首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The reaction mechanism of protein tyrosine phosphatases (PTPases) and dual-specificity protein phosphatases is thought to involve a catalytic aspartic acid residue. This residue was recently identified by site-directed mutagenesis in Yersinia PTPase, VHR protein phosphatase, and bovine low molecular weight protein phosphatase. Herein we identify aspartic acid 383 as a potential candidate for the catalytic acid in human Cdc25A protein phosphatase, using sequence alignment, structural information, and site-directed mutagenesis. The D383N mutant enzyme exhibits a 150-fold reduction in kcat, with Kw only slightly changed. Analysis of sequence homologies between several members of the Cdc25 family and deletion mutagenesis substantiate the concept of a two-domain structure for Cdc25, with a regulatory N-terminal and a catalytic C-terminal domain. Based on the alignment of catalytic residues and secondary structure elements, we present a three-dimensional model for the core region of Cdc25. By comparing this three-dimensional model to the crystal structures of PTP1b, Yersinia PTPase, and bovine low molecular weight PTPase, which share only very limited amino acid sequence similarities, we identify a general architecture of the protein phosphatase core region, encompassing the active site loop motif HCXXXXXR and the catalytic aspartic acid residue.  相似文献   

2.
Deng H  Callender R  Huang Z  Zhang ZY 《Biochemistry》2002,41(18):5865-5872
Vanadate can often bind to phosphoryl transfer enzymes to form a trigonal-bipyramidal structure at the active site. The enzyme-vanadate dissociation constants in these enzymes are much lower than those for phosphate. Therefore, enzyme-bound vanadate moieties are often considered as transition state analogues. To test whether the enzyme-vanadate complex is a true transition state analogue beyond the simple geometry and binding affinity arguments and whether the bond orders of the VO bonds in the complex approach those of the PO bonds in the transition state, the binding properties of vanadate in the Yersinia protein-tyrosine phosphatase (PTPase) and its T410A, D356N, W354A, R409K, and D356A mutants have been studied by steady-state kinetic measurements and by difference Raman measurements. The results of the kinetic measurements show no correlation between K(I) and kcat or kcat/K(m) in these mutants. In addition, our analysis of the Raman data shows that the bond order change of the nonbridging V--O bonds in the vanadate complexes does not correlate with the kinetic parameters in a number of PTPase variants as predicted by the transition state binding paradigm. Furthermore, the ionization state of the bound vanadate moiety is not invariant across the PTPase variants studied, and the average bond order of the nonbridging V--O bonds decreased by 0.06-0.07 valence unit in the wild type and all of the mutant PTPases, either in dianionic or in monoanionic form. Thus the complex would resemble an associative transition state, contrary to the previously determined dissociative structure of the transition state. Therefore, it is concluded that vanadate is not a true transition state analogue for the PTPase reactions.  相似文献   

3.
The involvement of the strictly conserved Trp354 residue in the catalysis of the Yersinia protein tyrosine phosphatase (PTPase) has been investigated by site-directed mutagenesis and kinetic studies. Crystallographic structural data have revealed that Trp354 interacts with the active site Arg409 and is located at one of the hinge positions of the flexible surface loop (WpD loop) which also harbors the general acid/base (Asp356) essential for catalysis [Schubert, H. L., Fauman, E. B., Stuckey, J. A., Dixon, J. E. & Saper, M. A. (1995) Protein Sci. 4, 1904-1913]. Two mutants were constructed and expressed that contained the Trp354-->Phe and Trp354-->Ala substitutions. The K(m) of the W354F and W354A mutants were not significantly different from that of the wild-type. However, a major decrease in the affinity for oxyanions was observed for the mutants, which is consistent with Trp354 playing a role in aligning Arg409 for oxyanion binding. In addition replacement of Trp354 with Phe or Ala caused a decrease in kcat of 200-fold and 480-fold, respectively, and impaired the ability of the mutant enzymes to stabilize the negative charge in the leaving group at the transition state. In fact, the W354F and W354A mutants exhibited catalytic efficiency and leaving group dependency similar to those observed for the general acid-deficient PTPase D356N. These results indicate that Trp354 is an important residue that keeps the WpD loop in a catalytically competent conformation and positions the general acid/base Asp356 in the correct orientation for proton transfer.  相似文献   

