首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The role of organic acids in aluminum (Al) tolerance has been the object of intensive research. In the present work, we evaluated the roles of organic acid exudation and concentrations at the root tip on Al tolerance of soybean. Exposing soybean seedlings to Al3+ activities up to 4.7 μ M in solution led to different degrees of restriction of primary root elongation. Al tolerance among genotypes was associated with citrate accumulation and excretion into the external media. Citrate and malate efflux increased in all genotypes during the first 6 h of Al exposure, but only citrate efflux in Al-tolerant genotypes was sustained for an extended period. Tolerance to Al was correlated with the concentration of citrate in root tips of 8 genotypes with a range of Al sensitivities (r2=0.75). The fluorescent stain lumogallion indicated that more Al accumulated in root tips of the Al-sensitive genotype Young than the Al-tolerant genotype PI 416937, suggesting that the sustained release of citrate from roots of the tolerant genotype was involved in Al exclusion. The initial stimulation of citrate and malate excretion and accumulation in the tip of all genotypes suggested the involvement of additional tolerance mechanisms. The experiments included an examination of Al effects on lateral root elongation. Extension of lateral roots was more sensitive to Al than that of tap roots, and lateral root tips accumulated more Al and had lower levels of citrate.  相似文献   

2.
Aluminum (Al) is toxic to plants when solubilized into Al(3+) in acidic soils, and becomes a major factor limiting plant growth. However, the primary cause for Al toxicity remains unknown. Nitric oxide (NO) is an important signaling molecule modulating numerous physiological processes in plants. Here, we investigated the role of NO in Al toxicity to Hibiscus moscheutos. Exposure of H. moscheutos to Al(3+) led to a rapid inhibition of root elongation, and the inhibitory effect was alleviated by NO donor sodium nitroprusside (SNP). NO scavenger and inhibitors of NO synthase (NOS) and nitrate reductase had a similar inhibitory effect on root elongation. The inhibition of root elongation by these treatments was ameliorated by SNP. Aluminum inhibited activity of NOS and reduced endogenous NO concentrations. The alleviation of inhibition of root elongation induced by Al, NO scavenger and NOS inhibitor was correlated with endogenous NO concentrations in root apical cells, suggesting that reduction of endogenous NO concentrations resulting from inhibition of NOS activity could underpin Al-induced arrest of root elongation in H. moscheutos.  相似文献   

3.
油菜外源细胞分裂素不敏感突变体lrn1和prl1表现为磷高效。营养液培养0.2μmol/L细胞分裂素(6-BA)处理,与甘蓝型油菜野生型‘宁油7号’(WT)相比,突变体lrn1侧根较多,prl1主根较长。本研究利用体式显微技术、非切片压片法以及石蜡切片等技术,对3个基因型在ddH2O和0.2μmol/L 6-BA处理下的根毛、根表皮细胞分化及根尖解剖结构的差异进行了观察,结果表明:ddH2O处理,种子发芽后第1、3、6、9 d,lrn1、prl1和WT根尖成熟区根毛较少。0.2μmol/L 6-BA处理,种子发芽后第3 d,lrn1、prl1和WT根尖形成大量根毛,其中WT根毛最多、密度最大;prl1根毛最少,密度也最小;lrn1处于两者之间。种子发芽后第6 d,lrn1、prl1和WT分生区和伸长区明显缩短,lrn1和prl1分生区面积无显著差异,但两者均显著大于WT;lrn1和prl1根冠细胞结构较正常,而WT根冠细胞结构畸形;lrn1皮层原细胞之间排列较WT和prl1紧密。种子发芽后第9 d,lrn1已有4条侧根,但prl1与WT无侧根形成。6-BA处理,prl1主根较长,与其根尖分生区面积较大密切相关;lrn1侧根较多,可能与中柱原细胞排列密度较高密切相关。  相似文献   

