首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
By oxymetry and electron paramagnetic resonance (EPR), we investigated the effects of repeated anoxia/re-oxygenation (A/R) periods on the respiration and production of free radicals by synoviocytes (rabbit HIG-82 cell line and primary equine synoviocytes) and equine articular chondrocytes. Three periods of 20 min anoxia followed by re-oxygenation were applied to 10(7)cells; O(2) consumption was measured before anoxia and after each re-oxygenation. After the last A/R, cellular free radical formation was investigated by EPR spectroscopy with spin trapping technique (n=3 for each cell line). Both types of synoviocytes showed a high O(2) consumption, which was slowered after anoxia. By EPR with the spin trap POBN, we proved a free radical formation. Results were similar for equine and rabbit synoviocytes. For chondrocytes, we observed a low O(2) consumption, unchanged by anoxia, and no free radical production. These observations suggest an oxidant activity of synoviocytes, potentially important for the onset of osteoarthritis.  相似文献   

2.
Recent evidence suggests the possibility that enhanced inactivation of endothelium-derived nitric oxide (NO) by oxygen free radical (OFR) may cause endothelial dysfunction in heart failure (HF). To test this hypothesis, we examined the effect of antioxidant therapy on endothelium-dependent vasodilation of the coronary circulation in a canine model of tachycardia-induced HF. Endothelium-dependent vasodilation was less than that in controls, and OFR formation in coronary arterial and myocardial tissues was greater in HF dogs than those in controls. The immunohistochemical staining of 4-hydroxy-2-nonenal, OFR-induced lipid peroxides was detected in coronary microvessels of HF dogs. Intracoronary infusion of the cell-permeable OFR scavenger Tiron inhibited OFR formation and improved endothelium-dependent vasodilation in HF dogs but not in controls. The NO synthesis inhibitor N(G)-monomethyl-L-arginine (L-NMMA) diminished the beneficial effect of Tiron in HF dogs. Endothelium-independent vasodilation was similar between control and HF dogs, and no change in its response was noted by Tiron or Tiron plus L-NMMA in either group. In summary, antioxidant treatment with Tiron improved coronary vascular endothelium-dependent vasodilation by increasing NO activity in tachycardia-induced HF. Thus coronary endothelial dysfunction in HF may be, at least in part, due to increased inactivation of NO by OFR.  相似文献   

3.
The enzyme ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides, the precursors for DNA. RNR requires a thiyl radical to activate the substrate. In RNR of eukaryotes (class Ia RNR), this radical originates from a tyrosyl radical formed in reaction with oxygen (O(2)) and a ferrous di-iron center in RNR. The crucian carp (Carassius carassius) is one of very few vertebrates that can tolerate several months completely without oxygen (anoxia), a trait that enables this fish to survive under the ice in small ponds that become anoxic during the winter. Previous studies have found indications of cell division in this fish after 7 days of anoxia. This appears nearly impossible, as DNA synthesis requires the production of new deoxyribonucleotides and therefore active RNR. We have here characterized RNR in crucian carp, to search for adaptations to anoxia. We report the full-length sequences of two paralogs of each of the RNR subunits (R1i, R1ii, R2i, R2ii, p53R2i and p53R2ii), obtained by cloning and sequencing. The mRNA levels of these subunits were measured with quantitative PCR and were generally well maintained in hypoxia and anoxia in heart and brain. We also report maintained or increased mRNA levels of the cell division markers proliferating cell nuclear antigen (PCNA), brain derived neurotrophic factor (BDNF) and Ki67 in anoxic hearts and brains. Electron paramagnetic resonance (EPR) measurements on in vitro expressed crucian carp R2 and p53R2 proteins gave spectra similar to mammalian RNRs, including previously unpublished human and mouse p53R2 EPR spectra. However, the radicals in crucian carp RNR small subunits, especially in the p53R2ii subunit, were very stable at 0°C. A long half-life of the tyrosyl radical during wintertime anoxia could allow for continued cell division in crucian carp.  相似文献   