4.
Protein-tyrosine phosphatases catalyze the hydrolysis of phosphate monoesters via a two-step mechanism involving a covalent phospho-enzyme intermediate. Biochemical and site-directed mutagenesis experiments show that the invariant Cys residue present in the PTPase signature motif (H/V)CX(5)R(S/T) (i.e., C215 in PTP1B) is absolutely required for activity. Mutation of the invariant Cys to Ser results in a catalytically inactive enzyme, which still is capable of binding substrates and inhibitors. Although it often is assumed that substrate-trapping mutants such as the C215S retain, in solution, the structural and binding properties of wild-type PTPases, significant differences have been found in the few studies that have addressed this issue, suggesting that the mutation may lead to structural/conformational alterations in or near the PTP1B binding site. Several crystal structures of apo-WT PTP1B, and of WT- and C215S-mutant PTP1B in complex with different ligands are available, but no structure of the apo-PTP1B C215S has ever been reported. In all previously reported structures, residues of the PTPase signature motif have an identical conformation, while residues of the WPD loop (a surface loop which includes the catalytic Asp) assume a different conformation in the presence or absence of ligand. These observations led to the hypothesis that the different spectroscopic and thermodynamic properties of the mutant protein may be the result of a different conformation for the WPD loop. We report here the structure of the apo-PTP1B C215S mutant, which reveals that, while the WPD loop is in the open conformation observed in the apo WT enzyme crystal structure, the residues of the PTPases signature motif are in a dramatically different conformation. These results provide a structural basis for the differences in spectroscopic properties and thermodynamic parameters in inhibitor binding observed for the wild-type and mutant enzymes.  相似文献   

5.
Protein tyrosine phosphatases (PTPases) and protein tyrosine kinase (PTKases) regulate the phosphorylation and dephosphorylation of tyrosine residues in proteins, events that are essential for a variety of cellular functions. PTPases such as PTP1B and the Yersinia PTPase play an important role in diseases including type II diabetes and bubonic plague. A library of 67 bidentate PTPase inhibitors that are based on the alpha-ketocarboxylic acid motif has been synthesized using parallel solution-phase methods. Two aryl alpha-ketocarboxylic acids were tethered to a variety of different diamine linkers through amide bonds. The compounds were assayed in crude form against the Yersinia PTPase, PTP1B, and TCPTP. Six compounds were selected for further evaluation, in purified form, against the Yersinia PTPase, PTP1B, TCPTP, LAR, and CD45. These compounds had IC50 values in the low micromolar range against the Yersinia PTPase, PTP1B, and TCPTP, showed good selectivity for PTP1B over LAR, and modest selectivity over CD45. The correlation between linker structure and inhibitor activity shows that aromatic groups in the linker can play an important role in determining binding affinity in this class of inhibitors.  相似文献   

6.
Protein tyrosine phosphatases (PTPases) regulate intracellular signal transduction pathways by controlling the level of tyrosine phosphorylation in cells. These enzymes play an important role in a variety of diseases including type II diabetes and infection by the bacterium Yersinia pestis, which is the causative agent of bubonic plague. This report describes the synthesis, using parallel solution-phase methods, of a library of 104 potential inhibitors of PTPases. The library members are based on the bis(aryl alpha-ketocarboxylic acid) motif that incorporates a carboxylic acid on the central benzene linker. This carboxylic acid was coupled with a variety of different aromatic amines through an amide linkage. The aromatic component of the resulting amides is designed to make contacts with residues that surround the active site of the PTPase. The library was screened against the Yersinia PTPase and PTP1B. Based upon the screening results, four members of the library were selected for further study. These four compounds were evaluated against the Yersinia PTPase, PTP1B, TCPTP, CD45, and LAR. Compound 14 has an IC(50) value of 590nM against PTP1B and is a reversible competitive inhibitor. This affinity represents a greater than 120-fold increase in potency over compound 2, the parent structure upon which the library was based. A second inhibitor, compound 12, has an IC(50) value of 240nM against the Yersinia PTPase. In general, the selectivity of the inhibitors for PTP1B was good compared to LAR, but modest when compared to TCPTP and CD45.  相似文献   