4.
The effects of aluminum (Al) on root elongation, the mechanical extensibility of the cell wall, and the amount of cell-wall polysaccharides in the roots of Al-resistant (Atlas 66) and Al-sensitive (Scout 66) cultivars of wheat ( Triticum aestivum L.) were examined. Exposure to 10 μ M AlCl3 for 6 h inhibited root elongation in Scout 66 but not in Atlas 66. It also decreased the mechanical extensibility of the cell wall in the roots of both cultivars, but prominently only in the roots of Scout 66. The amount of hemicellulose in the 10-mm region of root apex of Scout 66 was increased by the exposure to Al, especially in the apical regions. Al did not influence the neutral sugar composition of either pectin or hemicellulose in Scout 66 roots. However, Al increased the weight-average molecular mass of hemicellulosic polysaccharides and the amounts of wall-bound ferulic and diferulic acids in Scout 66 roots. These findings suggest that Al modifies the metabolism of cell-wall components and thus makes the cell wall thick and rigid, thereby inhibiting the growth of wheat roots.  相似文献   

5.
Aluminium (Al) ion limits root growth of plants in acidic soils, and rice exhibits the highest level of Al-tolerance among graminous crops. To elucidate Al-tolerance mechanisms in rice, response to Al was compared between rice (Oryza sativa L., cv. Nipponbare) and wheat (Triticum aestivum L., cv. ET8), focusing on seminal root growth at seedling stage and germination stage. At seedling stage, rice and wheat were similarly sensitive to Al in both dose- and time-dependent manner during a 24-h Al exposure. On the contrary, at germination stage, rice was more tolerant to Al than wheat, and wheat roots displayed the loss of plasma membrane integrity more extensively than rice. A rice mutant exhibiting Al hypersensitivity at germination stage was obtained by screening 42,840 R2 progeny derived from the regenerated R0 plants of Nipponbare and thereafter confirmation of the mutant phenotype in R3 progeny. At germination stage, root growth of the mutant was strongly inhibited in the presence of Al but not in the absence of Al. However, at seedling stage, root growth of the mutant and wild type was similarly tolerant to Al. Taken together, we conclude that rice possesses Al-tolerant function that is under genetic control and specifically operates for root growth at germination stage, making rice more tolerant to Al than wheat.  相似文献   

6.
We investigated the uptake and distribution of Al in root apices of near-isogenic wheat (Triticum aestivum L.) lines differing in Al tolerance at a single locus (Alt1: aluminum tolerance). Seedlings were grown in nutrient solution that contained 100 [mu]M Al, and the roots were subsequently stained with hematoxylin, a compound that binds Al in vitro to form a colored complex. Root apices of Al-sensitive genotypes stained after short exposures to Al (10 min and 1 h), whereas apices of Al-tolerant seedlings showed less intense staining after equivalent exposures. Differential staining preceded differences observed in either root elongation or total Al concentrations of root apices (terminal 2-3 mm of root). After 4 h of exposure to 100 [mu]M Al in nutrient solution, Al-sensitive genotypes accumulated more total Al in root apices than Al-tolerant genotypes, and the differences became more marked with time. Analysis of freeze-dried root apices by x-ray microanalysis showed that Al entered root apices of Al-sensitive plants and accumulated in the epidermal layer and in the cortical layer immediately below the epidermis. Long-term exposure of sensitive apices to Al (24 h) resulted in a distribution of Al coinciding with the absence of K. Quantitation of Al in the cortical layer showed that sensitive apices accumulated 5- to 10-fold more Al than tolerant apices exposed to Al solutions for equivalent times. These data are consistent with the hypothesis that Alt1 encodes a mechanism that excludes Al from root apices.  相似文献   

