首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
短杆菌肽A-DMPC通道内离子输运的分子动力学模拟   总被引:2,自引:0,他引:2  
用最近提出的构建膜体系初始构象的有效方法 ,构建了在DMPC脂膜环境下短杆菌肽A通道模型 (GA -DMPC)。通过对Na 、Ca2 、Cl-三种不同离子在GA -DMPC通道内不同位置的分子动力学模拟 ,研究离子在通道内输运过程中与通道及通道内水分子的相互作用 ,从分子动力学的角度阐明离子在通道内的输运机制。主要计算结果表明 :(1)离子在通道内的输运使GA的构象发生变化 ,GA的柔性是离子在通道内通透的重要因素 ;(2)Cl- 离子可扩大通道半径 ,Na 离子和Ca2 离子则减小通道半径。Cl-离子不能在GA通道内通透 ;(3)离子的出现使通道内水分子的偶极方向发生变化。上述结果均与实验相符。  相似文献   

2.
The ClC chloride channels control the ionic composition of the cytoplasm and the volume of cells, and regulate electrical excitability. Recently, it has been proposed that prokaryotic ClC channels are H+-Cl- exchange transporter. Although X-ray and molecular dynamics (MD) studies of bacterial ClC channels have investigated the filter open-close and ion permeation mechanism of channels, details have remained unclear. We performed MD simulations of ClC channels involving H+, Na+, K+, or H3O+ in the intracellular region to elucidate the open-close mechanism, and to clarify the role of H+ ion an H+-Cl- exchange transporter. Our simulations revealed that H+ and Na+ caused channel opening and the passage of Cl- ions. Na+ induced a bead-like string of Cl- -Na+-Cl--Na+-Cl- ions to form and permeate through ClC channels to the intracellular side with the widening of the channel pathway.  相似文献   

3.
Biophysical evidence has placed the binding site for the naturally occurring marine toxins tetrodotoxin (TTX) and saxitoxin (STX) in the external mouth of the Na+ channel ion permeation pathway. We developed a molecular model of the binding pocket for TTX and STX, composed of antiparallel beta-hairpins formed from peptide segments of the four S5-S6 loops of the voltage-gated Na+ channel. For TTX the guanidinium moiety formed salt bridges with three carboxyls, while two toxin hydroxyls (C9-OH and C10-OH) interacted with a fourth carboxyl on repeats I and II. This alignment also resulted in a hydrophobic interaction with an aromatic ring of phenylalanine or tyrosine residues for the brainII and skeletal Na+ channel isoforms, but not with the cysteine found in the cardiac isoform. In comparison to TTX, there was an additional interaction site for STX through its second guanidinium group with a carboxyl on repeat IV. This model satisfactorily reproduced the effects of mutations in the S5-S6 regions and the differences in affinity by various toxin analogs. However, this model differed in important ways from previously published models for the outer vestibule and the selectivity region of the Na+ channel pore. Removal of the toxins from the pocket formed by the four beta-hairpins revealed a structure resembling a funnel that terminated in a narrowed region suitable as a candidate for the selectivity filter of the channel. This region contained two carboxyls (Asp384 and Glu942) that substituted for molecules of water from the hydrated Na+ ion. Simulation of mutations in this region that have produced Ca2+ permeation of the Na+ channel created a site with three carboxyls (Asp384, Glu942, and Glu1714) in proximity.  相似文献   