7.
Khajehpour M  Wu L  Liu S  Zhadin N  Zhang ZY  Callender R 《Biochemistry》2007,46(14):4370-4378
The Yersinia protein tyrosine phosphatase (YopH) contains a loop of ten amino acids (the WPD loop) that covers the entrance of the active site of the enzyme during substrate binding. In this work the substrate mimicking competitive inhibitor p-nitrocatechol sulfate (PNC) is used as a probe of the active site. The dynamics of the WPD loop was determined by subjecting an equilibrated system containing YopH, PNC, and YopH bound to PNC to a laser induced temperature jump, and subsequently following the change in equilibrium due to the perturbation. Using this methodology the dynamics associated with substrate binding in YopH have been determined. These results indicate that substrate binding is coupled to the WPD loop motion, and WPD loop dynamics occur in the sub-millisecond time scale. The significance of these dynamic results is interpreted in terms of the catalytic cycle of the enzyme.  相似文献   

8.
Human purine nucleoside phosphorylase (PNP) is a homotrimer, containing three nonconserved tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The Trp residues were replaced with Tyr to produce Trp-free PNP (Leuko-PNP). Leuko-PNP showed near-normal kinetic properties. It was used (1) to determine the tautomeric form of guanine that produces strong fluorescence when bound to PNP, (2) for thermodynamic binding analysis of binary and ternary complexes with substrates, (3) in temperature-jump perturbation of complexes for evidence of multiple conformational complexes, and (4) to establish the ionization state of a catalytic site tyrosine involved in phosphate nucleophile activation. The (13)C NMR spectrum of guanine bound to Leuko-PNP, its fluorescent properties, and molecular orbital electronic transition analysis establish that its fluorescence originates from the lowest singlet excited state of the N1H, 6-keto, N7H guanine tautomer. Binding of guanine and phosphate to PNP and Leuko-PNP are random, with decreased affinity for formation of ternary complexes. Pre-steady-state kinetics and temperature-jump studies indicate that the ternary complex (enzyme-substrate-phosphate) forms in single binding steps without kinetically significant protein conformational changes as monitored by guanine fluorescence. Spectral changes of Leuko-PNP upon phosphate binding establish that the hydroxyl of Tyr88 is not ionized to the phenolate anion when phosphate is bound. A loop region (residues 243-266) near the purine base becomes highly ordered upon substrate/inhibitor binding. A single Trp residue was introduced into the catalytic loop of Leuko-PNP (Y249W-Leuko-PNP) to determine effects on catalysis and to introduce a fluorescence catalytic site probe. Although Y249W-Leuko-PNP is highly fluorescent and catalytically active, substrate binding did not perturb the fluorescence. Thermodynamic boxes, constructed to characterize the binding of phosphate, guanine, and hypoxanthine to native, Leuko-, and Y249W-Leuko-PNPs, establish that Leuko-PNP provides a versatile protein scaffold for introduction of specific Trp catalytic site probes.  相似文献   

9.
The hydrolysis of O-arylphosphorothioates by protein-tyrosine phosphatases (PTPases) was studied with the aim of providing a mechanistic framework for the reactions of this important class of substrate analogues. O-arylphosphorothioates are hydrolyzed 2 to 3 orders of magnitude slower than O-aryl phosphates by PTPases. This is in contrast to the solution reaction where phosphorothioates display 10-60-fold higher reactivity than the corresponding oxygen analogues. Kinetic analyses suggest that PTPases utilize the same active site and similar kinetic and chemical mechanisms for the hydrolysis of O-arylphosphorothioates and O-aryl phosphates. Thio substitution has no effect on the affinity of substrate or product for the PTPases. Bronsted analyses suggest that like the PTPase-catalyzed phosphoryl transfer reaction the transition state for the PTPase-catalyzed thiophosphoryl transfer is highly dissociative, similar to that of the corresponding solution reaction. The side chain of the active-site Arg residue forms a bidentate hydrogen bond with two of the terminal phosphate oxygens in the ground state and two of the equatorial oxygens in a transition state analog complex with vanadate [Denu et al. (1996) Proc. Natl. Acad. Sci. USA 93, 2493-2498; Zhang, M. et al. (1997) Biochemistry 36, 15-23; Pannifer et al. (1998) J. Biol. Chem. 273, 10454-10462]. Replacement of the active-site Arg409 in the Yersinia PTPase by a Lys reduces the thio effect by 54-fold, consistent with direct interaction and demonstrating strong energetic coupling between Arg409 and the phosphoryl oxygens in the transition state. These results suggest that the large thio effect observed in the PTPase reaction is the result of inability to achieve precise transition state complementarity in the enzyme active site with the larger sulfur substitution.  相似文献   

