首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spatial pattern of tropical plants is initially generated by limited seed dispersal, but the role of density‐dependent and independent mechanisms as modifiers of these patterns across ontogeny is poorly understood. We investigated whether density‐dependent mortality (DDM) and environmental heterogeneity can drive spatial pattern across the ontogeny of a tree in a seasonally dry tropical climate. We used Moran's I correlograms and spatial analysis by distance indices (SADIE) to assess the spatial patterns of the pre‐ and post‐germinative stages of Cordia oncocalyx (Boraginaceae), an abundant tree endemic in the deciduous thorny woodland in the northeastern Brazilian semiarid region. We also used RDA to analyse the effect of DDM and environmental heterogeneity (measured by microtopography and canopy openness) in the mortality and recruitment. Seeds, seedlings, juveniles and adults showed aggregated spatial patterns; infants and immatures were randomly distributed; adults, seeds and seedlings attracted each other while adult, juveniles and immatures repulsed each other. Infant and seedling mortality rates were related to DDM and the recruitment from infant to juvenile was more influenced by spatial heterogeneity. Attraction was determined by local dispersal; repulsion was related to DDM and environment heterogeneity, which allowed the return to aggregation in adult stage. Together, these results indicated that spatial pattern can change across ontogeny, in which the initial stages are responsive to DDM and the final stages are influenced by spatial heterogeneity.  相似文献   

2.
Density‐dependent competition for food reduces vital rates, with juvenile survival often the first to decline. A clear prediction of food‐based, density‐dependent competition for large herbivores is decreasing juvenile survival with increasing density. However, competition for enemy‐free space could also be a significant mechanism for density dependence in territorial species. How juvenile survival is predicted to change across density depends critically on the nature of predator–prey dynamics and spatial overlap among predator and prey, especially in multiple‐predator systems. Here, we used a management experiment that reduced densities of a generalist predator, coyotes, and specialist predator, mountain lions, over a 5‐year period to test for spatial density dependence mediated by predation on juvenile mule deer in Idaho, USA. We tested the spatial density‐dependence hypothesis by tracking the fate of 251 juvenile mule deer, estimating cause‐specific mortality, and testing responses to changes in deer density and predator abundance. Overall juvenile mortality did not increase with deer density, but generalist coyote‐caused mortality did, but not when coyote density was reduced experimentally. Mountain lion‐caused mortality did not change with deer density in the reference area in contradiction of the food‐based competition hypothesis, but declined in the treatment area, opposite to the pattern of coyotes. These observations clearly reject the food‐based density‐dependence hypothesis for juvenile mule deer. Instead, our results provide support for the spatial density‐dependence hypothesis that competition for enemy‐free space increases predation by generalist predators on juvenile large herbivores.  相似文献   

3.
Density-dependent dispersal in birds and mammals   总被引:4,自引:0,他引:4  
Erik Matthysen 《Ecography》2005,28(3):403-416
Density‐dependent dispersal can be caused by various mechanisms, from competition inducing individuals to emigrate (positive density‐dependence) to social crowding effects impeding free movement (negative density‐dependence). Various spatial population models have incorporated positively density‐dependent dispersal algorithms, and recent theoretical models have explored the conditions for density‐dependent dispersal (DD) to evolve. However, while the existence of DD is well documented in some taxa such as insects, there is no clear picture on its generality in vertebrates. Here I review the available empirical data on DD in birds and mammals, focusing mainly on variation in dispersal between years and on experimental density manipulations. Surprisingly few studies have explicitly focused on DD, and interpretation of the available data is often hampered by differences in approach, small sample sizes and/or statistical shortcomings. Positive DD was reported in 50 and 33% of the selected mammal and bird studies, respectively, while two studies on mammals (out of eight) reported negative DD. Among bird studies, DD was more often reported for emigration rates or long‐distance recoveries than for average distances within finite study areas. Experimental studies manipulating densities (mainly on mammals) have consistently generated positive DD, typically showing reduced emigration in response to partial population removal. Studies that examined dispersal in relation to seasonal changes in density (small mammals only) have more often reported negative DD. Studies that compared dispersal between sites differing in density, also show a mixture of positive and negative DD. This suggests that dispersal changes in a more complex way with seasonal and spatial density variation than with annual densities, and/or that these results are confounded by other factors differing between seasons and sites, such as habitat quality. I conclude that both correlational and experimental studies support the existence of positive, rather than negative, density‐dependent dispersal in birds and mammals.  相似文献   