7.
Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots   总被引:4,自引:0,他引:4  
We investigated the relation between the toxic effect of aluminum (Al) on root growth and the lignin deposition in wheat ( Triticum aestivum L. cvs Atlas 66 and Scout 66). In the Al-tolerant cultivar Atlas 66, control treatment without AlCl3 at pH 4.75, cell length increased dramatically in the portion of the root that was 0.6 to 3.2 mm from the root cap junction (approximately 1.0 to 3.6 mm from the root tip). However, treatment with 20 μ M AlCl3 for 24 and 48 h completely inhibited root elongation and markedly decreased the length and increased the diameter of the cells in the same portion of the root. Moreover, marked deposition of lignin was observed in the cells that corresponded to the portion 1.5 to 4.5 mm from the root tip in Atlas 66 roots treated with 20 μ M AlCl3, while no deposition of lignin was detected in control roots. Treatment with 5 μ M AlCl3 slightly inhibited root growth and there was no deposition of lignin in the root. On the other hand, in roots of the Al-sensitive cultivar Scout 66, treatment with 5 μ M AlCl3 completely inhibited root growth and markedly induced deposition of lignin. These results suggest that lignification in the elongating region coincided with the extent of inhibition of root growth by Al in two wheat cultivars that differed in their sensitivity to Al.  相似文献   

8.
The effect of Aluminum (Al) on phytosiderophore-mediated solubilization of insoluble Fe and the uptake of phytosiderophore-Fe3+ complex was examined in wheat ( Triticum aestivum L. cv. Atlas 66). Al addition did not affect the Fe solubilization by 2'-deoxymugineic acid (DMA), although Cu addition significantly inhibited the solubilization capacity. Addition of ten times more Al than Fe to the solution of DMA-Fe3+ complex did not decrease the absorption of the DMA-Fe3+ complex at 375 nm. Furthermore, NMR study indicated that Al did not shift the proton chemical shifts of DMA. All these results suggest that Al could not form a complex with the phytosiderophore, and is thereby unlikely to affect the process of phytosiderophore-mediated solubilization of Fe. Exposure of root to Al up to 100 μ M for 3 h did not inhibit the DMA-Fe3+ uptake by the roots, but longer pretreatment (>6 h) inhibited the uptake of the DMA-Fe3+ by more than 50%. Neither the uptake of DMA-Fe3+ nor root elongation was inhibited by 24 h pretreatment with 10 μ M Al, but both uptake and root elongation were inhibited by higher Al (>20 μ M ) pretreatment. These results suggest that Al did not directly block the transport of the phytosiderophore-Fe3+ complex, and that the decreased uptake of the phytosiderophore-Fe3+ complex resulted from the roots being damaged by Al.  相似文献   

9.
Aluminium (Al) irreversibly inhibits root growth in sensitive, but not in some tolerant genotypes. To better understand tolerance mechanisms, seedlings from tolerant ('Barbela 7/72' line) and sensitive ('Anahuac') Triticum aestivum L. genotypes were exposed to AlCl(3) 185 μM for: (a) 24 h followed by 48 h without Al (recovery); (b) 72 h of continuous exposure. Three root zones were analyzed (meristematic (MZ), elongation (EZ) and hairy (HZ)) for callose deposition, reserves (starch and lipids) accumulation, endodermis differentiation and tissue architecture. Putative Al-induced genotoxic or cytostatic/mytogenic effects were assessed by flow cytometry in root apices. Tolerant plants accumulated less Al, presented less root damage and a less generalized callose distribution than sensitive ones. Starch and lipid reserves remained constant in tolerant roots but drastically decreased in sensitive ones. Al induced different profiles of endodermis differentiation: differentiation was promoted in EZ and HZ, respectively, in sensitive and tolerant genotypes. No ploidy changes or clastogenicity were observed. However, differences in cell cycle blockage profiles were detected, being less severe in tolerant roots. After Al removal, only the 'Barbela 7/72' line reversed Al-induced effects to values closer to the control, mostly with respect to callose deposition and cell cycle progression. We demonstrate for the first time that: (a) cell cycle progression is differently regulated by Al-tolerant and Al-sensitive genotypes; (b) Al induces callose deposition >3 cm above root apex (in HZ); (c) callose deposition is a transient Al-induced effect in tolerant plants; and (d) in HZ, endodermis differentiation is also stimulated only in tolerant plants, probably functioning in tolerant genotypes as a protective mechanism in addition to callose.  相似文献   