10.
The cytoplasmic domains of two human transmembrane protein tyrosine phosphatases (PTPases), LAR and CD45, have been expressed in Escherichia coli, purified to near-homogeneity, and compared for catalytic efficiency toward several phosphotyrosine-containing peptide substrates. A 615-residue LAR fragment (LAR-D1D2) containing both tandemly repeated PTPase domains shows almost identical specific activity and high catalytic efficiency as the 40-kDa single-domain LAR-D1 fragment, consistent with a single functional active site in the 70-kDa LAR-D1D2 enzyme. A 90-kDa fragment of the human leukocyte CD45 PTPase, containing two similar tandemly repeated PTPase domains, shows parallel specificity to LAR-D1 and LAR-D1D2 with a high kcat/Km value for a phosphotyrosyl undecapeptide. Sufficient purified LAR-D1 and LAR-D1D2 PTPases were available to demonstrate enzymatic exchange of 18O from 18O4 inorganic phosphate into H2(16)O at rates of approximately 1 x 10(-2) s-1. The oxygen-18 exchange probably proceeds via a phosphoenzyme intermediate. Brief incubation of all three PTPase fragments with a [32P]phosphotyrosyl peptide substrate prior to quench with SDS sample buffer and gel electrophoresis led to autoradiographic detection of 32P-labeled enzymes. Pulse/chase studies on the LAR 32P-enzyme showed turnover of the labeled phosphoryl group.  相似文献   

11.
The cold-active protein-tyrosine phosphatase (CAPTPase) of a psychrophile, Shewanella sp., shows high catalytic activity below 20 degrees C. The catalytic residue of CAPTPase is histidine, as opposed to the cysteine of known protein-tyrosine phosphatases (PTPases), and the enzyme protein has three amino acid sequences, Asp-Xaa-His, Gly-Asp-Xaa-Xaa-Asp-Arg and Gly-Asn-His-Glu, that are observed in many protein-serine/threonine phosphatases (PS/TPases). We have determined the crystal structures of CAPTPase at 1.82 angstroms and the enzyme bound with a phosphate ion at 1.90 angstroms resolution using X-ray crystallography and the multiple isomorphous replacement method. The final refined models are comprised of 331 amino acid residues, two metal ions, 447 water molecules, and an acetate or phosphate ion in an asymmetric unit. The enzyme protein consists of three beta-sheets, termed Sheet I, Sheet I', and Sheet II, and 14 alpha-helices. The CAPTPase has a different overall structure from known protein-tyrosine phosphatases. The arrangement of two metal ions, a phosphate ion and the adjacent amino acid residues in the catalytic site of CAPTPase is identical to that of PS/TPases. Thus, it was confirmed that the CAPTPase was a novel PTPase with a conformation similar to the catalytic site of PS/TPase. We speculate that the hydrophobic moiety around the catalytic residue of CAPTPase might play an important role in eliciting high activity at low temperature.  相似文献   