4.
Single channel and whole cell recordings were used to study ion permeation through Ca channels in isolated ventricular heart cells of guinea pigs. We evaluated the permeability to various divalent and monovalent cations in two ways, by measuring either unitary current amplitude or reversal potential (Erev). According to whole cell measurements of Erev, the relative permeability sequence is Ca2+ greater than Sr2+ greater than Ba2+ for divalent ions; Mg2+ is not measurably permeant. Monovalent ions follow the sequence Li+ greater than Na+ greater than K+ greater than Cs+, and are much less permeant than the divalents. These whole cell measurements were supported by single channel recordings, which showed clear outward currents through single Ca channels at strong depolarizations, similar values of Erev, and similar inflections in the current-voltage relation near Erev. Information from Erev measurements stands in contrast to estimates of open channel flux or single channel conductance, which give the sequence Na+ (85 pS) greater than Li+ (45 pS) greater than Ba2+ (20 pS) greater than Ca2+ (9 pS) near 0 mV with 110-150 mM charge carrier. Thus, ions with a higher permeability, judged by Erev, have lower ion transfer rates. In another comparison, whole cell Na currents through Ca channels are halved by less than 2 microM [Ca]o, but greater than 10 mM [Ca]o is required to produce half-maximal unitary Ca current. All of these observations seem consistent with a recent hypothesis for the mechanism of Ca channel permeation, which proposes that: ions pass through the pore in single file, interacting with multiple binding sites along the way; selectivity is largely determined by ion affinity to the binding sites rather than by exclusion by a selectivity filter; occupancy by only one Ca ion is sufficient to block the pore's high conductance for monovalent ions like Na+; rapid permeation by Ca ions depends upon double occupancy, which only becomes significant at millimolar [Ca]o, because of electrostatic repulsion or some other interaction between ions; and once double occupancy occurs, the ion-ion interaction helps promote a quick exit of Ca ions from the pore into the cell.  相似文献   

5.
A Ca(2+)-blockable monovalent cation channel is present in the apical membrane of the ectoderm of the gastrulating chick embryo. We used the patch clamp technique to study several single-channel permeation properties of this channel. In symmetrical conditions without Ca2+, the Na+ current carried by the channel rectifies inwardly. The channel has an apparent dissociation constant for extracellular Na+ of 115 mM at 0 mV and a low density of negative surface charge (-0.03 e/nm2) at its extracellular entrance. The minimal pore diameter is approximately 5.8 A, as calculated from the relative permeabilities of 10 small organic cations. Extracellular application of six large organic cations decreased the inward Na+ current in a voltage-dependent manner, which strongly suggests an intrachannel block. The presence of at least two ion binding sites inside the pore is inferred from the Na+ dependence of the block by the organic cations. This hypothesis is strengthened by the fact that the extracellular Ca2+ block is also modified by the Na+ concentration. In particular, the rise of the unblocking rate with increased Na+ concentrations clearly suggests the presence of an interaction between Ca2+ and Na+ inside the channel. A low probability of double occupancy at physiological ionic conditions is implied from the absence of an anomalous mole fraction effect with mixtures of extracellular Li+ and K+. Finally, the absence of inward current at very strong hyperpolarizations and in the presence of 10 mM extracellular Ca2+ demonstrates the absence of significant Ca2+ current through this channel. It is argued that this embryonic epithelial Ca(2+)-blockable monovalent cation channel is related to both L-type Ca2+ channel and cyclic nucleotide-gated channels.  相似文献   

6.
The mucosal-to-serosal and serosal-to-mucosal fluxes of Na+ and Cl- were carried out in control and experimental groups treated with different doses of heat-labile enterotoxin in the presence or absence of Ca2+-ionophore, Ca2+ channel blocker and calmodulin inhibitor. There was net secretion of Na+ and Cl- in 16 and 32 units of heat-labile enterotoxin treated groups in comparison to net absorption in control group, however, in animals treated with 8 units of heat-labile enterotoxin, no change in Na+ and Cl- fluxes was found when compared to control. Ca2+- ionophore increased net secretion of Na+ and Cl- in 16 and 32 units of heat-labile enterotoxin treated groups and also caused secretion in control group instead of net absorption. Ca2+ channel blocker and calmodulin inhibitor partially reversed the effect of heat-labile enterotoxin. The effect of Ca2+-ionophore was more pronounced in the control group while that of Ca2+ channel blocker and calmodulin inhibitor was more pronounced in 16 and 32 units of heat-labile enterotoxin treated groups. The findings suggest the involvement of Ca2+ and calmodulin in the action of heat-labile enterotoxin of Escherichia coli in mice.  相似文献   

