loss of soil-water saturation, but its beneficial effects could not be attributed to the direct addition of P, N or K to the soils. Thus the application of rice straw may be effective in lessening the effects of temporary loss of soil-water saturation on rice growth in lowland rice soils by minimising the decline in P availability. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
BACKGROUND AND AIMS: It has recently found that lowland rice grown hydroponically is exceptionally efficient in absorbing NO3-, raising the possibility that rice and other wetland plants growing in flooded soil may absorb significant amounts of NO3- formed by nitrification of NH4+ in the rhizosphere. This is important because (a) this NO3- is otherwise lost through denitrification in the soil bulk; and (b) plant growth and yield are generally improved when plants absorb their nitrogen as a mixture of NO3- and NH4+ compared with growth on either N source on its own. A mathematical model is developed here with which to assess the extent of NO3- absorption from the rhizosphere by wetland plants growing in flooded soil, considering the important plant and soil processes operating. METHODS: The model considers rates of O2 transport away from an individual root and simultaneous O2 consumption in microbial and non-microbial processes; transport of NH4+ towards the root and its consumption in nitrification and uptake at the root surface; and transport of NO3- formed from NH4+ towards the root and its consumption in denitrification and uptake by the root. The sensitivity of the model's predictions to its input parameters is tested over the range of conditions in which wetland plants grow. KEY RESULTS: The model calculations show that substantial quantities of NO3- can be produced in the rhizosphere of wetland plants through nitrification and taken up by the roots under field conditions. The rates of NO3- uptake can be comparable with those of NH4+. The model also shows that rates of denitrification and subsequent loss of N from the soil remain small even where NO3- production and uptake are considerable. CONCLUSIONS: Nitrate uptake by wetland plants may be far more important than thought hitherto. This has implications for managing wetland soils and water, as discussed in this paper.  相似文献   

4.
Soil and crop management strategies to prevent iron deficiency in crops   总被引:5,自引:0,他引:5  
Plants and humans cannot easily acquire iron from their nutrient sources although it is abundant in nature. Thus, iron deficiency is one of the major limiting factors affecting crop yields, food quality and human nutrition. Therefore, approaches need to be developed to increase Fe uptake by roots, transfer to edible plant portions and absorption by humans from plant food sources. Integrated strategies for soil and crop management are attractive not only for improving growing conditions for crops but also for exploiting a plant??s potential for Fe mobilization and utilization. Recent research progress in soil and crop management has provided the means to resolve complex plant Fe nutritional problems through manipulating the rhizosphere (e.g., rhizosphere fertilization and water regulation), and crop management (includes managing cropping systems and screening for Fe efficient species and varieties). Some simple and effective soil management practices, termed ??rhizosphere fertilization?? (such as root feeding and bag fertilization) have been developed and widely used by local farmers in China to improve the Fe nutrition of fruit plants. Production practices for rice cultivation are shifting from paddy-rice to aerobic rice to make more efficient use of irrigation water. This shift has brought about increases in Fe deficiency in rice, a new challenge depressing iron availability in rice and reducing Fe supplies to humans. Current crop management strategies addressing Fe deficiency include Fe foliar application, trunk injection, plant breeding for enriched Fe crop species and varieties, and selection of cropping systems. Managing cropping systems, such as intercropping strategies may have numerous advantages in terms of increasing Fe availability to plants. Studies of intercropping systems on peanut/maize, wheat/chickpea and guava/sorghum or -maize increased Fe content of crops and their seed, which suggests that a reasonable intercropping system of iron-efficient species could prevent or mitigate Fe deficiency in Fe-inefficient plants. This review provides a comprehensive comparison of the strategies that have been developed to address Fe deficiency and discusses the most recent advance in soil and crop management to improve the Fe nutrition of crops. These proofs of concept studies will serve as the basis for future Fe research and for integrated and optimized management strategies to alleviate Fe deficiency in farmers?? fields.  相似文献   