12.
The importance of the fully conserved active site proline, Pro168, for the reaction mechanism of triosephosphate isomerase (TIM) has been investigated by studying the enzymatic and crystallographic properties of the P168A variant of trypanosomal TIM. In TIM, Pro168 follows the key catalytic residue Glu167, situated at the beginning of the flexible active site loop (loop 6). Turnover numbers of the P168A variant for its substrates are reduced approximately 50-fold, whereas the Km values are approximately 2 times lower. The affinity of the P168A variant for the transition state analogue 2-phosphoglycolate (2PG) is reduced 5-fold. The crystal structures of unliganded and liganded (2PG) P168A show that the phosphate moiety of 2PG is bound similarly as in wild-type TIM, whereas the interactions of the carboxylic acid moiety with the side chain of the catalytic Glu167 differ. The unique properties of the proline side chain at position 168 are required to transmit ligand binding to the conformational change of Glu167: the side chain of Glu167 flips from the inactive swung-out to the active swung-in conformation on ligand binding in wild-type TIM, whereas in the mutant this conformational change does not occur. Further structural comparisons show that in the wild-type enzyme the concerted movement of loop 6 and loop 7 from unliganded-open to liganded-closed appears to be facilitated by the interactions of the phosphate moiety with loop 7. Apparently, the rotation of 90 degrees of the Gly211-Gly212 peptide plane of loop 7 plays a key role in this concerted movement.  相似文献   

13.
The bacterial protein tyrosine phosphatase YopH is an essential virulence determinant in Yersinia spp., causing gastrointestinal diseases and the plague. Like eukaryotic PTPases, YopH catalyzes the hydrolysis of the phosphate moiety of phosphotyrosine within a highly conserved binding pocket, which is also characterized by the closure of the so-called "WPD loop" upon ligand binding. In this study, we investigate the conformational changes and dynamics of the WPD loop by molecular dynamics simulations. Consistent with experimental observations, our simulations show that the WPD loop of YopH is intrinsically flexible and fluctuates between the open and closed conformation with a frequency of approximately 4 ns for the apo, native protein. The region of helix alpha4 spanning loop 384-392, which has been revealed experimentally as a second substrate-binding site in YopH, is found to be highly associated with the WPD loop, stabilizing it in the closed, active conformation, and providing a structural basis for the cooperation of the second-substrate binding site in substrate recognition. Loop L4 (residues 323-327) is shown to be involved in a parallel, correlated motion mode with the WPD loop that contributes the stabilization of a more extended open conformation. In addition, we have simulated the loop reopening in the ligand-bound protein complex by applying the locally enhanced sampling method. Finally, the dynamic behavior of the WPD loop for the C403S mutant differs from the wild-type YopH remarkably. These results shed light on the role of the WPD loop in PTPase-mediated catalysis, and are useful in structure-based design for novel, selective YopH inhibitors as antibacterial drugs.  相似文献   

14.
Xie L  Zhang YL  Zhang ZY 《Biochemistry》2002,41(12):4032-4039
Although members of the protein tyrosine phosphatase (PTPase) family share a common mechanism of action (hydrolysis of phosphotyrosine), the cellular processes in which they are involved can be both highly specialized and fundamentally important. Identification of cellular PTPase substrates will help elucidate the biological functions of individual PTPases. Two types of substrate-trapping mutants are being used to isolate PTPase substrates. In the first, the active site Cys residue is replaced by a Ser (e.g., PTP1B/C215S) while in the second, the general acid Asp residue is substituted by an Ala (e.g., PTP1B/D181A). Unfortunately, only a limited number of PTPase substrates have been identified with these two mutants, which are usually relatively abundant cellular proteins. Based on mechanistic considerations, we seek to create novel PTPase mutants with improved substrate-trapping properties. Kinetic and thermodynamic characterization of the newly designed PTP1B mutants indicates that PTP1B/D181A/Q262A displays lower catalytic activity than that of D181A. In addition, D181A/Q262A also possesses 6- and 28-fold higher substrate-binding affinity than those of D181A and C215S, respectively. In vivo substrate-trapping experiments indicate that D181A/Q262A exhibits much higher affinity than both D181A and C215S for a bona fide PTP1B substrate, the epidermal growth factor receptor. Moreover, D181A/Q262A can also identify novel, less abundant substrates, that are missed by D181A. Thus, this newly developed and improved substrate-trapping mutant can serve as a powerful affinity reagent to isolate and purify both high- and low-abundant protein substrates. Given that both Asp181 and Gln262 are invariant among the PTPase family, it is predicted that this improved substrate-trapping mutant would be applicable to all members of PTPases for substrate identification.  相似文献   