7.
The conduction properties of individual physiologically important cations Na+, K+, Mg2+, and Ca2+ were determined in the slowly activating (SV) channel of sugar beet vacuoles. Current-voltage relationships of the open channel were measured on excised tonoplast patches in a continuous manner by applying a +/-140 mV ramp-wave protocol. Applying KCl gradients of either direction across the patch we have determined that the relative Cl- to K+ permeability was < or =1%. Symmetrical increase of the concentration of tested cation caused an increase of the single channel conductance followed by saturation. Fitting of binding isotherms at zero voltage to the Michaelis-Menten equation resulted in values of maximal conductance of 300, 385, 18, and 13 pS, and of apparent dissociation constants of 64, 103, 0.04, and 0.08 mm for Na+, K+, Mg2+, and Ca2+, respectively. Deviations from the single-ion occupancy mechanism are documented, and alternative models of permeation are discussed. The magnitude of currents carried by divalent cations at low concentrations can be explained by an unrealistically wide (approximately 140 A) radius of the pore entrance. We propose instead a fixed negative charge in the pore vestibules, which concentrates the cations in their proximity. The conduction properties of the SV channel are compared with reported characteristics of voltage-dependent Ca2+-permeable channels, and consequences for a possible reduction of postulated multiplicity of Ca2+ pathways across the tonoplast are drawn.  相似文献   

8.
9.
Na+ permeation through normal and batrachotoxin (BTX)-modified squid axon Na+ channels was characterized. Unmodified and toxin-modified Na+ channels were studied simultaneously in outside-out membrane patches using the cut-open axon technique. Current-voltage relations for both normal and BTX-modified channels were measured over a wide range of Na+ concentrations and voltages. Channel conductance as a function of Na+ concentration curves showed that within the range 0.015-1 M Na+ the normal channel conductance is 1.7-2.5-fold larger than the BTX-modified conductance. These relations cannot be fitted by a simple Langmuir isotherm. Channel conductance at low concentrations was larger than expected from a Michaelis-Menten behavior. The deviations from the simple case were accounted for by fixed negative charges located in the vicinity of the channel entrances. Fixed negative charges near the pore mouths would have the effect of increasing the local Na+ concentration. The results are discussed in terms of energy profiles with three barriers and two sites, taking into consideration the effect of the fixed negative charges. Either single- or multi-ion pore models can account for all the permeation data obtained in both symmetric and asymmetric conditions. In a temperature range of 5-15 degrees C, the estimated Q10 for the conductance of the BTX-modified Na+ channel was 1.53. BTX appears not to change the Na+ channel ion selectively (for the conditions used) or the surface charge located near the channel entrances.  相似文献   

10.
Calcium channel activity is crucial for many fundamental physiological processes ranging from the heart beat to synaptic transmission. The channel-forming protein, of about 2000 amino acids, comprises four domains internally homologous to each other. Voltage-dependent Ca2+ channels are the most selective ion channels known. Under physiological conditions, they prefer Ca2+ over Na+ by a ratio of about 1000:1. To explain at the same time the exquisite ion selectivity and the large Ca2+ ion turnover rate of Ca2+ channels (approximately 3 x 10(6) ions/s), two kind models have been proposed. In one, the conduction pathway possesses two high-affinity binding sites. When two Ca2+ ions are bound to each site, the mutual repulsion between them speeds the exit rate for the ions, causing greater ion permeation through the pore. The second model hypothesizes the existence of a single site having a charged structure able to attract multiple, interacting ions, simultaneously. Recent studies that combine mutagenesis and electrophysiology show that the high-affinity binding site is formed by a ring of glutamate residues located in the pore forming region of the Ca2+ channel. As proposed in the second class of models, the results suggest that four glutamate residues, one glutamate donated by each repeat, combine to form a single high-affinity site. In this review the different conduction models for Ca2+ channels are discussed and confronted with structural data.  相似文献   

11.
The unidirectional fluxes of Na+, Cl- and Ca2+ and activities of calmodulin in the intestinal microvillar core were studied in Escherichia coli heat-stable enterotoxin-treated mice. There was net secretion of Na+ and Cl- in toxin-treated animals, while in control animals there was net absorption of these ions. In both control and experimental animals, there was net absorption of Ca2+; however, the absorption was significantly higher (P less than 0.01) in experimental animals when compared to controls. In the presence of Ca2+-ionophore, there was a net secretion of Na+ and Cl- in controls, while the Ca2+-ionophore could not cause any change in the fluxes of these ions in experimental animals. The activity of calmodulin was significantly higher (P less than 0.01) in experimental animals. Verapamil, a calcium channel blocker, and trifluoperazine, a calmodulin inhibitor, reversed the effects of Ca2+-ionophore and heat-stable enterotoxin. These studies demonstrate that the toxin acts through Ca2+-calmodulin, and secretion of Na+ and Cl- in experimental animals is due to an increase in calcium absorption and an increase in calmodulin activity in the intestinal microvillar core.  相似文献   