4.
Body size is implicated in individual fitness and population dynamics. Mounting interest is being given to the effects of environmental change on body size, but the underlying mechanisms are poorly understood. We tested whether body size and body condition are related to ambient temperature (heat maintenance hypothesis), or/and explained by variations in primary production (food availability hypothesis) during the period of body growth in songbirds. We also explored whether annual population‐level variations of mean body size are due to changes of juvenile growth and/or size‐dependent mortality during the first year. For 41 species, from 257 sites across France, we tested for relationships between wing length (n = 107 193) or body condition (n = 82 022) and local anomalies in temperature, precipitation and net primary production (NDVI) during the breeding period, for juveniles and adults separately. Juvenile body size was best explained by primary production: wings were longer in years with locally high NDVI, but not shorter in years with low NDVI. Temperature showed a slightly positive effect. Body condition and adult wing length did not covary with any of the other tested variables. We found no evidence of climate‐driven size‐dependent mortality for the breeding season. In our temperate system, local climatic anomalies explained little of the body size variation. A large part of wing length variance was site‐specific, suggesting that avian size was more dependent on local drivers than global ones. Net primary production influenced juvenile size the most through effects on body growth. We suggest that, during the breeding season in temperate systems, thermoregulatory mechanisms are less involved in juvenile growth than food assimilation.  相似文献   

5.
Migration is expected to benefit individuals through exposure to higher quality forage and reducing predation rates more than non‐migratory conspecifics. Previous studies of partially migratory ungulates (with migrant and resident individuals) have focused on bottom–up factors regulating resident and migrant segments, yet differential predation between strategies could also be a density‐dependent regulatory mechanism. Our study tested for density‐dependence in mortality, as well as mechanisms of ­bottom–up or top–down regulation in the resident and migrant portions of the partially migratory Ya Ha Tinda elk population. We tested for density dependence in adult female and juvenile survival rates, and then discriminated between predator‐ and food‐regulation hypotheses by testing for density‐dependence amongst mortality causes for adult female elk. Notably, the population declined almost 70% from near previously published estimates of carrying capacity over 10 years, providing ideal conditions to test for density dependence. In contrast to predictions, we found only weak support for density dependence in adult survival and juvenile survival. We also found few differences between migrant and resident elk in adult or juvenile survival, though juvenile survival differences were biologically significant. Predation by humans and grizzly bears was density dependent, but similar between migratory strategies. Predation by wolves was the leading known cause of mortality, yet remained constant with declining elk density equally for both migrant and resident elk, indicating wolf predation was density‐independent. Instead of being strongly regulated by food or predation, we found adult female survival was driven by density‐independent predation and climatic factors. The few differences between migratory strategies suggest equivalent fitness payoffs for migrants and residents. This population is being limited by density‐independent predation leading to declines of both migratory strategies. Our results challenge classical predator–prey theory, and call for better integration between predator–prey and migration theory.  相似文献   

6.
Body condition‐dependent dispersal strategies are common in nature. Although it is obvious that environmental constraints may induce a positive relationship between body condition and dispersal, it is not clear whether positive body conditional dispersal strategies may evolve as a strategy in metapopulations. We have developed an individual‐based simulation model to investigate how body condition–dispersal reaction norms evolve in metapopulations that are characterized by different levels of environmental stochasticity and dispersal mortality. In the model, body condition is related to fecundity and determined either by environmental conditions during juvenile development (adult dispersal) or by those experienced by the mother (natal dispersal). Evolutionarily stable reaction norms strongly depend on metapopulation conditions: positive body condition dependency of dispersal evolved in metapopulation conditions with low levels of dispersal mortality and high levels of environmental stochasticity. Negative body condition‐dependent dispersal evolved in metapopulations with high dispersal mortality and low environmental stochasticity. The latter strategy is responsible for higher dispersal rates under kin competition when dispersal decisions are based on body condition reached at the adult life stage. The evolution of both positive and negative body condition‐dependent dispersal strategies is consequently likely in metapopulations and depends on the prevalent environmental conditions.  相似文献   