4.
Korkisha OV  Ruuge EK 《Biofizika》2000,45(4):695-699
The generation of superoxide radicals by isolated rat heart mitochondria was studied by the spin trapping technique. The sample was placed into the cavity of an EPR spectrometer in a thin-wall teflon capillary tube, which made it possible to maintain the partial oxygen pressure in the mitochondrial suspension at a constant level. Tiron was used as a spin trap, and the intensity of its EPR signal corresponded to the rate of O2-. formation in the sample. The addition of oxidation substrates (succinate, glutamate, and malate) into the incubation mixture caused the appearance of the Tiron EPR signal. The rate of superoxide radical generation by heart mitochondria strongly increased in the presence of antimycin A, an inhibitor of the Q-cycle in complex III of the respiratory chain, but it was completely depressed by another inhibitor of Q-cycle myxothiazol. The inhibition of the reverse electron transport in complex I of the respiratory chain by rotenone (oxidation substrate--succinate) caused a substantial decrease in the rate of O2-. formation by mitochondria.  相似文献   

5.
There has been considerable controversy regarding the role of oxygen free radicals as important mediators of cell damage in reperfused myocardium. This controversy regards whether superoxide and hydroxyl free radicals are generated on reperfusion and if these radicals actually cause impaired contractile function. In this study, EPR studies using the spin trap 5,5-dimethyl-1-pyroline-n-oxide (DMPO) demonstrate the formation of .OH and R. free radicals in the reperfused heart. EPR signals of DMPO-OH, aN = aH = 14.9 G, and DMPO-R aN = 15.8 G aH = 22.8 G are observed, with peak concentrations during the first minute of reperfusion. It is demonstrated that these radicals are derived from .O2- since reperfusion in the presence of enzymatically active recombinant human superoxide dismutase markedly reduced the formation of these signals while inactive recombinant human superoxide dismutase had no effect. On reperfusion with perfusate pretreated to remove adventitial iron, the concentration of the DMPO-OH signal was increased 2-fold and a 4-fold decrease in the DMPO-R signal was observed demonstrating that iron-mediated Fenton chemistry occurs. Hearts reperfused with recombinant human superoxide dismutase exhibited improved contractile function in parallel with the marked reduction in measured free radicals. In order to determine if the reperfusion free radical burst results in impaired contractile function, simultaneous measurements of free radical generation and contractile function were performed. A direct relationship between free radical generation and subsequent impaired contractile function was observed. These studies suggest that superoxide derived .OH and R. free radicals are generated in the reperfused heart via Fenton chemistry. These radicals appear to be key mediators of myocardial reperfusion injury.  相似文献   

6.
In endothelium, NO is derived from endothelial NO synthase (eNOS)-mediated L-arginine oxidation. Endogenous guanidinomethylated arginines (MAs), including asymmetric dimethylarginine (ADMA) and NG-methyl-L-arginine (L-NMMA), are released in cells upon protein degradation and are competitive inhibitors of eNOS. However, it is unknown whether intracellular MA concentrations reach levels sufficient to regulate endothelial NO production. Therefore, the dose-dependent effects of ADMA and L-NMMA on eNOS function were determined. Kinetic studies demonstrated that the Km for L-arginine is 3.14 microM with a Vmax of 0.14 micromol mg-1 min-1, whereas Ki values of 0.9 microM and 1.1 microM were determined for ADMA and L-NMMA, respectively. EPR studies of NO production from purified eNOS demonstrated that, with a physiological 100 microM level of L-arginine, MA levels of >10 microM were required for significant eNOS inhibition. Dose-dependent inhibition of NO formation in endothelial cells was observed with extracellular MA concentrations as low 5 microm. Similar effects were observed in isolated vessels where 5 microm ADMA inhibited vascular relaxation to acetylcholine. MA uptake studies demonstrated that ADMA and L-NMMA accumulate in endothelial cells with intracellular levels greatly exceeding extracellular concentrations. L-arginine/MA ratios were correlated with cellular NO production. Although normal physiological levels of MAs do not significantly inhibit NOS, a 3- to 9-fold increase, as reported under disease conditions, would exert prominent inhibition. Using a balloon model of vascular injury, approximately 4-fold increases in cellular MAs were observed, and these caused prominent impairment of vascular relaxation. Thus, MAs are critical mediators of vascular dysfunction following vascular injury.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder leading to loss of motor neurons. We previously characterized the enhanced peroxidative activity of the human familial ALS (FALS) mutants of copper-zinc superoxide dismutase (CuZnSOD) A4V and G93A in vitro. Here, a similar activity is demonstrated for human FALS CuZnSOD mutants in an in vivo model system, the yeast Saccharomyces cerevisiae. Spin trap adducts of alpha-(pyridyl-4-N-oxide)-N-tert-butylnitrone (POBN) have been measured by electron paramagnetic resonance (EPR) in yeast expressing mutant (A4V, L38V, G93A, and G93C) and wild type CuZnSOD upon addition of hydrogen peroxide to the culture. The trapped radical is a hydroxyethyl adduct of POBN, identified by spectral parameters. Mutant CuZnSODs produced greater concentrations of the trapped adduct compared to the wild type enzyme. This observation provides evidence for an oxidative radical mechanism, whereby the mutants of CuZnSOD catalyze the formation of reactive oxygen species that may be related to the development or progression of FALS. This study also presents an in vivo model system to study free radical production in FALS-associated CuZnSOD mutations.  相似文献   