12.
We tested the hypothesis that an arginine-rich region immediately following the second transmembrane domain may constitute part of the inner mouth of the epithelial Na+ channel (ENaC) pore and, hence, influence conduction and/or selectivity properties of the channel by expressing double point mutants in Xenopus oocytes. Double point mutations of arginines in this post-M2 region of the human alpha-ENaC (alpha-hENaC) led to a decrease and increase in the macroscopic conductance of alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, respectively, but had no effect on the single-channel conductance of either double point mutant. However, the apparent equilibrium dissociation constant for Na+ was decreased for both alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, and the maximum amiloride-sensitive Na+ current was decreased for alphaR586E,R587Ebetagamma-hENaC and increased for alphaR589E,R591Ebetagamma-hENaC. The relative permeabilities of Li+ and K+ vs. Na+ were increased 11.25- to 27.57-fold for alphaR586E,R587Ebetagamma-hENaC compared with wild type. The relative ion permeability of these double mutants and wild-type ENaC was inversely related to the crystal diameter of the permeant ions. Thus the region of positive charge is important for the ion permeation properties of the channel and may form part of the pore itself.  相似文献   

13.
The recently published crystal structure of the Cx26 gap junction channel provides a unique opportunity for elucidation of the structure of the conductive connexin pore and the molecular determinants of its ion permeation properties (conductance, current-voltage [I-V] relations, and charge selectivity). However, the crystal structure was incomplete, most notably lacking the coordinates of the N-terminal methionine residue, which resides within the pore, and also lacking two cytosolic domains. To allow computational studies for comparison with the known channel properties, we completed the structure. Grand canonical Monte Carlo Brownian dynamics (GCMC/BD) simulations of the completed and the published Cx26 hemichannel crystal structure indicate that the pore is too narrow to permit significant ion flux. The GCMC/BD simulations predict marked inward current rectification and almost perfect anion selectivity, both inconsistent with known channel properties. The completed structure was refined by all-atom molecular dynamics (MD) simulations (220 ns total) in an explicit solvent and POPC membrane system. These MD simulations produced an equilibrated structure with a larger minimal pore diameter, which decreased the height of the permeation barrier formed by the N terminus. GCMC/BD simulations of the MD-equilibrated structure yielded more appropriate single-channel conductance and less anion/cation selectivity. However, the simulations much more closely matched experimentally determined I-V relations when the charge effects of specific co- and posttranslational modifications of Cx26 previously identified by mass spectrometry were incorporated. We conclude that the average equilibrated structure obtained after MD simulations more closely represents the open Cx26 hemichannel structure than does the crystal structure, and that co- and posttranslational modifications of Cx26 hemichannels are likely to play an important physiological role by defining the conductance and ion selectivity of Cx26 channels. Furthermore, the simulations and data suggest that experimentally observed heterogeneity in Cx26 I-V relations can be accounted for by variation in co- and posttranslational modifications.  相似文献   