5.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

6.
Phosphorus cycling in rainfed lowland rice ecosystems on sandy soils   总被引:3,自引:0,他引:3  
Phosphorus cycling in rainfed lowland rice ecosystems is poorly understood. Soil drying and grazing of rice straw during the long dry season, the growth of volunteer pastures during the early wet season, and intermittent loss of soil-water saturation while the rice crop is growing are important distinguishing characteristics of the rainfed lowlands in relation to P cycling. We studied P cycling in an acid sandy rainfed lowland soil that covers about 30% of the rice growing area of Cambodia. Soils with similar properties in comparable rainfed sub- ecosystems occur in Laos and northeast Thailand. We developed a general schema of P pools and fluxes in the crop and soil for rice-based cropping systems in the rainfed lowlands of Cambodia. The schema was derived from a number of field experiments carried out over five consecutive cropping seasons to quantify the residual value of P fertiliser, P mass balances, soil P fractions, the effect on subsequent rice crops of crop residues and volunteer pastures incorporated into the soils, and the dynamics of P turnover in the soil. With a single rice crop yielding 2.5–3 t ha−1, application of 8–10 kg P ha−1 maintained yields and a small positive P balance in the soil. However, the soil P balance was sensitive to the proportion of rice straw returned to the soil. Volunteer pastures growing during the early wet season accumulated significant amounts of P, and increased their P uptake when soils were previously fertilised with P. These pastures recycled 3–10 kg P ha−1 for the succeeding rice crops. While inorganic soil P pools extractable with ion exchange resins and 0.1 M NaOH appeared to be the main source of P absorbed by rice, microbial and organically-bound P pools responded dynamically to variation in soil water regimes of the main wet, dry and early wet seasons. The schema needs to be developed further to incorporate site-specific conditions and management factors that directly or indirectly affect P cycling, especially loss of soil-water saturation during the rice cropping cycle. The paper discusses the application of results for acid sandy soils to other significant rice soils in the rainfed lowlands of southeast Asia.  相似文献   

7.
Vong  P.C.  Dedourge  O.  Guckert  A. 《Plant and Soil》2004,258(1):227-239
During plant growth, rhizosphere soils from fallow, barley (Hordeum vulgare L. cv Esterel) and rape (Brassica napus L. cv Capitole) grown in a calcareous soil were sampled 5 times (every fortnight) from May to July 2001 at plant maturity. In order to estimate the impact of C derived from photosynthesis, the aerial parts of rape and barley in an area of 1 m2 were cut off about 2 cm from the soil surface, and left a fortnight before each sampling. Both soil arylsulphatase activity and a 1-week immobilization of S fertilizer in the sampled soils were then measured. The immobilization of S fertilizer was higher in fallow, followed by barley and rape rhizosphere soil. A strong positive linear correlation (r 2=0.71, P<0.001) was found between soil arylsulphatase activity and S fertilizer immobilized. Conversely, the mobilization of endogenous organic 35S (obtained after leaching free and adsorbed SO4 2–-35S by 0.009 M Ca(H2PO4)2) in the rhizosphere soil of each plant cover pooled at the end of the 5 samplings and materialized by ryegrass (Lolium perenne L. cv Massa) 35S uptake, was about 3 and 2 times higher, respectively, in rape and barley than in fallow rhizosphere soil. Accordingly, strong inverse polynomial relationships were observed between soil arylsulphatase activity and 35S uptake by the whole plant (r 2=0.904, P<0.02) and roots (r 2=0.970, P<0.01) of ryegrass. Plant cuttings affected both the immobilization and mobilization of S. It is concluded that the turnover of S freshly immobilized in rape rhizosphere soil was relatively high. Therefore, rape as a preceding crop in the rotations may have a beneficial effect by increasing S availability on the succeeding crop.  相似文献   

