首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Facilitated diffusion along nontarget DNA is employed by numerous DNA-interactive proteins to locate specific targets. Until now, the biological significance of DNA scanning has remained elusive. T4 endonuclease V is a DNA repair enzyme which scans nontarget DNA and processively incises DNA at the site of pyrimidine dimers which are produced by exposure to ultraviolet (UV) light. In this study we tested the hypothesis that there exists a direct correlation between the degree of processivity of wild type and mutant endonuclease V molecules and the degree of enhanced UV resistance which is conferred to repair-deficient Eshcerichia coli. This was accomplished by first creating a series of endonuclease V mutants whose in vitro catalytic activities were shown to be very similar to that of the wild type enzyme. However, when the mechanisms by which these enzymes search nontarget DNA for its substrate were analyzed in vitro and in vivo, the mutants displayed varying degrees of nontarget DNA scanning ranging from being nearly as processive as wild type to randomly incising dimers within the DNA population. The ability of these altered endonuclease V molecules to enhance UV survival in DNA repair-deficient E. coli then was assessed. The degree of enhanced UV survival was directly correlated with the level of facilitated diffusion. This is the first conclusive evidence directly relating a reduction of in vivo facilitated diffusion with a change in an observed phenotype. These results support the assertion that the mechanisms which DNA-interactive proteins employ in locating their target sites are of biological significance.  相似文献   

2.
The process by which DNA-interactive proteins locate specific sequences or target sites on cellular DNA within Escherichia coli is a poorly understood phenomenon. In this study, we present the first direct in vivo analysis of the interaction of a DNA repair enzyme, T4 endonuclease V, and its substrate, pyrimidine dimer-containing plasmid DNA, within UV-irradiated E. coli. A pyrimidine dimer represents a small target site within large domains of DNA. There are two possible paradigms by which endonuclease V could locate these small target sites: a processive mechanism in which the enzyme "scans" DNA for dimer sites or a distributive process in which dimers are located by random three-dimensional diffusion. In order to discriminate between these two possibilities in E. coli, an in vivo DNA repair assay was developed to study the kinetics of plasmid DNA repair and the dimer frequency (i.e. the number of dimer sites on a given plasmid molecule) in plasmid DNA as a function of time during repair. Our results demonstrate that the overall process of plasmid DNA repair initiated by T4 endonuclease V (expressed from a recombinant plasmid within repair-deficient E. coli) occurs by a processive mechanism. Furthermore, by reducing the temperature of the repair incubation, the endonuclease V-catalyzed incision step has been effectively decoupled from the subsequent steps including repair patch synthesis, ligation, and supercoiling. By this manipulation, it was determined that the overall processive mechanism is composed of two phases: a rapid processive endonuclease V-catalyzed incision reaction, followed by a slower processive mechanism, the ultimate product of which is the dimer-free supercoiled plasmid molecule.  相似文献   

3.
C Nickell  M A Prince  R S Lloyd 《Biochemistry》1992,31(17):4189-4198
Facilitated one-dimensional diffusion is a general mechanism utilized by several DNA-interactive proteins as they search for their target sites within large domains of nontarget DNA. T4 endonuclease V is a protein which scans DNA in a nonspecifically bound state and processively incises DNA at ultraviolet (UV)-induced pyrimidine dimer sites. An electrostatic contribution to this mechanism of target location has been established. Previous studies indicate that a decrease in the affinity of endonuclease V for nontarget DNA results in a decreased ability to scan DNA and a concomitant decrease in the ability to enhance UV survival in repair-deficient Escherichia coli. This study was designed to question the contrasting effect of an increase in the affinity of endonuclease V for nontarget DNA. With this as a goal, a gradient of increasingly basic amino acid content was created along a proposed endonuclease V-nontarget DNA interface. This incremental increase in positive charge correlated with the stepwise enhancement of nontarget DNA binding, yet inversely correlated with enhanced UV survival in repair-deficient E. coli. Further analysis suggests that the observed reduction in UV survival is consistent with the hypothesis that enhanced nontarget DNA affinity results in reduced pyrimidine dimer-specific recognition and/or binding. The net effect is a reduction in the efficiency of pyrimidine dimer incision.  相似文献   