8.
 The effect of Tiron (disodium 1,2-dihydroxybenzene-3,5-disulfonate) on the growth, morphology and alkaloid content of adventitious roots in Atropa belladonna was investigated. High concentrations of Tiron had an inhibitory effect on growth of the root. The appearance of cultured roots was significantly changed from rough roots accompanied with callus-like tissue in control cultures to fine roots without callus formation. Alkaloid content was drastically increased by the addition of 1 mM Tiron to the medium. The influence of NAA, which has an inhibitory effect on alkaloid production, was partially restored by Tiron treatment, indicating that this radical scavenger may affect the production of alkaloids through modulation of the mode of action of auxin. Glutathione content of the root was not influenced by Tiron. Received: 3 June 1999 / Revision received: 28 September 1999 / Accepted: 30 September 1999  相似文献   

9.
Several studies have demonstrated that glucose deprivation, combined either with anoxia or with the inhibition of oxidative phosphorylation, leads to the development of ischemic tolerance in neurons. The aim of our experiments was to investigate whether similar effects could be achieved by transient energy deprivation without either anoxia or the inhibition of the electron transfer chain. Preconditioning was carried out by incubating primary rat cortical neuronal cultures for 3, 6 or 9 h in a glucose- and amino acid-free balanced salt solution supplemented with B27 in normoxic conditions. After 24 h, neuronal cultures were exposed to oxygen-glucose deprivation, glutamate or hydrogen peroxide. Cell viability was measured 24 h after the lethal insults. Potential mechanisms that can influence free radical production were also examined. Energy deprivation protected neuronal cells against lethal stimuli (e.g. cell survival after oxygen-glucose deprivation was 33.1 +/- 0.52% in the untreated group and 80.1 +/- 1.27% in the 9-h energy deprivation group), reduced mitochondrial membrane potential, decreased free radical formation, attenuated the intracellular free calcium surge upon glutamate receptor stimulation, and resulted in an elevated level of GSH. Our findings show that transient energy deprivation induces delayed preconditioning and prevents oxidative injuries and neuronal cell death.  相似文献   

10.
Generation of superoxide by purified brain nitric oxide synthase.   总被引:39,自引:0,他引:39  
Brain nitric oxide synthase (NOS), which utilizes NADPH and calcium/calmodulin as cofactors for metabolizing L-arginine to nitric oxide (NO) and L-citrulline, contains recognition sites for the flavins FAD and FMN. Using a spin-trapping technique combined with electron spin resonance spectroscopy, we report that brain NOS generates superoxide O2-. in a calcium/calmodulin-dependent manner. The "specific inhibitors" of NOS, NG-monomethyl L-arginine (L-NMMA), and NG-nitro-L-arginine methyl ester (L-NAME), have different effects on O2-. generation. For L-NMMA, O2-. production is unaffected, while for L-NAME, inhibition of this free radical is concentration-dependent.  相似文献   