8.
The ability of two sodium bicarbonate (Colwell and Olsen) and two ammonium fluoride (Bray I and Bray II) soil tests to reflect the effect of phosphate buffering capacity of the soil on plant growth through time was studied on ten Argentine soils. The soils were divided into three groups (low, medium and high buffering capacity) according to a buffering index calculated from the slope of the Freundlich equation. The relation between phosphate extracted by soil tests and both relative yield and phosphate uptake of rye grass plants was affected by the phosphate buffering capacity of the soil. The effect of buffering on that relation was more marked for the sodium bicarbonate tests (specially Colwell) than for the Bray tests. This effect was consistent with time. Hence, adjustment for buffering would be more important for the sodium bicarbonate tests than for the Bray tests. Soils with high buffering capacity were able to sustain a greater rate of phosphate uptake. The effect of buffering on the relation between soil tests and both relative yield and phosphate uptake was greatest when the plants were young and decreased with time. This effect would therefore be very important for the early nutrition of annual pasture or crop species.  相似文献   

9.
Soil respiration was proportional to its total carbon content. Maximum respiratory activity occurred in garden soil, followed in descending order by chernozem soil, brown soil, and sand. The oxidation of pipecolic acid, as studied by the Warburg manometric technique, in different rhizosphere soils from four crops 7, 13 and 20 days after planting as well as from one crop grown in different soils, was consistently in all cases faster than that by the corresponding non-rhizosphere soils. The curves of the rate of oxygen consumption during pipecolic acid oxidation, by garden soil (whether rhizosphere or non-rhizosphere soil) as well as by chernozem rhizosphere soil of different plants at the three stages of plant growth studied contained two peaks (two phases), whereas in non-rhizosphere chernozem soil as well as in brown soil and sand (whether affected or not affected by plant roots) only one peak was attained in the curves of the rate of oxygen uptake. The rapidity with which pipecolic acid was oxidized in the rhizosphere soil differed from plant to plant and at different phases of plant growth, and also with the type of soil used for plant growing. The extent of pipecolic acid oxidation after the first and second (if it occurred) phases did not differ in the different soils, both rhizosphere and non-rhizosphere soil, but the rate of oxygen uptake was higher in rhizosphere than in the corresponding non-rhizosphere soil. During the first phase, oxygen uptake accounted for slightly less than one-third of the total amount of oxygen required for complete oxidation of the added pipecolic acid. About two-thirds of that total amount were taken up during the both phases of oxidation.  相似文献   

10.
The differences in rhizosphere nitrification activities between high- and low- fertility soils appear to be related to differences in dissolved oxygen concentrations in the soil, implying a relationship to differences in the radial oxygen loss (ROL) of rice roots in these soils. A miniaturised Clark-type oxygen microelectrode system was used to determine rice root ROL and the rhizosphere oxygen profile, and rhizosphere nitrification activity was studied using a short-term nitrification activity assay. Rice planting significantly altered the oxygen cycling in the water-soil system due to rice root ROL. Although the oxygen content in control high-fertility soil (without rice plants) was lower than that in control low-fertility soil, high rice root ROL significantly improved the rhizosphere oxygen concentration in the high-fertility soil. High soil fertility improved the rice root growth and root porosity as well as rice root ROL, resulting in enhanced rhizosphere nitrification. High fertility also increased the content of nitrification-induced nitrate in the rhizosphere, resulting in enhanced ammonium uptake and assimilation in the rice. Although high ammonium pools in the high-fertility soil increased rhizosphere nitrification, rice root ROL might also contribute to rhizosphere nitrification improvement. This study provides new insights into the reasons that an increase in soil fertility may enhance the growth of rice. Our results suggest that an amendment of the fertiliser used in nutrient- and nitrification-poor paddy soils in the red soil regions of China may significantly promote rice growth and rice N nutrition.  相似文献   