4.
Endonuclease V of bacteriophage T4 possesses two enzymatic activities, a DNA N-glycosylase specific for cyclobutane pyrimidine dimers (CBPD) and an associated apurinic/apyrimidinic (AP) lyase. Extensive structural and functional studies of endonuclease V have revealed that specific amino acids are associated with these two activities. Controversy still exists regarding the role of the aromatic amino acid stretch close to the carboxyl terminus, in particular the tryptophan at position 128. We have expressed wild-type and mutant W128S endonuclease V in Escherichia coli from an inducible tac promoter. Purified W128S endonuclease V demonstrated substantially decreased N-glycosylase (approximately 5-fold) and AP lyase (10- to 20-fold) activities in vitro compared to the wild-type enzyme when a UV-irradiated poly(dA)-poly(dT) substrate was used. However, a much smaller difference in AP lyase activity between the two forms was observed with a site-specific abasic oligonucleotide. The difference in enzymatic activity was qualitatively, but not quantitatively, reflected in the survival of UV-irradiated bacteria, that is the W128S cells were slightly less UV resistant than wild-type cells. No difference was observed in the complementation of UV repair using UV-damaged denV- T4 phage. A more pronounced difference between the wild-type and W128S proteins was observed in human xeroderma pigmentosum group A cells by host-cell reactivation of a UV-irradiated reporter gene. The relatively large discrepancy between the in vitro and in vivo results observed with bacteria may be because saturated levels of DNA repair are obtained in vivo with relatively low levels of endonuclease V. However, under limiting in vitro conditions and in human cells in vivo a considerable difference between the W128S mutant and wild-type endonuclease V activities can be detected. Our results demonstrate that tryptophan-128 is important for endonuclease V activity.  相似文献   

5.
Endonuclease IV of Escherichia coli has been implicated by genetic studies in the repair of DNA damage caused by the antitumor drug bleomycin, but the lesion(s) recognized by this enzyme in vivo have not been identified. We used the sensitive primer activation assay, which monitors the formation of 3'-OH groups that support in vitro synthesis by E.coli DNA polymerase I, to determine whether endonuclease IV-specific damage could be detected in the chromosomal DNA of cells lacking the enzyme after in vivo treatment with bleomycin. Chromosomal DNA isolated after a 1 h bleomycin treatment from wild-type, endonuclease IV-deficient (nfo-) and endonuclease IV-overproducing (p-nfo; approximately 10-fold) strains all supported modest polymerase activity. However, in vitro treatment with purified endonuclease IV activated subsequent DNA synthesis with samples from the nfo- strain (an average of 2.6-fold), to a lesser extent for samples from wild-type cells (2.1-fold), and still less for the p-nfo samples (1.5-fold). This pattern is consistent with the presence of unrepaired damage that correlates inversely with the in vivo activity of endonuclease IV. Incubation of the DNA from bleomycin-treated nfo- cells with polymerase and dideoxynucleoside triphosphates lowered the endonuclease IV-independent priming activity, but did not affect the amount of activation seen after endonuclease IV treatment. Primer activation with DNA from the nfo- strain could also be obtained with purified E.coli exonuclease III in vitro, but a quantitative comparison demonstrated that endonuclease IV was > or = 5-fold more active in this assay. Thus, endonuclease IV-specific damage can be detected after in vivo exposure to bleomycin. These may be 2-deoxy-pentos-4-ulose residues, but other possibilities are discussed.  相似文献   

6.
Polyclonal antibodies have been raised against endonuclease V from the bacteriophage T4. This rabbit serum, from which endemic E. coli antibodies have been removed, reacts with a single protein from T4-infected E. coli with a molecular weight of 16078 dalton. It was confirmed that these antibodies were directed against endonuclease V through the inhibition of the pyrimidine dimer specific nicking activity of endonuclease V in an in vitro nicking assay. A phage lambda gt11 T4 dC DNA library was screened for phage which produced a beta-galactosidase-endonuclease V fusion protein. Immunopositive clones were detected at a frequency of 0.25% of the plaques in the library. Restriction enzyme analyses of the DNA from 45 of these phage showed that all contained a 1.8 kb T4 EcoRI fragment which had been inserted within lambda gt11 in a single orientation. Western analysis of proteins which were produced from an induction of lysogens made from these phage reveals a single fusion protein band with a molecular weight slightly larger than native beta-galactosidase.  相似文献   