14.
ABSTRACT: BACKGROUND: In Gallus gallus, eggshell formation takes place daily in the hen uterus and requires large amounts of the ionic precursors for calcium carbonate (CaCO3). Both elements (Ca2+, HCO3-) are supplied by the blood via trans-epithelial transport. Our aims were to identify genes coding for ion transporters that are upregulated in the uterine portion of the oviduct during eggshell calcification, compared to other tissues and other physiological states, and incorporate these proteins into a general model for mineral transfer across the tubular gland cells during eggshell formation. RESULTS: A total of 37 candidate ion transport genes were selected from our database of overexpressed uterine genes associated with eggshell calcification, and by analogy with mammalian transporters. Their uterine expression was compared by qRTPCR in the presence and absence of eggshell formation, and with relative expression levels in magnum (low Ca2+/HCO3- movement) and duodenum (high rates of Ca2+/HCO3- trans-epithelial transfer). We identified overexpression of eleven genes related to calcium movement: the TRPV6 Ca2+ channel (basolateral uptake of Ca2+), 28 kDa calbindin (intracellular Ca2+ buffering), the endoplasmic reticulum type 2 and 3 Ca2+ pumps (ER uptake), and the inositol trisphosphate receptors type 1, 2 and 3 (ER release). Ca2+ movement across the apical membrane likely involves membrane Ca2+ pumps and Ca2+/Na+ exchangers. Our data suggests that Na+ transport involved the SCNN1 channel and the Na+/Ca2+ exchangers SLC8A1, 3 for cell uptake, the Na+/K+ ATPase for cell output. K+ uptake resulted from the Na+/K+ ATPase, and its output from the K+ channels (KCNJ2, 15, 16 and KCNMA1).We propose that the HCO3- is mainly produced from CO2 by the carbonic anhydrase 2 (CA2) and that HCO3- is secreted through the HCO3-/Cl- exchanger SLC26A9. HCO3- synthesis and precipitation with Ca2+ produce two H+. Protons are absorbed via the membrane's Ca2+ pumps ATP2B1, 2 in the apical membrane and the vacuolar (H+)-atpases at the basolateral level. Our model incorporate Cl- ions which are absorbed by the HCO3-/Cl- exchanger SLC26A9 and by Cl- channels (CLCN2, CFTR) and might be extruded by Cl-/H+ exchanger (CLCN5), but also by Na+ K+ 2 Cl- and K+ Cl- cotransporters. CONCLUSIONS: Our Gallus gallus uterine model proposes a large list of ion transfer proteins supplying Ca2+ and HCO3- and maintaining cellular ionic homeostasis. This avian model should contribute towards understanding the mechanisms and regulation for ionic precursors of CaCO3, and provide insight in other species where epithelia transport large amount of calcium or bicarbonate.  相似文献   

15.
16.
N-methyl-D-aspartate (NMDA) receptor channels in cultured CA1 hippocampal neurons were studied using patch-clamp techniques. The purpose of the research was to determine the occupancy of the channel by permeant cations and to determine the influence of charged residues in or near the pore. The concentration dependence of permeability ratios, the mole-fraction dependence of permeability ratios, the concentration dependence of the single-channel conductance, and a single-channel analysis of Mg2+ block all independently indicated that the NMDA receptor behaves as a singly-occupied channel. More precisely, there is one permeant cation at a time occupying the site or sites that are in the narrow region of the pore directly in the permeation pathway. Permeability-ratio measurements in mixtures of monovalent and divalent cations indicated that local charges in or near the pore do not produce a large local surface potential in physiologic solutions. In low ionic strength solutions, a local negative surface potential does influence the ionic environment near the pore, but in normal physiologic solutions the surface potential appears too small to significantly influence ion permeation. The results indicate that the mechanism for the high Ca2+ conductance of the NMDA receptor channel is not the same as for the voltage-dependent Ca2+ channel (VDCC). The VDCC has two high affinity, interacting binding sites that provide high Ca2+ selectivity and conductance. The binding site of the NMDA receptor is of lower affinity. Therefore, the selectivity for Ca2+ is not as high, but the lower affinity of binding provides a faster off rate so that interacting sites are not required for high conductance.  相似文献   

17.
To understand the mechanisms of Na(+)/Li(+) permeation at submicromolar Ca(2+) concentrations, Na(+)/Li(+) blocking at higher Ca(2+) concentrations (10(-6)-10(-4) M) and Ca(2+) permeation at millimolar Ca(2+) concentrations, we used our recently described L-type calcium channel model. For this purpose, we obtained potential of mean force (pmf) curves for the position change of one Na(+) and one Ca(2+) ion inside the channel and for the position change of a second Ca(2+) ion when the EEEE locus is coordinated to Ca(2+). The pmf curves suggest that (i) at submicromolar Ca(2+) concentrations, because of the low velocity of Ca(2+) entry in the channel, monovalent ion flux occurs; (ii) at Ca(2+) concentrations between 10(-6) and 10(-4) M, thermodynamic equilibrium between the channel and Ca(2+) is achieved; as the coordination of Ca(2+) with the locus is more favorable than the coordination of Na(+), the monovalent ion flux is blocked; and (iii) to put a second Ca(2+) ion inside the channel at an appropriate rate, the Ca(2+) concentration should reach millimolar levels. Nevertheless, the entry of a second Ca(2+) is thermodynamically unfavorable, indicating that the competition of two Ca(2+) ions for the locus leads to Ca(2+) permeation.  相似文献   