11.
Morel  C.  Hinsinger  P. 《Plant and Soil》1999,211(1):103-110
The uptake of phosphorus (P) by roots results in a depletion of phosphate ions (PO4) in the rhizosphere. The corresponding decrease in PO4 concentration in the soil solution (CP) gives rise to a replenishment of P from the solid phase which is time- and CP-dependent. This PO4 exchange which reflects the buffer power of the soil for PO4 also varies with the composition and the physico-chemical conditions of the soil. As root activity can modify these physico-chemical conditions in the rhizosphere, the question arises whether these modifications affect the ability of PO4 bound to the soil solid phase to exchange with PO4 in soil solution. The aim of the present work was to measure and compare the parameters which describe the amount of PO4 bound to soil solid phase that is capable to replenish solution P for both rhizosphere and bulk soils. The soil sample was a P-enriched, calcareous topsoil collected from a long-term fertiliser trial. Rhizosphere soil samples were obtained by growing dense mats of roots at the surface of 3 mm thick soil layer for one week. Three plant species were compared: oilseed rape (Brassica napus L., cv Goeland) pea (Pisum sativum L., cv. Solara) and maize ( Zea mays L., cv. Volga). The time- and CP-dependence of the PO4 exchange from soil to solution were described using an isotopic dilution method. The measured CP values were 0.165 mg P L−1 for bulk soil and 0.111, 0.101 and 0.081 mg P L−1 for rhizosphere soils of maize, pea and rape, respectively. The kinetics of the PO4 exchange between liquid and solid phases of soil were significantly different between rhizosphere and bulk soils. However, when changes in CP were accounted for, the parameters describing the PO4 exchange with time and CP between soil solution and soil solid phase were found to be very close for bulk and rhizosphere soils. For this calcareous and P-enriched soil, plant species differed in their ability to deplete PO4 in solution. The resulting changes in the ability of the soil solid phase to replenish solution PO4 were almost fully explained by the depletion of soil solution P. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Silber  A.  Yones  L. Ben  Dori  I. 《Plant and Soil》2004,262(1-2):205-213
The effect of modification of the rhizosphere pH, via solution-N concentration and source, on rice flower (Ozothamnus diosmifolius, Astraceae) growth was investigated in two different experiments. In order to simulate a wide range of pHs easily, the plants were grown in an inert artificial substrate (perlite). In the first the rhizosphere pH was modified through variation of N concentrations and the NH4/NO3-N ratio in the irrigation water. In the second the rhizosphere pH was modified solely by altering the NH4/NO3-N ratio while irrigation-N concentration was held at the level found to be optimal in the first experiment. Cultivation of rice flower, a new crop in Israel, is hampered by lack of knowledge on its Zn nutrition. Because availability of soil Zn largely depends on pH we investigated in the second experiment the effect of Zn foliar application. The growth of rice flower plants under low-N fertilization or low NH4/NO3-N ratio was poor and the plants exhibited growth disorders such as tipburn, severe chlorosis and necrosis. These growth disorders could not be ascribed to any direct effect of N nutrition therefore it was suggested that the indirect effect of the treatments, e.g., the rhizosphere pH dominates rice flower growth through its effect on nutrient availability. The only nutrient that was significantly correlated with pH and yield parameters in both experiments was Zn. All irrigation-nutrients concentrations were within the recommended range for hydroponically grown plants; however, the leaf-Mn concentration of plants grown in pH above 7.5 was in the toxic range while that of Zn was deficient. The high preferential uptake of Mn over Zn by rice flower plants and the question of whether high Mn uptake induced Zn deficiency remain open.  相似文献   

13.
The lengths of roots and root hairs and the extent of root-induced processes affect phosphorus (P) uptake efficiency by plants. To assess the influence of variation in the lengths of roots and root hairs and rhizosphere processes on the efficiency of soil phosphorus (P) uptake, a pot experiment with a low-P soil and eight selected genotypes of cowpea (Vigna unguiculata (L) WALP) was conducted. Root length, root diameter and root hair length were measured to estimate the soil volume exploited by roots and root hairs. The total soil P was considered as a pool of Olsen-P, extractable with 0.5 M NaHCO3 at pH 8.5, and a pool of non-Olsen-P. Model calculations were made to estimate P uptake originated from Olsen-P in the root hair zone and the Olsen-P moving by diffusion into the root hair cylinder and non-Olsen-P uptake. The mean uptake rate of P and the mean rate of non-Olsen-P depletion were also estimated. The genotypes differed significantly in lengths of roots and root hairs, and in P uptake, P uptake rates and growth. From 6 to 85% of total P uptake in the soil volume exploited by roots and root hairs was absorbed from the pool of non-Olsen-P. This indicates a considerable activity of root-induced rhizosphere processes. Hence the large differences show that traits for more P uptake-efficient plants exist in the tested cowpea genotypes. This opens the possibility to breed for more P uptake-efficient varieties as a way to bring more sparingly soluble soil P into cycling in crop production and obtain capitalisation of soil P reserves.  相似文献   