7.
Eco KI, a type I restriction enzyme, specifies DNA methyltransferase, ATPase, endonuclease and DNA translocation activities. One subunit (HsdR) of the oligomeric enzyme contributes to those activities essential for restriction. These activities involve ATP-dependent DNA translocation and DNA cleavage. Mutations that change amino acids within recognisable motifs in HsdR impair restriction. We have used an in vivo assay to monitor the effect of these mutations on DNA translocation. The assay follows the Eco KI-dependent entry of phage T7 DNA from the phage particle into the host cell. Earlier experiments have shown that mutations within the seven motifs characteristic of the DEAD-box family of proteins that comprise known or putative helicases severely impair the ATPase activity of purified enzymes. We find that the mutations abolish DNA translocation in vivo. This provides evidence that these motifs are relevant to the coupling of ATP hydrolysis to DNA translocation. Mutations that identify an endonuclease motif similar to that found at the active site of type II restriction enzymes and other nucleases have been shown to abolish DNA nicking activity. When conservative changes are made at these residues, the enzymes lack nuclease activity but retain the ability to hydrolyse ATP and to translocate DNA at wild-type levels. It has been speculated that nicking may be necessary to resolve the topological problems associated with DNA translocation by type I restriction and modification systems. Our experiments show that loss of the nicking activity associated with the endonuclease motif of Eco KI has no effect on ATPase activity in vitro or DNA translocation of the T7 genome in vivo.  相似文献   

8.
A DNA methyltransferase was isolated from a eucaryotic, Chlorella-like green alga infected with the virus PBCV-1. The enzyme recognized the sequence GATC and methylated deoxyadenosine solely in GATC sequences. Host DNA, which contains GATC sequences, but not PBCV-1 DNA, which contains GmATC sequences, was a good substrate for the enzyme in vitro. The DNA methyltransferase activity was first detected about 1 h after viral infection; PBCV-1 DNA synthesis and host DNA degradation also began at about this time. The appearance of the DNA methyltransferase activity required de novo protein synthesis, and the enzyme was probably virus encoded. Methylation of DNAs with the PBCV-1-induced methyltransferase conferred resistance of the DNAs to a PBCV-1-induced restriction endonuclease enzyme described previously (Y. Xia, D. E. Burbank, L. Uher, D. Rabussay, and J. L. Van Etten, Mol. Cell. Biol. 6:1430-1439). We propose that the PBCV-1-induced methyltransferase protects viral DNA from the PBCV-1-induced restriction endonuclease and is part of a virus-induced restriction and modification system in PBCV-1-infected Chlorella cells.  相似文献   

9.
Liu G  Ou HY  Wang T  Li L  Tan H  Zhou X  Rajakumar K  Deng Z  He X 《PLoS genetics》2010,6(12):e1001253
Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation) were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(3)2 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631) leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16-28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.  相似文献   

10.
DNA was extracted from rat liver of non-irradiated animals, and was irradiated in vitro, and from animals which received whole body doses of X-radiation. Sedimentation on neutral and alkaline sucrose gradients as well as measurements of 32P release after sequential treatment with endonuclease and alkaline phosphatase and determination of triphosphate incorporation after the sequential treatment with endonuclease, alkaline phosphatase and DNA polymerase indicated that DNA irradiated in vivo and in vitro were effective substrates for the mammalian repair endonuclease. The experiments suggest that in addition to strand breaks, X-radiation causes base damage and they have provided a plausible explanation for the formation of double strand breaks in DNA irradiated in vivo.  相似文献   

11.
In contrast to many type II restriction enzymes, dimeric proteins that cleave DNA at individual recognition sites 4-6 bp long, the SfiI endonuclease is a tetrameric protein that binds to two copies of an elongated sequence before cutting the DNA at both sites. The mode of action of the SfiI endonuclease thus seems more appropriate for DNA rearrangements than for restriction. To elucidate its biological function, strains of Escherichia coli expressing the SfiI restriction-modification system were transformed with plasmids carrying SfiI sites. The SfiI system often failed to restrict the survival of a plasmid with one SfiI site, but plasmids with two or more sites were restricted efficiently. Plasmids containing methylated SfI sites were not restricted. No rearrangements of the plasmids carrying SfiI sites were detected among the transformants. Hence, provided the target DNA contains at least two recognition sites, SfiI displays all of the hallmarks of a restriction-modification system as opposed to a recombination system in E. coli cells. The properties of the system in vivo match those of the enzyme in vitro. For both restriction in vivo and DNA cleavage in vitro, SfiI operates best with two recognition sites on the same DNA.  相似文献   

