共查询到20条相似文献,搜索用时 15 毫秒
1.
PSI-G is an 11 kDa subunit of PSI in photosynthetic eukaryotes. Arabidopsis thaliana plants devoid of PSI-G have a decreased PSI content and an increased activity of NADP+ photoreduction in vitro but otherwise no obvious phenotype [P.E. Jensen, L. Rosgaard, J. Knoetzel, H.V. Scheller, Photosystem I activity is increased in the absence of the PSI-G subunit. J. Biol. Chem. 277, (2002) 2798-2803.]. To investigate the biochemical basis for the increased activity, the kinetic parameters of the reaction between PSI and plastocyanin were determined. PSI-G clearly plays a role in the affinity for plastocyanin since the dissociation constant (KD) is only 12 μM in the absence of PSI-G compared to 32 μM for the wild type. On the physiological level, plants devoid of PSI-G have a more reduced QA. This indicates that the decreased PSI content is due to unstable PSI rather than an adaptation to the increased activity. In agreement with this indication of decreased stability, plants devoid of PSI-G were found to be more photoinhibited both at low temperature and after high light treatment. The decreased PSI stability was confirmed in vitro by measuring PSI activity after illumination of a thylakoid suspension which clearly showed a faster decrease in PSI activity in the thylakoids lacking PSI-G. Light response of the P700 redox state in vivo showed that in the absence of PSI-G, P700 is more reduced at low light intensities. We conclude that PSI-G is involved in the binding dynamics of plastocyanin to PSI and that PSI-G is important for the stability of the PSI complex. 相似文献
2.
Poul Erik Jensen Lisa Rosgaard Jurgen Knoetzel Henrik Vibe Scheller 《The Journal of biological chemistry》2002,277(4):2798-2803
PSI-G is a subunit of photosystem I in eukaryotes. The function of PSI-G was characterized in Arabidopsis plants transformed with a psaG cDNA in antisense orientation. Several plants with significantly decreased PSI-G protein content were identified. Plants with reduced PSI-G content were indistinguishable from wild type when grown under optimal conditions, despite a 40% reduction of photosystem I. This decrease of photosystem I was correlated with a similar reduction in state transitions. Surprisingly, the reduced photosystem I content was compensated for by a more effective photosystem I because the light-dependent reduction of NADP(+) in vitro was 48% higher. Photosystem I antenna size determined from flash-induced P700 absorption changes did not reveal any significant effect on the size of the photosystem I antenna in the absence of PSI-G, whereas a 17% reduction was seen in the absence of PSI-K. However, nondenaturing green gels revealed that the interaction between photosystem I and the light-harvesting complex I was less stable in the absence of PSI-G. Thus, PSI-G plays a role in stabilizing the binding of the peripheral antenna. The increased activity in the absence of PSI-G suggests that PSI-G could have an important role in regulation of photosystem I. 相似文献
3.
The cyanobacterium Synechocystis PCC 6803 grown under short-term iron-deficient conditions assembles a supercomplex consisting of a trimeric Photosystem I (PSI) complex encircled by a ring of 18 IsiA complexes. Furthermore, it has been shown that single or double rings of IsiA with up to 35 copies in total can surround monomeric PSI. Here we present an analysis by electron microscopy and image analysis of the various PSI-IsiA supercomplexes from a Synechocystis PCC 6803 mutant lacking the PsaL subunit after short- and long-term iron-deficient growth. In the absence of PsaL, the tendency to form complexes with IsiA is still strong, but the average number of complete rings is lower than in the wild type. The majority of IsiA copies binds into partial double rings at the side of PsaF/J subunits rather than in complete single or double rings, which also cover the PsaL side of the PSI monomer. This indicates that PsaL facilitates the formation of IsiA rings around PSI monomers but is not an obligatory structural component in the formation of PSI-IsiA complexes. 相似文献
4.