7.
Individual organisms often show pronounced changes in body size throughout life with concomitant changes in ecological performance. We synthesize recent insight into the relationship between size dependence in individual life history and population dynamics. Most studies have focused on size‐dependent life‐history traits and population size‐structure in the highest trophic level, which generally leads to population cycles with a period equal to the juvenile delay. These cycles are driven by differences in competitiveness of differently sized individuals. In multi‐trophic systems, size dependence in life‐history traits at lower trophic levels may have consequences for both the dynamics and structure of communities, as size‐selective predation may lead to the occurrence of emergent Allee effects and the stabilization of predator–prey cycles. These consequences are linked to that individual development is density dependent. We conjecture that especially this population feedback on individual development may lead to new theoretical insight compared to theory based on unstructured or age‐dependent models. Density‐dependent individual development may also cause individuals to realize radically different life histories, dependent on the state and dynamics of the population during their life and may therefore have consequences for individual behaviour or the evolution of life‐history traits as well.  相似文献   

8.
Recent years have seen a growing body of evidence showing that plant competition and facilitation usually operate simultaneously to drive population dynamics, community structure and ecosystem functions. However, the potential role of facilitation in spatial patterning of plant populations has rarely been explicitly examined. We used a ‘zone‐of‐influence’ model to explore how facilitation interacts with competition and abiotic stress to determine the spatial patterning of populations during density‐dependent mortality. Model simulations revealed that started with the same clustered pattern, the final pattern of simulated populations depended strongly on the interaction among facilitation, stress level and size‐symmetry of competition. Asymmetric competition consistently led to immediate and non‐random mortality towards regularity, thus rapidly decayed the initially clustered pattern to final patterns of small‐scale regularity and large‐scale randomness. The role of symmetric competition in decaying the clustered pattern increased with abiotic stress because stress‐induced reductions in plants’ growth rates can make individuals in high‐density clusters more likely to die even from symmetric competition. Facilitation played a clear role in counteracting the effect of stress, thus tended to maintain the degree of clustering of the pattern during density‐dependent mortality. This is because the amelioration of harsh conditions by neighboring plants relieved the reductions in plant growth due to competition, thus slowed down and reduced the mortality inside clusters (relative to that outside clusters). Moreover, the effect of facilitation appeared to increase with abiotic stress. Our results indicate that facilitation among neighboring plants should partially be responsible for clustered population spatial patterns observed in stressful environments, even though its contribution relative to other factors (e.g. local dispersal and environmental heterogeneity) remains to be evaluated. In addition, the potential influence of facilitation on self‐thinning trajectory should be explicitly examined in future modeling and experimental studies considering its effects on density‐dependent mortality.  相似文献   

9.
Population regulation is fundamental to the long-term persistence of populations and their responses to harvesting, habitat modification, and exposure to toxic chemicals. In fish and other organisms with complex life histories, regulation may involve density dependence in different life-stages and vital rates. We studied density dependence in body growth and mortality through the life-cycle of laboratory populations of zebrafish Danio rerio. When feed input was held constant at population-level (leading to resource limitation), body growth was strongly density-dependent in the late juvenile and adult phases of the life-cycle. Density dependence in mortality was strong during the early juvenile phase but declined thereafter and virtually ceased prior to maturation. Provision of feed in proportion to individual requirements (easing resource limitation) removed density dependence in growth and substantially reduced density dependence in mortality, thus indicating that 'bottom-up' effects act on growth as well as mortality, but most strongly on growth. Both growth and mortality played an important role in population regulation, with density-dependent growth having the greater impact on population biomass while mortality had the greatest impact on numbers. We demonstrate a clear ontogenic pattern of change in density-dependent processes within populations of a very small (maximum length 5 mm) fish, maintained in constant homogeneous laboratory conditions. The patterns are consistent with those distilled from studies on wild fish populations, indicating the presence of broad ontogenic patterns in density-dependent processes that are invariant to maximum body size and hold in homogeneous laboratory, as well as complex natural environments.  相似文献   

10.
A functional relationship between relative brain size and cognitive performance has been hypothesized. However, the influence of ontogenetic niche shifts on cognitive performance is not well understood. Increases in body size can affect niche use but distinguishing nonecologically relevant brain development from effects associated with ecology is difficult. If survival is enhanced by functional changes in ecocognitive performance over ontogeny, then brain size development should track ontogenetic shifts in ecology. We control for nonecologically relevant brain size development by comparing brain growth between two ecotypes of Pumpkinseed sunfish whose ecologies diverge over ontogeny from a shared juvenile niche. Brain size differs between ecotypes from their birth year onwards even though their foraging ecology appears to diverge at age 3. This finding suggests that the eco‐cognitive requirements of adult niches shape early life brain growth more than the requirements of juvenile ecology.  相似文献   