11.
Peroxide-generated tyrosyl radicals in both prostaglandin H synthase (PGHS) isozymes have been demonstrated to couple the peroxidase and cyclooxygenase activities by serving as the immediate oxidant for arachidonic acid (AA) in cyclooxygenase catalysis. Acetylation of Ser-530 of PGHS-1 by aspirin abolishes all oxygenase activity and transforms the peroxide-induced tyrosyl radical from a functional 33-35-gauss (G) wide doublet/wide singlet to a 26-G narrow singlet unable to oxidize AA. In contrast, aspirin-treated PGHS-2 (ASA-PGHS-2) no longer forms prostaglandins but retains oxygenase activity forming 11(R)- and 15(R)-hydroperoxyeicosatetraenoic acid and also retains the EPR line-shape of the native peroxide-induced 29-30-G wide singlet radical. To evaluate the functional role of the wide singlet radical in ASA-PGHS-2, we have examined the ability of this radical to oxidize AA in single-turnover EPR studies. Anaerobic addition of AA to ASA-PGHS-2 immediately after formation of the wide singlet radical generated either a 7-line EPR signal similar to the pentadienyl AA radical obtained in native PGHS-2 or a 26-28-G singlet radical. These EPR signals could be accounted for by a pentadienyl radical and a strained allyl radical, respectively. Experiments using 11d-AA, 13(R)d-AA, 15d-AA, 13,15d(2)-AA, and octadeuterated AA (d(8)-AA) confirmed that the unpaired electron in the pentadienyl radical is delocalized over C11, C13, and C15. A 6-line EPR radical was observed when 16d(2)-AA was used, indicating only one strongly interacting C16 hydrogen. These results support a functional role for peroxide-generated tyrosyl radicals in lipoxygenase catalysis by ASA-PGHS-2 and also indicate that the AA radical in ASA-PGHS-2 is more constrained than the corresponding radical in native PGHS-2.  相似文献   

12.
Severe dietary Mg restriction (Mg(9), 9% of recommended daily allowance [RDA], plasma Mg = 0.25 mM) induces a pro-inflammatory neurogenic response in rats (substance P [SP]), and the associated increases in oxidative stress in vivo and cardiac susceptibility to ischemia/reperfusion (I/R) injury were previously shown to be attenuated by SP receptor blockade and antioxidant treatment. The present study assessed if less severe dietary Mg restriction modulates the extent of both the neurogenic/oxidative responses in vivo and I/R injury in vitro. Male Sprague-Dawley rats maintained on Mg(40) (40% RDA, plasma Mg = 0.6 mM) or Mg(100) (100% RDA, plasma Mg = 0.8 mM) diets were assessed for plasma SP levels (CHEM-ELISA) during the first 3 weeks and were compared with the Mg(9) group; red blood cell (RBC) glutathione and plasma malondialdehyde levels were compared at 3 weeks in Mg(9), Mg(20) (plasma Mg = 0.4 mM), Mg(40), and Mg(100) rats; and 40-min global ischemia/30-min reperfusion hearts from 7-week-old Mg(20), Mg(40), and Mg(100) rats were compared with respect to functional recovery (cardiac work, and diastolic, systolic, and developed pressures), tissue LDH release, and free radical production (ESR spectroscopy and alpha-phenyl-N-tert butylnitrone [PBN; 3 mM] spin trapping). The Mg(40) diet induced smaller elevations in plasma SP (50% lower) compared with Mg(9), but with a nearly identical time course. RBC glutathione and plasma malondialdehyde levels revealed a direct relationship between the severity of oxidative stress and hypomagnesemia. The dominant lipid free radical species detected in all I/R groups was the alkoxyl radical (PBN/alkoxyl: alpha(H) = 1.93 G, alpha(N) = 13.63 G); however, Mg(40) and Mg(20) hearts exhibited 2.7- and 3.9-fold higher alkoxyl levels, 40% and 65% greater LDH release, and lower functional recovery (Mg(20) < Mg(40)) compared with Mg(100). Our data suggest that varying dietary Mg intake directly influences the magnitude of the neurogenic/oxidative responses in vivo and the resultant myocardial tolerance to I/R stress.  相似文献   

13.
-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent -(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