12.
An enzyme was isolated from a eucaryotic, Chlorella-like green alga infected with the virus PBCV-1 which exhibits type II restriction endonuclease activity. The enzyme recognized the sequence GATC and cleaved DNA 5' to the G. Methylation of deoxyadenosine in the GATC sequence inhibited enzyme activity. In vitro the enzyme cleaved host Chlorella nuclear DNA but not viral DNA because host DNA contains GATC and PBCV-1 DNA contains GmATC sequences. PBCV-1 DNA is probably methylated in vivo by the PBCV-1-induced methyltransferase described elsewhere (Y. Xia and J. L. Van Etten, Mol. Cell. Biol. 6:1440-1445). Restriction endonuclease activity was first detected 30 to 60 min after viral infection; the appearance of enzyme activity required de novo protein synthesis, and the enzyme is probably virus encoded. Appearance of enzyme activity coincided with the onset of host DNA degradation after PBCV-1 infection. We propose that the PBCV-1-induced restriction endonuclease participates in host DNA degradation and is part of a virus-induced restriction and modification system in PBCV-1-infected Chlorella cells.  相似文献   

13.
Chromatin high mobility group protein I (HMG-I) is a mammalian nonhistone protein that has been demonstrated both in vitro and in vivo to preferentially bind to A.T-rich sequences of DNA. Recently the DNA-binding domain peptide that specifically mediates the in vitro interaction of high mobility group protein (HMG)-I with the narrow minor groove of A.T-DNA has been experimentally determined. Because of its predicted secondary structure, the binding domain peptide has been called "the A.T hook" motif. Previously we demonstrated that the A.T hook of murine HMG-I protein is specifically phosphorylated by purified mammalian cdc2 kinase in vitro and that the same site(s) are also phosphorylated in vivo in metaphase-arrested cells. We also found that the DNA binding affinity of short synthetic binding domain peptides phosphorylated in vitro by cdc2 kinase was significantly reduced compared with unphosphorylated peptides. Here we extend these findings to intact natural and recombinant HMG-I proteins. We report that the affinity of binding of full-length HMG-I proteins to A.T-rich sequences is highly dependent on ionic conditions and that phosphorylation of intact proteins by cdc2 kinase reduces their affinity of in vitro binding to A.T-DNA by about 20-fold when assayed near normal mammalian physiological salt concentrations. Furthermore, in cell synchronization studies, we demonstrated that murine HMG-I proteins are phosphorylated in vivo in a cell cycle-dependent manner on the same amino acid residues modified by purified cdc2 kinase in vitro. Together these results strongly support the assertion that HMG-I proteins are natural substrates for mammalian cdc2 kinase in vivo and that their cell cycle-dependent phosphorylation by this enzyme(s) significantly modulates their DNA binding affinity, thereby possibly altering their biological function(s).  相似文献   

14.
Endonuclease V of bacteriophage T4 has been described as an enzyme, coded for by the denV gene, that incises UV-irradiated DNA. It has recently been proposed that incision of irradiated DNA by this enzyme and the analogous "correndonucleases" I and II of Micrococcus luteus requires the sequential action of a pyrimidine dimer-specific DNA glycosylase and an apyrimidinic/apurinic endonuclease. In support of this two-step mechanism, we found that our preparations of T4 endonuclease V contained a DNA glycosylase activity that produced alkali-labile sites in irradiated DNA and an apyrimidinic/apurinic endonuclease activity that converted these sites to nicks. Both activities could be detected in the presence of 10 mM EDTA. In experiments designed to determine which of the activities is coded by the denV gene, we found that the glycosylase was more heat labile in extracts of Escherichia coli infected with either of two thermosensitive denV mutants than in extracts of cells infected with wild-type T4. In contrast, apyrimidinic/apurinic endonuclease activity was no more heat labile in extracts of the former than in extracts of the latter. Our results indicate that the denV gene codes for a DNA glycosylase specific for pyrimidine dimers.  相似文献   