11.
Density‐dependent mortality in Pacific salmon: the ghost of impacts past?   总被引:5,自引:1,他引:4  
Conservation biologists often ignore density dependence because at‐risk populations are typically small relative to historical levels. However, if populations are reduced as a result of impacts that lower carrying capacity, then density‐dependent mortality may exist at low population abundances. Here, we explore this issue in threatened populations of juvenile chinook salmon (Oncorhynchus tshawytscha). We followed the fate of more than 50 000 juvenile chinook in the Snake River Basin, USA to test the hypothesis that their survival was inversely associated with juvenile density. We also tested the hypotheses that non‐indigenous brook trout and habitat quality affect the presence or strength of density dependence. Our results indicate that juvenile chinook suffer density‐dependent mortality and the strength of density dependence was greater in streams in which brook trout were absent. We were unable to detect an effect of habitat quality on the strength of density dependence. Historical impacts of humans have greatly reduced population sizes of salmon, and the density dependence we report may stem from a shortage of nutrients normally derived from decomposing salmon carcasses. Cohorts of juvenile salmon may experience density‐dependent mortality at population sizes far below historical levels and recovery of imperiled populations may be much slower than currently expected.  相似文献   

12.
Density‐dependent mortality has been recognized as an important mechanism that underpins tree species diversity, especially in tropical forests. However, few studies have attempted to explore how density dependence varies with spatial scale and even fewer have attempted to identify why there is scale‐dependent differentiation. In this study, we explore the elevational variation in density dependence. Three 1‐ha permanent plots were established at low and high elevations in the Heishiding subtropical forest, southern China. Using data from 1200 1 m2 seedling quadrats, comprising of 200 1 m2 quadrats located in each 1‐ha plot, we examined the variation in density dependence between elevations using a generalized linear mixed model with crossed random effects. A greenhouse experiment also investigated the potential effects of the soil biota on density‐dependent differentiation. Our results demonstrated that density‐dependent seedling mortality can vary between elevations in subtropical forests. Species found at a lower elevation suffered stronger negative density dependence than those found at a higher elevation. The greenhouse experiment indicated that two species that commonly occur at both elevations suffered more from soilborne pathogens during seed germination and seedling growth when they grew at the lower elevation, which implied that soil pathogens may play a crucial role in density‐dependent spatial variation.  相似文献   

13.
Early juvenile growth is a good indicator of growth later in life in many species because larger than average juveniles tend to have a competitive advantage. However, for migratory species the relationship between juvenile and adult growth remains obscure. We used scale analysis to reconstruct growth trajectories of migratory sea trout (Salmo trutta) from six neighbouring populations, and compared the size individuals attained in freshwater (before migration) with their subsequent growth at sea (after migration). We also calculated the coefficient of variation (CV) to examine how much body size varied across populations and life stages. Specifically, we tested the hypothesis that the CV on body size would differ between freshwater and marine environment, perhaps reflecting different trade-offs during ontogeny. Neighbouring sea trout populations differed significantly in time spent at sea and in age-adjusted size of returning adults, but not on size of seaward migration, which was surprisingly uniform and may be indicative of strong selection pressures. The CV on body size decreased significantly over time and was highest during the first 8 months of life (when juvenile mortality is highest) and lowest during the marine phase. Size attained in freshwater was negatively related to growth during the first marine growing season, suggesting the existence of compensatory growth, whereby individuals that grow poorly in freshwater are able to catch up later at sea. Analysis of 61 datasets indicates that negative or no associations between pre- and post-migratory growth are common amongst migratory salmonids. We suggest that despite a widespread selective advantage of large body size in freshwater, freshwater growth is a poor predictor of final body size amongst migratory fish because selection may favour growth heterochrony during transitions to a novel environment, and marine compensatory growth may negate any initial size advantage acquired in freshwater.  相似文献   