18.
R MacKinnon  R Latorre  C Miller 《Biochemistry》1989,28(20):8092-8099
This paper demonstrates that local electric fields originating from negatively charged groups on a K+-specific ion channel modify its behavior. Single high-conductance, Ca2+-activated K+ channels were studied in neutral phospholipid bilayers. The channel protein surface charges were manipulated experimentally by carboxyl group esterification using trimethyloxonium (TMO) or by electrolyte screening. Three channel properties--ion conduction, ion blockade, and voltage-dependent gating--are affected by surface electrostatics. Negative charges increase the affinity of cationic pore blockers by establishing a local negative potential at the pore entrance; these charges modify channel gating by establishing a potential gradient across the ion channel; finally, both effects influence ion permeation through the pore.  相似文献   

19.
Voltage-sensitive sodium channels and calcium channels are homologous proteins with distinctly different selectivity for permeation of inorganic cations. This difference in function is specified by amino acid residues located within P-region segments that link presumed transmembrane elements S5 and S6 in each of four repetitive Domains I, II, III, and IV. By analyzing the selective permeability of Na+, K+, and Ca2+ in various mutants of the mu 1 rat muscle sodium channel, the results in this paper support the concept that a conserved motif of four residues contributed by each of the Domains I-IV, termed the DEKA locus in sodium channels and the EEEE locus in calcium channels, determines the ionic selectivity of these channels. Furthermore, the results indicate that the Lys residue in Domain III of the sodium channel is the critical determinant that specifies both the impermeability of Ca2+ and the selective permeability of Na+ over K+. We propose that the alkylammonium ion of the Lys(III) residue acts as an endogenous cation within the ion binding site/selectivity filter of the sodium channel to tune the kinetics and affinity of inorganic cation binding within the pore in a manner analogous to ion-ion interactions that occur in the process of multi-ion channel conduction.  相似文献   

20.
Ligand-gated ion channel receptors mediate neuronal inhibition or excitation depending on their ion charge selectivity. An investigation into the determinants of ion charge selectivity of the anion-selective alpha1 homomeric glycine receptor (alpha1 glycine receptor [GlyR]) was undertaken using point mutations to residues lining the extra- and intracellular ends of the ion channel. Five mutant GlyRs were studied. A single substitution at the intracellular mouth of the channel (A-1'E GlyR) was sufficient to convert the channels to select cations over anions with P(Cl)/P(Na) = 0.34. This result delimits the selectivity filter and provides evidence that electrostatic interactions between permeating ions and pore residues are a critical factor in ion charge selectivity. The P-2'Delta mutant GlyR retained its anion selectivity (P(Cl)/P(Na) = 3.81), but it was much reduced compared with the wild-type (WT) GlyR (P(Cl)/P(Na) = 27.9). When the A-1'E and the P-2'Delta mutations were combined (selectivity double mutant [SDM] GlyR), the relative cation permeability was enhanced (P(Cl)/P(Na) = 0.13). The SDM GlyR was also Ca(2+) permeable (P(Ca)/P(Na) = 0.29). Neutralizing the extracellular mouth of the SDM GlyR ion channel (SDM+R19'A GlyR) produced a more Ca(2+)-permeable channel (P(Ca)/P(Na) = 0.73), without drastically altering monovalent charge selectivity (P(Cl)/P(Na) = 0.23). The SDM+R19'E GlyR, which introduces a negatively charged ring at the extracellular mouth of the channel, further enhanced Ca(2+) permeability (P(Ca)/P(Na) = 0.92), with little effect on monovalent selectivity (P(Cl)/P(Na) = 0.19). Estimates of the minimum pore diameter of the A-1'E, SDM, SDM+R19'A, and SDM+R19'E GlyRs revealed that these pores are larger than the alpha1 GlyR, with the SDM-based GlyRs being comparable in diameter to the cation-selective nicotinic acetylcholine receptors. This result provides evidence that the diameter of the ion channel is also an important factor in ion charge selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号