15.
The SinI DNA methyltransferase, a component of the SinI restriction-modification system, recognizes the sequence GG(A/T)CC and methylates the inner cytosine to produce 5-methylcytosine. Previously isolated relaxed-specificity mutants of the enzyme also methylate, at a lower rate, GG(G/C)CC sites. In this work we tested the capacity of the mutant enzymes to function in vivo as the counterpart of a restriction endonuclease, which can cleave either site. The viability of Escherichia coli cells carrying recombinant plasmids with the mutant methyltransferase genes and expressing the GGNCC-specific Sau96I restriction endonuclease from a compatible plasmid was investigated. The sau96IR gene on the latter plasmid was transcribed from the araBAD promoter, allowing tightly controlled expression of the endonuclease. In the presence of low concentrations of the inducer arabinose, cells synthesizing the N172S or the V173L mutant enzyme displayed increased plating efficiency relative to cells producing the wild-type methyltransferase, indicating enhanced protection of the cell DNA against the Sau96I endonuclease. Nevertheless, this protection was not sufficient to support long-term survival in the presence of the inducer, which is consistent with incomplete methylation of GG(G/C)CC sites in plasmid DNA purified from the N172S and V173L mutants. Elevated DNA ligase activity was shown to further increase viability of cells producing the V173L variant and Sau96I endonuclease.  相似文献   

16.
The ability of HeLa DNA polymerases to carry out DNA synthesis from incisions made by various endodeoxyribonucleases which recognize or form baseless sites in DNA was examined. DNA polymerase beta carried out limited strand displacement synthesis from 3'-hydroxyl nucleotide termini made by HeLa apurinic/apyrimidinic (AP) endonuclease II at the 5'-side of apurinic sites. Escherichia coli endonuclease III incises at the 3'-side of apurinic sites to produce nicks with 3'-deoxyribose termini which did not efficiently support DNA synthesis with beta-polymerase. However, these nicks could be activated to support limited DNA synthesis by HeLa AP endonuclease II, an enzyme which removes the baseless sugar phosphate from the 3'-termini, thus creating a one-nucleotide gap. With dGTP as the only nucleoside triphosphate present, the beta-polymerase catalyzed one-nucleotide DNA repair synthesis from those gaps which lacked dGMP. In contrast, HeLa DNA polymerase alpha was unreactive with all of the above incised DNA substrates. Larger patches of DNA synthesis were produced by nick translation from one-nucleotide gaps with HeLa DNA polymerase beta and HeLa DNase V. Moreover, incisions made by E. coli endonuclease III were activated to support DNA synthesis by the DNase V which removed the 3'-deoxyribose termini. HeLa DNase V also stimulated both the rate and extent of DNA synthesis by DNA polymerase beta from AP endonuclease II incisions. In this case the baseless sugar phosphate was removed from the 5'-termini, and nick translational synthesis occurred. Complete DNA excision repair of pyrimidine dimers was achieved with the beta-polymerase, DNase V, and DNA ligase from incisions made in UV-irradiated DNA by T4 UV endonuclease and HeLa AP endonuclease II. Such incisions produce a one-nucleotide gap containing 3'-hydroxyl nucleotide and 5'-thymine: thymidylate cyclobutane dimer termini. DNase V removes pyrimidine dimers primarily as a dinucleotide and then promotes nick translational DNA synthesis.  相似文献   

17.
The intron-encoded proteins bI4 RNA maturase and aI4 DNA endonuclease can be faithfully expressed in yeast cytoplasm from engineered forms of their mitochondrial coding sequences. In this work we studied the relationships between these two activities associated with two homologous intron-encoded proteins: the bI4 RNA maturase encoded in the fourth intron of the cytochrome b gene and the aI4 DNA endonuclease (I-SceII) encoded in the fourth intron of the gene coding for the subunit I of cytochrome oxidase. Taking advantage of both the high recombinogenic properties of yeast and the similarities between the two genes, we constructed in vivo a family of hybrid genes carrying parts of both RNA maturase and DNA endonuclease coding sequences. The presence of a sequence coding for a mitochondrial targeting peptide upstream from these hybrid genes allowed us to study the properties of their translation products within the mitochondria in vivo. We thus could analyze the ability of the recombinant proteins to complement RNA maturase deficiencies in different strains. Many combinations of the two parental intronic sequences were found in the recombinants. Their structural and functional analysis revealed the following features. (i) The N-terminal half of the bI4 RNA maturase could be replaced in total by its equivalent from the aI4 DNA endonuclease without affecting the RNA maturase activity. In contrast, replacing the C-terminal half of the bI4 RNA maturase with its equivalent from the aI4 DNA endonuclease led to a very weak RNA maturase activity, indicating that this region is more differentiated and linked to the maturase activity. (ii) None of the hybrid proteins carrying an RNA maturase activity kept the DNA endonuclease activity, suggesting that the latter requires the integrity of the aI4 protein. These observations are interesting because the aI4 DNA endonuclease is known to promote the propagation, at the DNA level, of the aI4 intron, whereas the bI4 RNA maturase, which is required for the splicing of its coding intron, also controls the splicing process of the aI4 intron. We propose a scenario for the evolution of these intronic proteins that relies on a switch from DNA endonuclease to RNA maturase activity.  相似文献   