14.
Size at maturity in ectotherms commonly declines with warming. This near‐universal phenomenon, formalised as the temperature–size rule, has been observed in over 80% of tested species, from bacteria to fish. The proximate cause has been attributed to the greater temperature dependence of development rate than growth rate, causing individuals to develop earlier but mature smaller in the warm. However, few studies have examined the ontogenetic progression of the temperature–size response at high resolution. Using marine planktonic copepods, we experimentally determined the progression of the temperature–size response over ontogeny. Temperature–size responses were not generated gradually from egg to adult, contrary to the predictions of a naïve model in which development rate was assumed to be more temperature‐dependent than growth rate, and the difference in the temperature dependence of these two rates remained constant over ontogeny. Instead, the ontogenetic progression of the temperature–size response in experimental animals was highly episodic, indicating rapid changes in the extent to which growth and development rates are thermally decoupled. The strongest temperature–size responses occurred temporally mid‐way through ontogeny, corresponding with the point at which individuals reached between ~5 and 25% of their adult mass. Using the copepod Oithona nana, we show that the temperature‐dependence of growth rate varied substantially throughout ontogeny, whereas the temperature dependence of development rate remained constant. The temperature‐dependence of growth rate even exceeded that of development rate in some life stages, leading to a weakening of the temperature–size response. Our analyses of arthropod temperature–size responses from the literature, including crustaceans and insects, support these conclusions more broadly. Overall, our findings provide a better understanding of how the temperature–size rule is produced over ontogeny. Whereas we find support for the generality of developmental rate isomorphy in arthropods (shared temperature dependence of development rate across life stages), this concept appears not to apply to growth rates.  相似文献   

15.
The expansion of populations into new areas is dependent upon dispersal distances and the ability of colonists to find mates. These factors interact through the spatial distribution of individuals. We develop a mechanistic, spatially explicit model to investigate the interaction between dispersal distances and mate finding in expanding populations. At high dispersal distances and low mate finding abilities, population growth was constrained by the inverse density dependent inability of adults to find mates (an Allee effect). In contrast, at low dispersal distances and high mate finding abilities, growth was constrained by the density dependent inability of dispersers to find vacant territories. Population growth was highest in between these extremes. We suggest that these spatial interactions play an important role in the expansion of populations into new areas and that this methodology provides a useful tool for investigating them.  相似文献   

16.
1. Spatial heterogeneity in population density is predicted to have important effects on population characteristics, such as competition intensity and carrying capacity. Patchy breeding distributions will tend to increase spatial heterogeneity in population density, whereas dispersal from breeding patches will tend to decrease it. The potential for dispersal to homogenize densities is likely to differ both among organisms (e.g. plants vs. mobile animals) and throughout ontogeny (e.g. larvae vs. adults). However, for mobile organisms, experimental studies of the importance of breeding distributions from the wild are largely lacking. 2. In the present study, experimental manipulations replicated over eight natural streams and 2 years enabled us to test for effects of the distribution of Atlantic salmon eggs over spatial scales which are relevant to local interactions among individuals. Artificial nests were placed along 250 m study reaches at one of two levels of nest dispersion - patchy (two nests per stream) and dispersed (10 nests per stream) - while holding total egg density (eggs m(-2) stream area) constant. 3. Nest dispersion had significant effects on the spatial distribution of the resulting juveniles in their first summer. Patchy nest distributions resulted in a highly right-skewed frequency distribution of local under-yearling densities (among 25 m sampling sections), as sample sections adjacent to the nest sites had relatively high densities. In contrast, dispersed nest distributions yielded approximately normal density distributions. Sections with high relative densities in the patchy nest distribution treatments also had relatively small juvenile body sizes, and patchy egg distribution appeared to produce a higher redistribution of individuals from the first to the second juvenile growth season than the dispersed distribution. 4. Because patchy breeding distribution combined with limited early dispersal can create spatial variation in density over scales directly relevant for individual interactions, this will be one important component in determining mean levels of early juvenile competition and its spatial variation within populations. Assuming random or ideal-free distribution of individuals may therefore underestimate the mean level of density experienced by juveniles over surprisingly small spatial scales (orders of magnitude smaller than total spatial extent of populations), even for mobile organisms.  相似文献   

17.
Recent work incorporating demographic–genetic interactions indicates the importance of population size, gene flow, and selection in influencing local adaptation. This work typically assumes that density‐dependent survival affects individuals equally, but individuals in natural population rarely compete equally. Among‐individual differences in resource use generate stronger competition between more similar phenotypes (frequency‐dependent competition) but it remains unclear how this additional form of selection changes the interactions between population size, gene flow, and local stabilizing selection. Here, we integrate migration–selection dynamics with frequency‐dependent competition. We developed a coupled demographic‐quantitative genetic model consisting of two patches connected by dispersal and subject to local stabilizing selection and competition. Our model shows that frequency‐dependent competition slightly increases local adaptation, greatly increases genetic variance within patches, and reduces the amount that migration depresses population size, despite the increased genetic variance load. The effects of frequency‐dependence depend on the strength of divergent selection, trait heritability, and when mortality occurs in the life cycle in relation to migration and reproduction. Essentially, frequency‐dependent competition reduces the density‐dependent interactions between migrants and residents, the extent to which depends on how different and common immigrants are compared to residents. Our results add new dynamics that illustrate how competition can alter the effects of gene flow and divergent selection on local adaptation and population carrying capacities.  相似文献   