14.
Chen  Jixing  Xuan  Jiaxiang  Du  Chenglin  Xie  Jianchang 《Plant and Soil》1997,188(1):131-137
With four soils differing in K supplying power and with four rice cultivars (Oryza sativa L.) differing in K uptake kinetic parameters, the relationship between K fertilizer application and soil redox status in rhizosphere and; the distribution of ferrous iron and other toxic substances on the root surface and in the rhizosphere; and the effect of K supply on uptake of reduced iron by rice plants have been studied.The results show that K application on K-deficient soils reduced the content of active reducing substances and ferrous iron in the soil, raised the soil redox potential in the rhizosphere, increased the Eh value of rice roots and lowered the content of iron in the rice plants. These effects of K varied with different rice cultivars. When no K fertilizer was applied, active reducing substances and ferrous iron in rhizosphere soils were decreased more by the rice cultivars absorbing K strongly (e.g. Shanyou 64) than by cultivars absorbing K weakly (e.g. Zhongguo 91). Therefore, the diminution of the toxic substances by K application in the weakly K-absorbing cultivars was more significant.The observation of a rhizobox separated by a nylon screen showed that appreciably more iron oxides, compared with the control, were deposited at or adjacent to the root surfaces of the rice plant supplied with K fertilizer, fully demonstrating the relationship between K nutrition and the total oxidizing power of rice plants. According to the distribution of active reducing substances and ferrous iron, the oxidizing range of the rice root extended in K application treatment a few centimeters away from the root plane. K application to rice affected the soil redox status in rhizosphere in many ways. The main effect was an increase of the oxidizing power of the rice root. As a result, the value of soil Eh was increased, the contents of active reducing substances and ferrous iron were lowered, as well as the number of oxygen consuming microorganisms.  相似文献   

15.
Certain legume crops, including white lupin (Lupinus albus L.), mobilise soil-bound phosphorus (P) through root exudates. The changes in the rhizosphere enhance P availability to these crops, and possibly to subsequent crops growing in the same soil. We conducted a pot experiment to compare phosphorus acquisition of three legume species with that of wheat, and to determine whether the legume crops influence growth and P uptake of a subsequent wheat crop. Field pea (Pisum sativum L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.) and wheat (Triticum aestivum L.) were grown in three different soils to which we added no or 20 mg P kg–1 soil (P0, P20). Growth, P content and rhizosphere carboxylates varied significantly amongst crops, soils and P levels. Total P content of the plants was increased with applied phosphorus. Phosphorus content of faba bean was 3.9 and 8.8 mg/pot, at P0 and P20, respectively, which was about double that of all other species at the respective P levels. Field pea and white lupin had large amounts of rhizosphere carboxylates, whereas wheat and faba bean had negligible amounts in all three soils at both P levels. Wheat grew better after legumes than after wheat in all three soils. The effect of the previous plant species was greater when these previous species had received P fertiliser. All the legumes increased plant biomass of subsequent wheat significantly over the unplanted pots in all the soils. Faba bean was unparalleled in promoting subsequent wheat growth on all fertilised soils. This experiment clearly demonstrated a residual benefit of the legume crops on the growth of the subsequent wheat crop due to enhanced P uptake. Faba bean appeared to be a suitable P-mobilising legume crop plant for use in rotations with wheat.  相似文献   