18.
The recognition sequence for the dam methylase of Escherichia coli K12 has been determined directly by use of in vivo methylated ColE1 DNA or DNA methylated in vitro with purified enzyme. The methylase recognizes the symmetric tetranucleotide d(pG-A-T-C) and introduces two methyl groups per site in duplex DNA with the product of methylation being 6-methylaminopurine. This work has also demonstrated that Dpn I restriction endonuclease cleaves on the 3' side of the modified adenine within the methylated sequence to yield DNA fragments possessing fully base-paired termini. All sequences in ColE1 DNA methylated by the dam enzyme are subject to double strand cleavage by Dpn I endonuclease. Therefore, this restriction enzyme can be employed for mapping the location of sequences possessing the dam modification.  相似文献   

19.
Micrococcus luteus UV endonuclease incises DNA at the sites of ultraviolet (UV) light-induced pyrimidine dimers. The mechanism of incision has been previously shown to be a glycosylic bond cleavage at the 5'-pyrimidine of the dimer followed by an apyrimidine endonuclease activity which cleaves the phosphodiester backbone between the pyrimidines. The process by which M. luteus UV endonuclease locates pyrimidine dimers within a population of UV-irradiated plasmids was shown to occur, in vitro, by a processive or "sliding" mechanism on non-target DNA as opposed to a distributive or "random hit" mechanism. Form I plasmid DNA containing 25 dimers per molecule was incubated with M. luteus UV endonuclease in time course reactions. The three topological forms of plasmid DNA generated were analyzed by agarose gel electrophoresis. When the enzyme encounters a pyrimidine dimer, it is significantly more likely to make only the glycosylase cleavage as opposed to making both the glycosylic and phosphodiester bond cleavages. Thus, plasmids are accumulated with many alkaline-labile sites relative to single-stranded breaks. In addition, reactions were performed at both pH 8.0 and pH 6.0, in the absence of NaCl, as well as 25,100, and 250 mM NaCl. The efficiency of the DNA scanning reaction was shown to be dependent on both the ionic strength and pH of the reaction. At low ionic strengths, the reaction was shown to proceed by a processive mechanism and shifted to a distributive mechanism as the ionic strength of the reaction increased. Processivity at pH 8.0 is shown to be more sensitive to increases in ionic strength than reactions performed at pH 6.0.  相似文献   

20.
Apurinic/apyrimidinic (AP) endonucleases play a major role in the repair of AP sites, oxidative damage and alkylation damage in DNA. We employed Saccharomyces cerevisiae in an unbiased forward genetic screen to identify amino acid substitutions in the major yeast AP endonuclease, Apn1, that impair cellular DNA repair capacity by conferring sensitivity to the DNA alkylating agent methyl methanesulfonate. We report here the identification and characterization of the Apn1 V156E amino acid substitution mutant through biochemical and functional analysis. We found that steady state levels of Apn1 V156E were substantially decreased compared to wild type protein, and that this decrease was due to more rapid degradation of mutant protein compared to wild type. Based on homology to E. coli endonuclease IV and computational modeling, we predicted that V156E impairs catalytic ability. However, overexpression of mutant protein restored DNA repair activity in vitro and in vivo. Thus, the V156E substitution decreases DNA repair capacity by an unanticipated mechanism via increased degradation of mutant protein, leading to substantially reduced cellular levels. Our study provides evidence that the V156 residue plays a critical role in Apn1 structural integrity, but is not involved in catalytic activity. These results have important implications for elucidating structure-function relationships for the endonuclease IV family of proteins, and for employing simple eukaryotic model systems to understand how structural defects in the major human AP endonuclease APE1 may contribute to disease etiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号