10.
The spatial distribution of lateral roots in the soil is an important factor influencing water and nutrient absorption. However, lateral root development has rarely been studied in detail, especially concerning morphological variations, mainly because such examinations are both time-consuming and laborious. We measured the number and length of all first-order lateral roots on the seminal roots of maize ( Zea mays L.) and wheat ( Triticum aestivum L.) to investigate variations in linear frequency and length. This was conducted with reference to species, root types, and positions on their parental roots. Although the linear frequency of first-order lateral roots varied along the root axis in maize, the variation was not as great as in wheat. Variations were found in the length of lateral roots among plant species, root types, and positions on their parental root axes. Such variations in the length of lateral roots along the root axes were caused by differences in the elongation period of lateral roots rather than those in the elongation rate. Additionally, we examined the effects of soil drying on lateral root development. As a response to soil drying, the length of lateral roots varied depending on the period they were placed under the stressed condition. Moderate soil drying could also accelerate the elongation of some lateral roots. Variations in the length of first-order lateral roots and their responses to soil drying could help distribute their tips thoroughly throughout the soil. This might be adaptive for water absorption for root system development when resources are limited.  相似文献   

11.
Using common beans differing greatly in the response to photoperiod and low-phosphorus (P) stress, we investigated their responses to acidity and aluminum (Al) toxicity and the relationship between Al tolerance and organic acid exudation under Al or low P stress. A genotype Ginshi was found to be sensitive to low pH treatment. When exposed to pH 4.5, serious curvature in the root tips of cv. Ginshi was observed; however, it was completely corrected by the application of 5 or 10 μmol/L AlCl3; increasing calcium (Ca) could ameliorate Al toxicity, but it could not correct root curvature at pH 4.5. Common beans showed significant differences in both root growth and Al tolerance, and the varieties from the Andes were more tolerant to Al toxicity than those from the Mesoamerican origin. In the presence of 50 μmol/L AlCl3, all the common bean genotypes exuded citrate, and a significant difference in the amounts of citrate was observed among genotypes. The genotypes originated in the Mesoamerica tended to release more citrate than other origins in the presence of Al. The P-inefficient genotype DOR364 exuded more citrate than the P-efficient genotype G19833 in the presence of 50 μmol/L AlCl3, whereas no organic acids were detected in root exudates under low-P stress. A reduction of citrate exudation in the DOR364, but a slight increase of citrate exudation in the G19833, was observed under Al stress after they were exposed to 6-d P starvation. These results suggest that different low-P or Al tolerance in common beans might not be associated with organic acid exudation.  相似文献   

12.
Using common beans differing greatly in the response to photoperiod and low-phosphorus (P) stress, we investigated their responses to acidity and aluminum (Al)toxicity and the relationship between Al tolerance and organic acid exudation under Al or low P stress. A genotype Ginshi was found to be sensitive to low pH treatment. When exposed to pH 4.5, serious curvature in the root tips of cv. Ginshi was observed; however, it was completely corrected by the application of 5 or 10 μmol/L AlCl3; increasing calcium (Ca) could ameliorate Al toxicity, but it could not correct root curvature at pH 4.5. Common beans showed significant differences in both root growth and Al tolerance, and the varieties from the Andes were more tolerant to Al toxicity than those from the Mesoamerican origin. In the presence of 50 μmol/L AlCl3,all the common bean genotypes exuded citrate, and a significant difference in the amounts of citrate was observed among genotypes. The genotypes originated in the Mesoamerica tended to release more citrate than other origins in the presence of Al. The P-inefficient genotype DOR364 exuded more citrate than the P-efficient genotype G19833 in the presence of 50 μmol/L AlCl3, whereas no organic acids were detected in root exudates under low-P stress. A reduction of citrate exudation in the DOR364, but a slight increase of citrate exudation in the G19833, was observed under Al stress after they were exposed to 6-d P starvation. These results suggest that different low-P or Al tolerance in common beans might not be associated with organic acid exudation.  相似文献   