15.
The bovine protein tyrosine phosphatase (BPTP) is a member of the class of low-molecular weight protein tyrosine phosphatases (PTPases) found to be ubiquitous in mammalian cells. The catalytic site of BPTP contains a CX(5)R(S/T) phosphate-binding motif or P-loop (residues 12-19) which is the signature sequence for all PTPases. Ser19, the final residue of the P-loop motif, interacts with the catalytic Cys12 and participates in stabilizing the conformation of the active site through interactions with Asn15, also in the P-loop. Mutations at Ser19 result in an enzyme with altered kinetic properties with changes in the pK(a) of the neighboring His72. The X-ray structure of the S19A mutant enzyme shows that the general conformation of the P-loop is preserved. However, changes in the loop containing His72 result in a displacement of the His72 side chain that may explain the shift in the pK(a). In addition, it was found that in the crystal, the protein forms a dimer in which Tyr131 and Tyr132 from one monomer insert into the active site of the other monomer, suggesting a dual-tyrosine motif on target sites for this enzyme. Since the activity of this PTPase is reportedly regulated by phosphorylation at Tyr131 and Tyr132, the structure of this dimer may provide a model of a self-regulation mechanism for the low-molecular weight PTPases.  相似文献   

16.
General acid catalysis in protein tyrosine phosphatases (PTPases) is accomplished by a conserved Asp residue, which is brought into position for catalysis by movement of a flexible loop that occurs upon binding of substrate. With the PTPase from Yersinia, we have examined the effect on general acid catalysis caused by mutations to two conserved residues that are integral to this conformation change. Residue Trp354 is at a hinge of the loop, and Arg409 forms hydrogen bonding and ionic interactions with the phosphoryl group of substrates. Trp354 was mutated to Phe and to Ala, and residue Arg409 was mutated to Lys and to Ala. The four mutant enzymes were studied using steady state kinetics and heavy-atom isotope effects with the substrate p-nitrophenyl phosphate. The data indicate that mutation of the hinge residue Trp354 to Ala completely disables general acid catalysis. In the Phe mutant, general acid catalysis is partially effective, but the proton is only partially transferred in the transition state, in contrast to the native enzyme where proton transfer to the leaving group is virtually complete. Mutation of Arg409 to Lys has a minimal effect on the K(m), while this parameter is increased 30-fold in the Ala mutant. The k(cat) values for R409K and for R409A are about 4 orders of magnitude lower than that for the native enzyme. General acid catalysis is rendered inoperative by the Lys mutation, but partial proton transfer during catalysis still occurs in the Ala mutant. Structural explanations for the differential effects of these mutations on movement of the flexible loop that enables general acid catalysis are presented.  相似文献   

17.
Shi W  Tanaka KS  Crother TR  Taylor MW  Almo SC  Schramm VL 《Biochemistry》2001,40(36):10800-10809
Adenine phosphoribosyltransferase (APRTase) is a widely distributed enzyme, and its deficiency in humans causes the accumulation of 2,8-dihydroxyadenine. It is the sole catalyst for adenine recycling in most eukaryotes. The most commonly expressed APRTase has subunits of approximately 187 amino acids, but the only crystal structure is from Leishmania donovani, which expresses a long form of the enzyme with 237 residues. Saccharomyces cerevisiae APRTase was selected as a representative of the short APRTases, and the structure of the apo-enzyme and sulfate bound forms were solved to 1.5 and 1.75 A, respectively. Yeast APRTase is a dimeric molecule, and each subunit is composed of a central five-stranded beta-sheet surrounded by five alpha-helices, a structural theme found in all known purine phosphoribosyltransferases. The structures reveal several important features of APRTase function: (i) sulfate ions bound at the 5'-phosphate and pyrophosphate binding sites; (ii) a nonproline cis peptide bond (Glu67-Ser68) at the pyrophosphate binding site in both apo-enzyme and sulfate-bound forms; and (iii) a catalytic loop that is open and ordered in the apo-enzyme but open and disordered in the sulfate-bound form. Alignment of conserved amino acids in short-APRTases from 33 species reveals 13 invariant and 15 highly conserved residues present in hinges, catalytic site loops, and the catalytic pocket. Mutagenesis of conserved residues in the catalytic loop, subunit interface, and phosphoribosylpyrophosphate binding site indicates critical roles for the tip of the catalytic loop (Glu106) and a catalytic site residue Arg69, respectively. Mutation of one loop residue (Tyr103Phe) increases k(cat) by 4-fold, implicating altered dynamics for the catalytic site loop.  相似文献   