Haldrup A Naver H Scheller HV 《The Plant journal : for cell and molecular biology》1999,17(6):689-698
The PSI-N subunit of photosystem I (PSI) is restricted to higher plants and is the only subunit located entirely in the thylakoid lumen. The role of the PSI-N subunit in the PSI complex was investigated in transgenic Arabidopsis plants which were generated using antisense and co-suppression strategies. Several lines without detectable levels of PSI-N were identified. The plants lacking PSI-N assembled a functional PSI complex and were capable of photoautotrophic growth. When grown on agar media for several weeks the plants became chlorotic and developed significantly more slowly. However, under optimal growth conditions, the plants without PSI-N were visually indistinguishable from the wild-type although several photosynthetic parameters were affected. In the transformants, the second-order rate constant for electron transfer from plastocyanin to P700+, the oxidized reaction centre of PSI, was only 55% of the wild-type value, and steady-state NADP+ reduction was decreased to a similar extent. Quantum yield of oxygen evolution and PSII photochemistry were about 10% lower than in the wild-type at leaf level. Photochemical fluorescence quenching was lowered to a similar extent. Thus, the 40-50% lower activity of PSI at the molecular level was much less significant at the whole-plant level. This was partly explained by a 17% increase in PSI content in the plants lacking PSI-N. 相似文献
5.
Photosynthesis Research - Photosystem II (PSII), the oxygen-evolving enzyme, consists of 17 trans-membrane and 3 extrinsic membrane proteins. Other subunits bind to PSII during assembly, like... 相似文献
6.
René K. Juhler Mette Miller David Simpson Raymond P. Cox 《Photosynthesis research》1993,35(3):305-310
We have compared the properties of a mutant of barley lacking Photosystem I (viridis-zb63) with the corresponding wild type using modulated fluorescence measurements. The mutant showed two unexpected characteristics. Firstly, there was a slow decline in the fluorescence signal in the light which was dependent on the presence of O2 at concentrations similar to that in air; 2% O2 in N2 had no effect. The observed decline was mainly due to an increase in the non-photochemical quenching. Secondly, in the absence of O2, saturating light pulses caused a pronounced transient decrease in the fluorescence signal; a similar effect could also be observed in wild type plants when neither CO2 nor O2 was present.Abbreviations PPFD- photosynthetic photon flux density - qN- non-photochemical quenching of chlorophyll fluorescence - qp- photochemical quenching of chlorophyll fluorescence 相似文献
7.
Navarro JA Hervás M Sun J De la Cerda B Chitnis PR De la Rosa MA 《Photosynthesis research》2000,65(1):63-68
Wild-type plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803 does not form any kinetically detectable transient complex with Photosystem I (PS I) during electron transfer,
but the D44R/D47R double mutant of copper protein does [De la Cerda et al. (1997) Biochemistry 36: 10125–10130]. To identify
the PS I component that is involved in the complex formation with the D44R/D47R plastocyanin, the kinetic efficiency of several
PS I mutants, including a PsaF–PsaJ-less PS I and deletion mutants in the lumenal H and J loops of PsaB, were analyzed by
laser flash absorption spectroscopy. The experimental data herein suggest that some of the negative charges at the H loop
of PsaB are involved in electrostatic repulsions with mutant plastocyanin. Mutations in the J loop demonstrate that this region
of PsaB is also critical. The interaction site of PS I is thus not as defined as first expected but much broader, thereby
revealing how complex the evolution of intermolecular electron transfer mechanisms in photosynthesis has been.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
8.
Thylakoid membranes and Photosystem I (PS I) complexes were isolated from a glaucocystophyte, Cyanophora paradoxa, which is thought to have the most primitive ‘plastids’, and the proteins related to PS I were examined. The intrinsic light-harvesting
chlorophyll protein complexes of PS I (LHC I) were not detected by an immunological method. The PS I complexes consisted of
at least eight low-molecular-mass proteins in addition to PS I reaction center proteins. The N-terminal sequence of the PsaD
protein has higher homology to that of Chlamydomonas reinhardtii and land plants, than to that of other algae or cyanobacteria. On the other hand, the PsaL sequence has the highest homology
to those of cyanobacteria. Taking into account the other sequences of PS I components whose genes are encoded in the cyanelle
genome, and the fact that LHC I is not detected, it is concluded that PS I of C. paradoxa has chimeric characteristics of both ‘green’ lineages and cyanobacteria.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
9.