14.
Thiobacillus ferrooxidans cells grown on ferrous iron oxidized sulfite to sulfate at pH 3, possibly by a free radical mechanism involving iron and cytochrome oxidase. A purely chemical system with low concentrations of Fe3+ simulated the T. ferrooxidans system. Metal chelators, ethylenediamine tetraacetic acid (EDTA), 4,5-dihydroxy-1-3-benzene disulfonic acid (Tiron), o-phenanthroline, and 2,2'-dipyridyl, inhibited both sulfite oxidation systems, but the T. ferrooxidans system was inhibited only after the initial brief oxygen consumption. EDTA and Tiron, strong chelators of Fe3+, inhibited the oxidation at lower concentrations than o-phenanthroline and 2,2'-dipyridyl, strong chelators of Fe2+. Inhibition of Fe3+-catalyzed sulfite oxidation by EDTA and Tiron was instant, but the inhibition by o-phenanthroline and dipyridyl was briefly delayed, presumably for the reduction of Fe3+ to Fe2+. Mannitol, a free radical scavenger, inhibited both systems to the same extent. Cyanide and azide inhibited only the T. ferrooxidans system, suggesting a role of cytochrome oxidase. It is proposed that sulfite is oxidized by a free radical mechanism initiated by Fe3+ on the cell surface of T. ferrooxidans. Cytochrome oxidase is possibly involved in the regeneration of Fe3+ from Fe2+ by the normal Fe2+-oxidizing system of T. ferrooxidans.  相似文献   

15.
《Free radical research》2013,47(3-6):337-342
The purpose of this study was to use electron paramagnetic resonance (EPR) spectroscopy to determine if ibuprofen, [2–(4-isobutylphenyl) propanoic acid], a potent nonsterodial anti-inflammatory agent, could modify hydroxyl radicals generation in vim. Ibuprofen (IBU; 0.1–50 mM) in water or water alone was added to EPR tubes containing ferrous sulfate (0.5–2.0mM). and either 5.5-dimethyl-l-pyrroline-N-oxide (DMPO; 40mM) or a-phenyl N-tert-butyl nitrone (PBN; 48 mM). Hydrogen peroxide (l mM) was added to inititate the Fenton reaction, and the systems were then analyzed by EPR spectroscopy to determine the type and relative quantity of free radical(s) produced. IBU caused a dose-dependent decrease of signal intensity of the hydroxyl radical adduct of DMPO (DMPO-OH) which is an indication that IBU either scavenges the hydroxyl radical and/or chelates iron. In addition, other radicals (presumably IBU radicals) produced in these systems were trapped by both DMPO (aN = 16.1G, aHβ = 24.0G) and PBN (aN = 15.7G. aHβ = 4.4G and aN = 17.0G, aHβ = 2.1 G). The signal height of these IBU radicals increased in systems containing ferrous sulfate (l mM), hydrogen peroxide (lmM), PBN (48mM), and increasing IBU concentrations. Therefore. we conclude that IBU scavenges the hydroxyl radical. If IBU chelated iron, then less hydroxyl radicals would be generated, less IBU radicals formed and the signal height of IBU radicals trapped by PBN would have decreased. However, these data do not fully exclude the possiblity that IBU may, to some extent. also chelate iron. Scavenging of hydroxyl radicals may be one of the mechanisms responsible for the beneficial action of IBU during the management of several rheumatic diseases. However, the IBU radicals produced when IBU scavenges hydroxyl radicals are reactive. and may be associated with the reported toxicity of this therapeutic agent.  相似文献   

16.
Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression.  相似文献   

17.
《Free radical research》2013,47(4):255-265
α-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent α-(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

18.
We recently published electron paramagnetic resonance (EPR) spin trapping results that demonstrated the enzymatic reduction of sulfur mustard sulfonium ions to carbon-based free radicals using an in vitro system containing sulfur mustard, cytochrome P450 reductase, NADPH, and the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) in buffer (A.A. Brimfield et al., 2009, Toxicol. Appl. Pharmacol. 234:128-134). Carbon-based radicals have been shown to reduce molecular oxygen to form superoxide and, subsequently, peroxyl and hydroxyl radicals. In some cases, such as with the herbicide paraquat, a cyclic redox system results, leading to magnified oxygen free radical concentration and sustained tissue damage. Low mustard carbon radical concentrations recorded by EPR in our in vitro system, despite a robust (4.0mM) sulfur mustard starting concentration, led us to believe a similar oxygen reduction and redox cycling process might be involved with sulfur mustard. A comparison of the rate of mustard radical-POBN adduct formation in our in vitro system by EPR at atmospheric and reduced oxygen levels indicated a sixfold increase in 4-POBN adduct formation (0.5 to 3.0 μM) at the reduced oxygen concentration. That result suggested competition between oxygen and POBN for the available carbon-based mustard radicals. In parallel experiments we found that the oxygen radical-specific spin trap 5-tert-butoxycarbonyl-5-methylpyrroline-N-oxide (BMPO) detected peroxyl and hydroxyl radicals directly when it was used in place of POBN in the in vitro system. Presumably these radicals originated from O(2) reduced by carbon-based mustard radicals. We also showed that reactive oxygen species (ROS)-BMPO EPR signals were reduced or eliminated when mustard carbon radical production was impeded by systematically removing system components, indicating that carbon radicals were a necessary precursor to ROS production. ROS EPR signals were completely eliminated when superoxide dismutase and catalase were included in the complete in vitro enzymatic system, providing additional proof of oxygen radical participation. The redox cycling hypothesis was supported by density functional theory calculations and frontier molecular orbital analysis.  相似文献   