16.
Kirk  G.J.D.  Santos  E.E.  Findenegg  G.R. 《Plant and Soil》1999,211(1):11-18
A mathematical model of P solubilization by organic anion excretion from roots is described and used to account for P solubilization by rice (Oryza sativa L.) plants growing in aerobic soil. In previous experiments with rice in an aerobic, highly-weathered, P-deficient soil, we found that the plants were able to solubilize P from an alkali-soluble pool and thereby increase their P uptake. The solubilization could not be explained by pH changes nor by the release of phosphatases. In subsequent experiments we found excretion of citrate from rice roots into nutrient solutions, and the synthesis and excretion of citrate tended to increase under P starvation. The model allows for the diffusion of the organic anion away from a root, its decomposition by soil microbes, its reaction with the soil in solubilizing P, and diffusion of the solubilized P back towards the root as well as away from it. We calculated the rate of citrate excretion from rice roots growing in soil based on measured steady-state citrate concentrations in the rhizosphere and calculated rates of decomposition. Calculations using these and other model parameters obtained independently showed that the observed solubilization and increased P uptake by rice growing in soil could be accounted for. A sensitivity analysis of the model is given. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
In many tropical and volcanic soils, phosphorus (P) availability is strongly influenced by geochemical sorption, which binds P to soil minerals. The aim of this study was to determine whether biological demand or soil sorption strength was the primary control over phosphate availability and retention in a wet tropical soil with high sorption capacity and low P availability. We added 32PO4 to soil from the upper two horizons and assessed the ability of soil microbes to immobilize the added phosphate in the presence of strong sorption. We added phosphate at two concentrations, one representing background turnover that adds low concentrations of P to the soil solution, and the other representing nutrient pulses that can add fairly high fluxes of P to the soil solution. Sorption and microbial immobilization were rapid for both concentrations, consuming most added P within 30 min. Thus, little P remained in the soil solution or extractable pools, which are considered more available to plants. Although soil sorption strength was almost identical for the two horizons, immobilization of tracer P was approximately three times greater in the upper horizon, where most microbial activity was located. This result suggests that microbial demand controlled how P was partitioned into biological versus geochemical sinks. Further evidence for microbial control is suggested by the movement of tracer P from the sorbed pool into the microbial pool when demand was stimulated by the addition of carbon (C). We also explored how increased nitrogen (N) and P availability changed P dynamics in this nutrient poor soil. In contrast to the unfertilized soil, long-term N and P fertilization substantially reduced biological control over inorganic P. P fertilization saturated the soils, overwhelming biological P demand, whereas N fertilization appeared to increase available P through reduced P sorption. Where biological demand for P is high and P becomes available in the soil solution, microbes may play an important role in controlling P partitioning into biological versus geochemical sinks even in soils that have high sorption capacity.  相似文献   

18.
To maintain the sustainability of agriculture, it is imperative that the reliance of crops on inorganic phosphorus (P) fertilizers is reduced. One approach is to improve the ability of crop plants to acquire P from organic sources. Transgenic plants that produce microbial phytases have been suggested as a possible means to achieve this goal. However, neither the impact of heterologous expression of phytase on the ecology of microorganisms in the rhizosphere nor the impact of rhizosphere microorganisms on the efficacy of phytases in the rhizosphere of transgenic plants has been tested. In this paper, we demonstrate that the presence of rhizosphere microorganisms reduced the dependence of plants on extracellular secretion of phytase from roots when grown in a P-deficient soil. Despite this, the expression of phytase in transgenic plants had little or no impact on the microbial community structure as compared with control plant lines, whereas soil treatments, such as the addition of inorganic P, had large effects. The results demonstrate that soil microorganisms are explicitly involved in the availability of P to plants and that the microbial community in the rhizosphere appears to be resistant to the impacts of single-gene changes in plants designed to alter rhizosphere biochemistry and nutrient cycling.  相似文献   