PsaJ is a small hydrophobic subunit of the photosystem I complex (PSI) whose function is not yet fully understood. Here we describe mutants of the green alga Chlamydomonas reinhardtii, in which the psaJ chloroplast gene has been inactivated either in a wild-type or in a PsaF-deficient nuclear background. Cells lacking one or both subunits grow photoautotrophically and contain normal levels of PSI. Flash-absorption spectroscopy performed with isolated PSI particles isolated from the PsaJ-deficient strain indicates that only 30% of the PSI complexes oxidize plastocyanin (Pc) or cytochrome c6 (Cyt c6) with kinetics identical to wild type, whereas the remaining 70% follow slow kinetics similar to those observed with PsaF-deficient PSI complexes. This feature is not due to partial loss of PsaF, as the PsaJ-less PSI complex contains normal levels of the PsaF subunit. The N-terminal domain of PsaF can be cross-linked to Pc and Cyt c6 indicating that in the absence of PsaJ, this domain is exposed in the lumenal space. Therefore, the decreased amount of functional PsaF revealed by the electron-transfer measurements is best explained by a displacement of the N-terminal domain of PsaF which is known to provide the docking site for Pc and Cyt c6. We propose that one function of PsaJ is to maintain PsaF in a proper orientation which allows fast electron transfer from soluble donor proteins to P700(+). 相似文献
10.
Kouril R Yeremenko N D'Haene S Oostergetel GT Matthijs HC Dekker JP Boekema EJ 《Biochimica et biophysica acta》2005,1706(3):262-266
The cyanobacterium Synechocystis PCC 6803 grown under short-term iron-deficient conditions assembles a supercomplex consisting of a trimeric Photosystem I (PSI) complex encircled by a ring of 18 IsiA complexes. Furthermore, it has been shown that single or double rings of IsiA with up to 35 copies in total can surround monomeric PSI. Here we present an analysis by electron microscopy and image analysis of the various PSI-IsiA supercomplexes from a Synechocystis PCC 6803 mutant lacking the PsaL subunit after short- and long-term iron-deficient growth. In the absence of PsaL, the tendency to form complexes with IsiA is still strong, but the average number of complete rings is lower than in the wild type. The majority of IsiA copies binds into partial double rings at the side of PsaF/J subunits rather than in complete single or double rings, which also cover the PsaL side of the PSI monomer. This indicates that PsaL facilitates the formation of IsiA rings around PSI monomers but is not an obligatory structural component in the formation of PSI-IsiA complexes. 相似文献
11.
Maurice M. Margulies 《Photosynthesis research》1991,29(3):133-147
There are basic structural similarities between plant PS II and bacterial RCs of the Chloroflexaceae and Rhodospirillaceae. These RCs are referred to as PS II-type RCs. A similar relationship of PS I RC to PS II-type RCs has not been established. Although plant PS I and PS II RCs show structural and functional differences, they also share similarities. Therefore, the A and B polypeptides of PS I were searched for PS II D1 and D2 polypeptide-like sequences. An alignment without gaps was found between PS II-type D2/M helix IV and PS I B helix X, as well as a weaker alignment of PS II-type D1/L with PS I B helix X. No comparable alignment with PS I A was found. In the M/D2 alignment there were eight identities and some conservative substitutions in twenty nine residues. PS I B helix X appeared to contain a modified chlorophyll dimer and monomer binding site and a modified non-heme iron-quinone binding site. The conserved residue sequence was found only in RC polypeptides. The proposed chlorophyll dimer-monomer binding site was located transmembrane from the iron-sulfur cluster X binding site. The conserved residues generally are those that interact with prosthetic groups. Half of the conserved residues are located on the same side of the helix. Thus, although there are impediments to concluding firmly that PS I B helix X has a functional and evolutionary relatedness to the D2 PS II and bacterial M RC polypeptides, our analysis gives reasonable support to the idea.Abbreviation RC reaction center 相似文献
12.