19.
The clinical use of the widely used anticancer drug doxorubicin is limited by a dose-dependent cardiotoxicity. Doxorubicin can be reduced to its semiquinone free radical form by nitric oxide synthases (NOS). The release of lactate dehydrogenase (LDH) from doxorubicin-treated neonatal cardiac rat myocytes was used as a model of doxorubicin-induced cardiotoxicity. The NOS inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) and N(G)-monomethyl-L-arginine (L-NMMA) protected myocytes from doxorubicin as did their non-inhibitory enantiomers D-NAME and D-NMMA. Thus, these agents did not protect by inhibiting NOS. L-NAME, which does not act at the reductase domain of NOS, also had no effect on the production of the doxorubicin semiquinone by myocytes. Nitric oxide (NO) EPR spin trapping experiments showed that L-NAME reacted with various biological reducing agents to produce NO. Ascorbic acid was highly effective in reacting with L-NAME to produce NO, while glutathione, NADPH, and NADH were much less effective. Thus, these guanadino-substituted analogs of L-arginine likely protected through their ability to slowly produce NO by reaction with intracellular ascorbic acid. Thus, some caution must be exercised in their use. NO may exert its protective effects either by directly acting as an antioxidant or through some other NO-dependent pathway.  相似文献   

20.
Coenzyme B(12)-dependent 2-methyleneglutarate mutase from the strict anaerobe Eubacterium barkeri catalyzes the equilibration of 2-methyleneglutarate with (R)-3-methylitaconate. Proteins with mutations in the highly conserved coenzyme binding-motif DXH(X)(2)G(X)(41)GG (D483N and H485Q) exhibited decreased substrate turnover by 2000-fold and >4000-fold, respectively. These findings are consistent with the notion of H485 hydrogen-bonded to D483 being the lower axial ligand of adenosylcobalamin in 2-methyleneglutarate mutase. (E)- and (Z)-2-methylpent-2-enedioate and all four stereoisomers of 1-methylcyclopropane-1,2-dicarboxylate were synthesized and tested, along with acrylate, with respect to their inhibitory potential. Acrylate and the 2-methylpent-2-enedioates were noninhibitory. Among the 1-methylcyclopropane-1,2-dicarboxylates only the (1R,2R)-isomer displayed weak inhibition (noncompetitive, K(i) = 13 mM). Short incubation (5 min) of 2-methyleneglutarate mutase with 2-methyleneglutarate under anaerobic conditions generated an electron paramagnetic resonance (EPR) signal (g(xy) approximately 2.1; g(z) approximately 2.0), which by analogy with the findings on glutamate mutase from Clostridium cochlearium [Biochemistry, 1998, 37, 4105-4113] was assigned to cob(II)alamin coupled to a carbon-centered radical. At longer incubation times (>1 h), inactivation of the mutase occurred concomitant with the formation of oxygen-insensitive cob(II)alamin (g(xy) approximately 2.25; g(z) approximately 2.0). In order to identify the carbon-centered radical, various (13)C- and one (2)H-labeled substrate/product molecules were synthesized. Broadening (0.5 mT) of the EPR signal around g = 2.1 was observed only when C2 and/or C4 of 2-methyleneglutarate was labeled. No effect on the EPR signals was seen when [5'-(13)C]adenosylcobalamin was used as coenzyme. The inhibition and EPR data are discussed in the context of the addition-elimination and fragmentation-recombination mechanisms proposed for 2-methyleneglutarate mutase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号