13.
14.
The initial response of plants to aluminium (Al) is an inhibition of root elongation. In the present study, short and medium-term effects of Al treatment (20 muM) on root growth and Al accumulation of two common bean (Phaseolus vulgaris L.) genotypes, VAX-1 (Al-sensitive) and Quimbaya (Al-resistant), were studied. Root elongation of both genotypes was severely inhibited during the first 3-4 h of Al treatment. Thereafter, both genotypes showed gradual recovery. However, this recovery continued in genotype Quimbaya until the root elongation rate reached the level of the control (without Al) while the genotype VAX-1 was increasingly damaged by Al after 12 h of Al treatment. Short-term Al treatment (90 microM Al) to different zones of the root apex using agarose blocks corroborated the importance of the transition zone (TZ, 1-2 mm) as a main target of Al. However, Al applied to the elongation zone (EZ) also contributed to the overall inhibition of root elongation. Enhanced inhibition of root elongation during the initial 4 h of Al treatment was related to high Al accumulation in root apices in both genotypes (Quimbaya>VAX-1). Recovery from Al stress was reflected by decreasing Al contents especially in the TZ, but also in the EZ. After 24 h of Al treatment the high Al resistance of Quimbaya was reflected by much lower Al contents in the entire root apex. The results confirmed that genotypic differences in Al resistance in common bean are built up during medium-term exposure of the roots to Al. For this acquisition of Al resistance, the activation and maintenance of an Al exclusion mechanism, especially in the TZ but also in the EZ, appears to be decisive.  相似文献   

15.
以小麦品种‘石麦15’和‘衡观35’为材料进行营养液水培试验,研究不同浓度硝态氮供应对小麦苗期根系形态、钙离子流特征及钙调蛋白(CaM)含量的影响。结果表明,与适宜浓度硝态氮处理(2.5mmol/L)相比,无外源硝态氮供应时小麦地上部鲜重、硝态氮含量均降低,侧根数量显著减少;高浓度硝态氮处理(50mmol/L)下两个小麦品种地上部硝态氮含量升高,根系总长度降低,‘石麦15’侧根数量减少。无硝态氮和高浓度硝态氮处理下,根系中钙调蛋白含量降低,且‘衡观35’的降低幅度大于‘石麦15’。无外源硝态氮供应时小麦根尖表现出较为明显的钙离子外流特征;与适宜浓度硝态氮处理相比,高硝态氮处理下小麦根尖Ca2+的内流速度显著下降。说明硝态氮供应不足和高浓度硝态氮供应会影响小麦根系生长,根系Ca2+外流或Ca2+内流速度下降,CaM含量减少,Ca2+/CaM可能介导硝态氮调控小麦根系生长发育。  相似文献   

16.
The geometric and energetic characteristics of root surfaces of two wheat (Triticum L.) varieties, Al tolerant (Inia 66/16) and Al sensitive (Henika), were estimated from experimental water vapor adsorption–desorption data. Roots stressed for around 1 week at pH 4 without and with a toxic aluminium level (0.741 mol m–3) were studied at the tillering and shooting stages. Roots grown continuously at pH 7 were taken as control. The surface properties of the pH 4 stressed roots were apparently the same as those of the control roots whatever the root age. For the roots of both varieties, the surface area and total micropore volume increased markedly after aluminium treatment. The average micropore radius increased significantly for the sensitive wheat, whereas it increased only slightly for the resistant one. Under Al treatment the number of large pores increased while small pores were fewer for both plants, indicating a possible alteration of the build-up of root tissue. The root surface pores were fractal. The fractal dimension of the sensitive wheat roots decreased under Al treatment, whereas for the resistant wheat this remained apparently unchanged. The adsorption energy distribution functions had different shapes for the sensitive and the resistant wheat varieties: the sensitive variety had greater number of high energy adsorption centers, which implies that the root tolerance on Al stress may be connected with lower polarity of the surface.  相似文献   

17.
Seeds of the water plant Trapa natans L. (water chestnut) can germinate in strict anoxia. The seedlings show seminal roots growing upwards while shoot buds remain quiescent until O2 becomes available. Trapa seedlings are highly tolerant to anoxia. The rate of ethanol fermentation was 21.2 μmol (g FW)−1 h−1, while production of lactate was negligible and lower than that of succinate. The seminal root of Trapa compares better to the rice coleoptile rather than to the rice root, both functionally and as to the metabolic response to anoxia. The anaerobic germination of Nuphar luteum L. and Scirpus mucronatus L. was also characterized by a limited developmental program.  相似文献   