Photosystem I (PSI), the plastocyanin-ferredoxin oxidoreductase of the photosynthetic electron transport chain, is one of the largest bioenergetic complexes known. It is composed of subunits encoded in both the chloroplast genome and the nuclear genome and thus, its assembly requires an intricate coordination of gene expression and intensive communication between the two compartments. In this review, we first briefly describe PSI structure and then focus on recent findings on the role of the two small chloroplast genome-encoded subunits PsaI and PsaJ in the stability and function of PSI in higher plants. We then address the sequence of PSI biogenesis, discuss the role of auxiliary proteins involved in cofactor insertion into the PSI apoproteins and in the establishment of protein-protein interactions during subunit assembly. Finally, we consider potential limiting steps of PSI biogenesis, and how they may contribute to the control of PSI accumulation. 相似文献
13.
Díaz-Quintana A Navarro JA Hervás M Molina-Heredia FP De la Cerda B De la Rosa MA 《Photosynthesis research》2003,75(2):97-110
Plastocyanin and cytochrome c
6 are two soluble metalloproteins that act as alternative electron carriers between the membrane-embedded complexes cytochromes
b
6
f and Photosystem I. Despite plastocyanin and cytochrome c
6 differing in the nature of their redox center (one is a copper protein, the other is a heme protein) and folding pattern
(one is a β-barrel, the other consists of α-helices), they are exchangeable in green algae and cyanobacteria. In fact, the
two proteins share a number of structural similarities that allow them to interact with the same membrane complexes in a similar
way. The kinetic and thermodynamic analysis of Photosystem I reduction by plastocyanin and cytochrome c
6 reveals that the same factors govern the reaction mechanism within the same organism, but differ from one another. In cyanobacteria,
in particular, the electrostatic and hydrophobic interactions between Photosystem I and its electron donors have been analyzed
using the wild-type protein species and site-directed mutants. A number of residues similarly conserved in the two proteins
have been shown to be critical for the electron transfer reaction. Cytochrome c
6 does contain two functional areas that are equivalent to those previously described in plastocyanin: one is a hydrophobic
patch for electron transfer (site 1), and the other is an electrically charged area for complex formation (site 2). Each cyanobacterial
protein contains just one arginyl residue, similarly located between sites 1 and 2, that is essential for the redox interaction
with Photosystem I.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
14.
The alphaA-crystallin R116C mutant has a higher affinity for forming heteroaggregates with alphaB-crystallin. 总被引:1,自引:0,他引:1
An autosomal dominant congenital cataract in humans is associated with mutation of Arg-116 to Cys in alphaA-crystallin (alphaA-R116C). The chaperone activity and biophysical properties of reconstituted alpha-crystallin from different proportions of wild-type alphaB-crystallin (alphaB-wt) and alphaA-R116C-crystallin were studied by gel permeation chromatography, SDS-polyacrylamide gel electrophoresis, and fluorescence and circular dichroism spectroscopy and compared with those of reconstituted alpha-crystallin from alphaB-wt and wild-type alphaA-crystallin (alphaA-wt). The reconstituted alpha-crystallin containing alphaA-R116C and alphaB-wt had a higher molecular mass, a higher thermal sensitivity to exposition of Trp side chains, fewer available hydrophobic surfaces, and lower chaperone activity than the alpha-crystallin containing alphaA-wt and alphaB-wt. The secondary structure exhibited very small changes, whereas the tertiary structure was distinctly different for alpha-crystallin formed from alphaA-R116C and alphaB-wt. Most importantly, subunit exchange studies by fluorescence resonance energy transfer showed that alphaA-R116C forms heteroaggregates faster than alphaA-wt with alphaB-wt, and the reconstituted alpha-crystallins were true heteroaggregates of two interacting subunits. These findings suggest that the molecular basis for the congenital cataract with the alphaA-R116C mutation is the formation of highly oligomerized heteroaggregates of alpha-crystallin with modified structure. However, contrary to the earlier conclusions based on the studies of homoaggregates, the loss in chaperone activity of the heteroaggregates having alphaA-R116C does not appear to be large enough to become the main factor in initiating cataract development in the affected individuals. 相似文献
15.