19.
Phosphorus (P) is an essential nutrient for plant growth and productivity. Due to soil fixation, however, phosphorus availability in soil is rarely sufficient to sustain high crop yields. The overuse of fertilizers to circumvent the limited bioavailability of phosphate (Pi) has led to a scenario of excessive soil P in agricultural soils. Whereas adaptive responses to Pi deficiency have been deeply studied, less is known about how plants adapt to Pi excess and how Pi excess might affect disease resistance. We show that high Pi fertilization, and subsequent Pi accumulation, enhances susceptibility to infection by the fungal pathogen Magnaporthe oryzae in rice. This fungus is the causal agent of the blast disease, one of the most damaging diseases of cultivated rice worldwide. Equally, MIR399f overexpression causes an increase in Pi content in rice leaves, which results in enhanced susceptibility to M. oryzae. During pathogen infection, a weaker activation of defence-related genes occurs in rice plants over-accumulating Pi in leaves, which is in agreement with the phenotype of blast susceptibility observed in these plants. These data support that Pi, when in excess, compromises defence mechanisms in rice while demonstrating that miR399 functions as a negative regulator of rice immunity. The two signalling pathways, Pi signalling and defence signalling, must operate in a coordinated manner in controlling disease resistance. This information provides a basis to understand the molecular mechanisms involved in immunity in rice plants under high Pi fertilization, an aspect that should be considered in management of the rice blast disease.  相似文献   

20.
Zoysa  A.K.N.  Loganathan  P.  Hedley  M.J. 《Plant and Soil》1997,190(2):253-265
Rhizosphere studies on tree crops have been hampered by the lack of a satisfactory method of sampling soils at various distances in the rhizosphere. A modified root study container (RSC) technique developed for annual crops, grasses and legumes was used to study the mechanisms by which camellia plants (Camellia japonica L.) utilise soil P in the glasshouse and field. Plants belonging to the Camellia family (e.g. tea) have the ability to utilise P from relatively unavailable native P sources and for this reason camellia plants were selected for this study.In the glasshouse trial, the RSCs were filled with a Recent soil, treated with P fertilisers; North Carolina phosphate rock (NCPR), diammonium phosphate (DAP), mono calcium phosphate (MCP) and single superphosphate (SSP) at 200 g P g-1 soil. A planar mat of roots was physically separated by a 24 m polyester mesh and the soil on the other side of this mesh was cut into thin slices parallel to the rhizoplane and analysed for pH, and different forms of P (organic, Po and inorganic, Pi) to understand P depletion at different distances from camellia roots. In the field trial this technique was modified and used to study the rhizosphere processes in mature camellia trees fertilised with only SSP and NCPR.In both field and glasshouse trials, all P fertilisers increased all the bulk soil P fractions except NaOH-Po over unfertilised soil with the greatest increases being in the H2SO4-Pi fraction in the NCPR treatment and NaOH-Pi in the SSP treatment. Resin-P, NaOH-Pi and H2SO4-Pi were significantly lower in the rhizosphere soil compared to the bulk soil whereas NaOH-Po was higher in the rhizosphere soil than in the bulk soil. Plant and microbial P uptake were thought to be the major causes for the low resin-P rather than P fixation by Fe and Al because the NaOH-Pi fraction which is a measure of Fe-P and Al-P, also decreased in the rhizosphere soil. The rhizo-deposition of NaOH-Po suggests that labile inorganic P was immobilized by rhizosphere microbes which were believed to have multiplied as a result of carbon exudates from the roots. A marked reduction in pH (about 0.2–0.4 in the glasshouse and 0.2 in the field trial) was observed near the rhizoplane compared to that in the bulk soil in all treatments. The pH near the rhizoplane as well as in the bulk soil was highest for NCPR treated soil. The increase in pH in the NCPR treatment over the control was consistent with the number of protons consumed during the dissolution of NCPR. In both trials, the dissolution of NCPR in the rhizosphere was higher than in the bulk soil due to lower pH and plant uptake of solution P in the rhizosphere. The RSC technique proved to be a viable aid to study the rhizosphere processes in tree crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号