18.
An active conformation of phosphoglycerate dehydrogenase (PGDH) from Escherichia coli has been obtained using X-ray crystallography. The X-ray crystal structure is used to examine the potential intermediates for V(max) regulation, for the redox reaction, and for cooperative effects of serine binding. The crystal structure at 2.2 A resolution contains bound NAD(+) cofactor, either sulfate or phosphate anions, and alpha-ketoglutarate, a nonphysiological substrate. A PGDH subunit is formed from three distinct domains: regulatory (RBD), substrate (SBD), and nucleotide binding (NBD). The crystal conformation of the homotetramer points to the fact that, in the absence of serine, coordinated movement of the RBD-SBD domains occurs relative to the NBD. The result is a conformational change involving the steric relationships of both the domains and the subunits. Within the active site of each subunit is a bound molecule of alpha-ketoglutarate and the coenzyme, NAD. The catalytic or active site cleft is changed slightly although it is still solvent exposed; therefore, the catalytic reaction probably involves additional conformational changes. By comparing the inhibited with the uninhibited complex, it is possible to describe changes in conformation that are involved in the inhibitory signal transduction of serine.  相似文献   

19.
Protein-tyrosine phosphatases (PTPases) form a large family of enzymes that serve as key regulatory components in signal transduction pathways. Defective or inappropriate regulation of PTPase activity leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases including cancers and diabetes. For example, recent gene knockout studies in mice identify PTP1B as a promising target for anti-diabetes/obesity drug discovery. Thus, there is intense interest in obtaining specific and potent PTPase inhibitors for biological studies and pharmacological development. However, given the highly conserved nature of the PTPase active site, it is unclear whether selectivity in PTPase inhibition can be achieved. We describe a combinatorial approach that is designed to target both the active site and a unique peripheral site in PTP1B. Compounds that can simultaneously associate with both sites are expected to exhibit enhanced affinity and specificity. We also describe a novel affinity-based high-throughput assay procedure that can be used for PTPase inhibitor screening. The combinatorial library/high-throughput screen protocols furnished a small molecule PTP1B inhibitor that is both potent (K(i) = 2.4 nm) and selective (little or no activity against a panel of phosphatases including Yersinia PTPase, SHP1, SHP2, LAR, HePTP, PTPalpha, CD45, VHR, MKP3, Cdc25A, Stp1, and PP2C). These results demonstrate that it is possible to acquire potent, yet highly selective inhibitors for individual members of the large PTPase family of enzymes.  相似文献   

20.
The alpha/beta‐hydrolases (ABH) are among the largest structural families of proteins that are found in nature. Although they vary in their sequence and function, the ABH enzymes use a similar acid–base‐nucleophile catalytic mechanism to catalyze reactions on different substrates. Because ABH enzymes are biocatalysts with a wide range of potential applications, protein engineering has taken advantage of their catalytic versatility to develop enzymes with industrial applications. This study is a comprehensive analysis of 40 ABH enzyme families focusing on two identified substructures: the nucleophile zone and the oxyanion zone, which co‐ordinate the catalytic nucleophile and the residues of the oxyanion hole, and independently reported as critical for the enzymatic activity. We also frequently observed an aromatic cluster near the nucleophile and oxyanion zones, and opposite the ligand‐binding site. The nucleophile zone, the oxyanion zone and the residue cluster enriched in aromatic side chains comprise a three‐dimensional structural organization that shapes the active site of ABH enzymes and plays an important role in the enzymatic function by structurally stabilizing the catalytic nucleophile and the residues of the oxyanion hole. The structural data support the notion that the aromatic cluster can participate in co‐ordination of the catalytic histidine loop, and properly place the catalytic histidine next to the catalytic nucleophile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号