16.
A Synechococcus sp. strain PCC 7002 psaAB::cat mutant has been constructed by deletional interposon mutagenesis of the psaA and psaB genes through selection and segregation under low-light conditions. This strain can grow photoheterotrophically with glycerol as carbon source with a doubling time of 25 h at low light intensity (10 E m–2 s–1). No Photosystem I (PS I)-associated chlorophyll fluorescence emission peak was detected in the psaAB::cat mutant. The chlorophyll content of the psaAB::cat mutant was approximately 20% that of the wild-type strain on a per cell basis. In the absence of the PsaA and PsaB proteins, several other PS I proteins do not accumulate to normal levels. Assembly of the peripheral PS I proteins PsaC,PsaD, PsaE, and PsaL is dependent on the presence of the PsaA and PsaB heterodimer core. The precursor form of PsaF may be inserted into the thylakoid membrane but is not processed to its mature form in the absence of PsaA and PsaB. The absence of PS I reaction centers has no apparent effect on Photosystem II (PS II) assembly and activity. Although the mutant exhibited somewhat greater fluorescence emission from phycocyanin, most of the light energy absorbed by phycobilisomes was efficiently transferred to the PS II reaction centers in the absence of the PS I. No light state transition could be detected in the psaAB::cat strain; in the absence of PS I, cells remain in state 1. Development of this relatively light-tolerant strain lacking PS I provides an important new tool for the genetic manipulation of PS I and further demonstrates the utility of Synechococcus sp. PCC 7002 for structural and functional analyses of the PS I reaction center.Abbreviations ATCC
American type culture collection
- Chl
chlorophyll
- DCMU
3-(3,4-dichlorophyl)-1,1-dimethylurea
- DBMIB
2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone
- HEPES
N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid]
- PCC
Pasteur culture collection
- PS I
Photosystem I
- PS II
Photosystem II
- SDS
sodium dodecyl sulfate 相似文献
17.
Hiyama T Yumoto K Satoh A Takahashi M Nishikido T Nakamoto H Suzuki K Hiraide T 《Biochimica et biophysica acta》2000,1459(1):117-124
By using a hydroxyapatite column, the five major Photosystem I (PSI) subunits (PsaA,-B,-C,-D,-E) solubilized by sodium dodecyl sulfate (SDS) were fractionated from a spinach PSI reaction center preparation. Another small (5-6 kDa) polypeptide was also separated, and purified to homogeneity. Mass spectroscopy yielded its molecular weight to be 5942 +/- 10. This polypeptide had an N-terminal sequence homologous to those of previously reported 5-kDa subunits from spinach and wheat and a 6.1-kDa subunit of Chlamydomonas, which had all been assigned to Photosystem II (PSII) and designated as PsbW. However, we found similar 5-kDa polypeptides with highly conserved N-terminal sequences ubiquitously in PSI particles from other plants including Daikon (Raphanus sativus, Japanese radish), Chingensai (Brassica parachinensis, Chinese cabbage), parsley and Shungiku (Chrysanthemum coronarium, Garland chrysanthemum) as well. Preparations of spinach PSI particles prepared by using a mild detergent (digitonin) had this 5-kDa subunit, while PSII particles did not. Moreover, a bare-bone PSI reaction center preparation consisting of PsaA/B alone had a more than stoichiometric amount of this 5-kDa polypeptide. A mechanically (without detergent) fractionated stroma thylakoid preparation from Phytolacca americana, which lacked other PSII subunits, also contained this 5-kDa subunit. Thus, we propose that this 5-kDa polypeptide, previously designated as a PSII subunit (PsbW), is an integral subunit of PSI as well. 相似文献
18.