18.
Hydrogen peroxide (H2O2) is a key reactive oxygen species (ROS) in signal transduction pathways leading to activation of plant defenses against biotic and abiotic stresses. In this study, we investigated the effects of H2O2 pretreatment on aluminum (Al) induced antioxidant responses in root tips of two wheat (Triticum aestivum L.) genotypes, Yangmai‐5 (Al‐sensitive) and Jian‐864 (Al‐tolerant). Al increased accumulation of H2O2 and O2?? leading to more predominant lipid peroxidation, programmed cell death and root elongation inhibition in Yangmai‐5 than in Jian‐864. However, H2O2 pretreatment alleviated Al‐induced deleterious effects in both genotypes. Under Al stress, H2O2 pretreatment increased the activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and monodehydroascorbate reductase, glutathione reductase and glutathione peroxidase as well as the levels of ascorbate and glutathione more significantly in Yangmai‐5 than in Jian‐864. Furthermore, H2O2 pretreatment also increased the total antioxidant capacity evaluated as the 2, 2‐diphenyl‐1‐picrylhydrazyl‐radical scavenging activity and the ferric reducing/antioxidant power more significantly in Yangmai‐5 than in Jian‐864. Therefore, we conclude that H2O2 pretreatment improves wheat Al acclimation during subsequent Al exposure by enhancing the antioxidant defense capacity, which prevents ROS accumulation, and that the enhancement is greater in the Al‐sensitive genotype than in the Al‐tolerant genotype.  相似文献   

19.
采用水培法比较4种禾本科植物水稻(Oryza sativa L.)、玉米(Zea mays L.)、高粱(Sorghum bicolor(L.)Moench)和小麦(Triticum aestivum L.)8个基因型的抗铝(Al)能力,并对他们在Al积累后细胞壁的多糖组分进行分析。结果显示,在5~200 μmol/L Al处理下,水稻抗Al能力较强,而小麦抗Al能力较弱。在50 μmol/L Al处理下,小麦根尖的果胶和半纤维素1含量的增幅明显高于水稻。水稻基因型‘日本晴’与‘浙辐802’的细胞壁Al含量分别占根尖总Al含量的78.7%和91.6%;小麦基因型‘扬麦18’与‘扬麦16’Al含量分别占根尖总Al含量的64.9%和72.1%。Al吸附-解吸实验结果显示,小麦根尖细胞壁上Al的吸附量高于水稻。研究结果表明,细胞壁是Al积累的主要部位,对Al敏感的水稻和小麦基因型细胞壁中的Al主要分布在果胶中;而对Al耐性较强的水稻和小麦基因型细胞壁中的Al主要分布在半纤维素1中。  相似文献   

20.
以2个荞麦(Fygopyrum esculentum Moench)基因型‘江西荞麦’(耐性)和‘内蒙荞麦’(敏感)为材料,采用悬空培养(保持边缘细胞附着于根尖和去除根尖边缘细胞),研究边缘细胞对根尖铝毒的防护效应以及对细胞壁多糖组分的影响。结果表明,铝毒抑制荞麦根系伸长,导致根尖Al积累。去除边缘细胞的根伸长抑制率和根尖Al含量高于保留边缘细胞的根。去除边缘细胞使江西荞麦和内蒙荞麦根尖的酸性磷酸酶(APA)活性显著升高,前者在铝毒下增幅更大。同时,铝毒胁迫下去除边缘细胞的根尖果胶甲酯酶(PME)活性和细胞壁果胶、半纤维素1、半纤维素2含量显著高于保留边缘细胞的酶活性和细胞壁多糖含量。表明边缘细胞对荞麦根尖的防护效应,与其阻止Al的吸收,降低根尖细胞壁多糖含量及提高酸性磷酸酶活性有关,以此缓解Al对根伸长的抑制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号