18.
Adaptive significance of maternal induction of density-dependent phenotypes   总被引:2,自引:0,他引:2  
Density has been demonstrated to impact life history traits such as growth, fecundity and survival. Some authors have proposed that morphological and behavioral traits have evolved in response to density conditions. To escape the adverse effect of density, individuals can either adapt to crowding or avoid crowding by dispersing. The aim of this work is to study the interplay between local adaptation and dispersal in four populations of the common lizard, Lacerta vivipara, where densities of both the maternal and juvenile environment have been experimentally manipulated. Density was decreased in the spring by removing a quarter of the population at two sites and was un-manipulated in two other sites. One month later, we caught some pregnant females and kept them in the laboratory until parturition. To manipulate density of postnatal neonates and juveniles, we divided each clutch into two, and released half of the juveniles either in a reduced density site or in a control one. We then recaptured individuals a year after release and recorded their size and weight. When density was reduced, females increased their clutch size, but produced offspring of lower body condition than in the control sites. The conspicuous ventral color of females was likewise increased when density was reduced. However, offspring growth rate, local survival and dispersal were not influenced by maternal density. Juvenile females released in the reduced-density site had lower survival rate than those released in the control density site. Contrary to expectations, offspring dispersal was significantly higher at the reduced compared to control density sites. There was no interaction between maternal density habitat and the juvenile release habitat indicating that maternal effects did not influence juvenile life history traits in a different way according to the level of density. Moreover, clutch size and offspring size had no effect on juvenile growth or survival.  相似文献   

19.
Dispersal is a factor of great importance in determining a species spatial distribution. Short distance dispersal (SDD) and long distance dispersal (LDD) strategies yield very different spatial distributions. In this paper we compare spatial spread patterns from SDD and LDD simulations, contrast them with patterns from field data, and assess the significance of biological and population traits. Simulated SDD spread using an exponential function generates a single circular patch with a well‐defined invasion front showing a travelling‐wave structure. The invasive spread is relatively slow as it is restricted to reproductive individuals occupying the outer zone of the circular patch. As a consequence of this dispersal dynamics, spread is slower than spread generated by LDD. In contrast, the early and fast invasion of the entire habitat mediated by power law LDD not only involves a significantly greater invasion velocity, but also an entirely different habitat occupation. As newly dispersed individuals soon reach very distant portions of the habitat as well as the vicinity of the original dispersal focus, new growing patches are generated while the main patch increases its own growth absorbing the closest patches. As a consequence of both dispersal and lower density dependence, growth of the occupied area is much faster than with SDD. SDD and LDD also differ regarding pattern generation. With SDD, fractal patterns appear only in the border of the invasion front in SDD when competitive interaction with residents is included. In contrast, LDD patterns show fractality both in the spatial arrangements of patches as well as in patch borders. Moreover, values of border fractal dimension inform on the dispersal process in relation with habitat heterogeneity. The distribution of patch size is also scale‐free, showing two power laws characteristic of small and large patch sizes directly arising from the dispersal and reproductive dynamics. Ecological factors like habitat heterogeneity are relevant for dispersal, although its importance is greater for SDD, lowering the invasion velocity. Among the life history traits considered, adult mortality, the juvenile bank and mean dispersal distance are the most relevant for SDD. For LDD, habitat heterogeneity and changes in life history traits are not so relevant, causing minor changes in the values of the scale‐free parameters. Our work on short and long distance dispersal shows novel theoretical differences between SDD and LDD in invasive systems (mechanisms of pattern formation, fractal and scaling properties, relevance of different life history traits and habitat variables) that correspond closely with field examples and were not analyzed, at least in this degree of detail, by the previously existing models.  相似文献   

20.
Understanding how multiple extrinsic (density‐independent) factors and intrinsic (density‐dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density‐dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) vs. density‐dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10‐year capture‐mark‐recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete‐time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type, and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density‐dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate‐driven environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号