In the photosynthetic electron-transfer chain, the photosystem I subunit PsaF is involved in the specific binding of plastocyanin. Using fluorescence electrophoresis we show here that the luminal domain of PsaF is a target for thioredoxin-mediated reduction of the Cys residues 8 and 63. Furthermore, by using NMR spectroscopy, we show that the thiolated form of PsaF has a lower affinity towards reduced plastocyanin than when the disulfide bridge is intact. Time-resolved absorbance measurements and fluorescence electrophoresis shows that oxidized plastocyanin can re-oxidize PsaF and thus restore the active form. 相似文献
19.
Kalle Sigfridsson 《Photosynthesis research》1999,59(2-3):243-247
A spinach plastocyanin (Pc) mutant, Pc(Leu12His), has been constructed by site-directed mutagenesis and expressed in Escherichia coli to probe the importance of the hydrophobic patch in the interaction with Photosystem 1. The mutant has been characterized by optical absorption, EPR spectroscopy and redox titration. The electron transfer to Photosystem 1 was investigated by flash-induced time-resolved absorption measurements at 830 nm. The Pc(Leu12His) mutant showed a major change in the Photosystem 1 kinetics compared to wild-type Pc. In contrast to the biphasic Photosystem 1 reduction observed for the physiological reaction partner, only the slow phase was discerned when Pc(Leu12His) replaced wild-type Pc as the electron donor. The reaction showed a hyperbolic dependence with increasing Pc concentration, saturating at a rate constant value of 2000 s-1, which is about 10 times slower than the corresponding rate constant for wild-type Pc. Obviously, this position i s critical for a proper reaction. Moreover, the reaction showed a titrating behavior with a pKa of 6.7. Thus, it appears that both shape and charge of the residue in this position are important. A plausible reaction mechanism for electron transfer between wild-type Pc and Photosystem 1 is discussed. The role of electrostatic interactions may be that of long-range guidance and initial recognition that allow the two proteins to seek a pre-docking configuration(s). Then a short-range rearrangement(s), involving also hydrophobic interactions, forms an optimum docking configuration prior to electron transfer. 相似文献
20.
In this work we address the question whether light-induced changes in the Mg(II) content in the chloroplast lumen can modulate the electron donation to photosystem I, in particular the electrostatic interaction between plastocyanin (Pc) and the photosystem 1 subunit PsaF. For this, we have used 2D NMR spectroscopy to study the binding of Mg(II) ions and the isolated luminal domain of PsaF to (15)N-labelled Pc. From the chemical-shift perturbations in the (1)H-(15)N HSQC spectra, dissociation constants of (4.9 ± 1.7) mM and (1.4 ± 0.2) mM were determined for the Pc-Mg(II) and Pc-PsaF complexes, respectively. In both cases, significant chemical-shift changes were observed for Pc backbone amide groups belonging to the two acidic patches, residues 42-45 and 59-61. In addition, competitive effects were observed upon the addition of Mg(II) ions to the Pc-PsaF complex, further strengthening that Mg(II) and PsaF bind to the same region on Pc. To structurally elucidate the Mg(II) binding site we have utilized Mn(II) as a paramagnetic analogue of Mg(II). The paramagnetic relaxation enhancement induced by Mn(II) results in line broadening in the Pc HSQC spectra which can be used to estimate distances between the bound ion and the affected nuclear spins. The calculations suggest a location of the bound Mn(II) ion close to Glu43 in the lower acidic patch, and most likely in the form of a hexaquo complex embedded within the hydration shell of Pc. The results presented here suggest a specific binding site for Mg(II) that may regulate the binding of Pc to photosystem 1 in vivo. 相似文献