首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Song T  Fang L  Zeng S  Li B  Chen H  Xiao S 《Journal of virology》2012,86(7):4040-4041
WUH4 is a highly pathogenic North American porcine reproductive and respiratory syndrome virus (PRRSV). Unlike previous PRRSV isolates, which were mainly recovered from sera or tissues, WUH4 was isolated from a piglet stool sample. Here we announce its complete genome sequence.  相似文献   

3.
Xiong  Dongyan  Muema  Caroline  Zhang  Xiaoxu  Pan  Xinming  Xiong  Jin  Yang  Hang  Yu  Junping  Wei  Hongping 《中国病毒学》2021,36(5):924-933
Virologica Sinica - As a respiratory tract virus, SARS-CoV-2 infected people through contacting with the upper respiratory tract first. Previous studies indicated that microbiota could modulate...  相似文献   

4.
Archives of Microbiology - Severe acute respiratory syndrome virus 2 (SARS-CoV-2) belongs to the single-stranded positive-sense RNA family. The virus contains a large genome that encodes four...  相似文献   

5.
Iota-carrageenan (IC) nasal spray, a medical device approved for treating respiratory viral infections, has previously been shown to inhibit the ability of a variety of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to enter and replicate in the cell by interfering with the virus binding to the cell surface. The aim of this study was to further investigate the efficacy and safety of IC in SARS-CoV-2 infection in advanced in vitro models of the human respiratory epithelium, the primary target and entry port for SARS-CoV-2. We extended the in vitro safety assessment of nebulized IC in a 3-dimensional model of reconstituted human bronchial epithelium, and we demonstrated the efficacy of IC in protecting reconstituted nasal epithelium against viral infection and replication of a patient-derived SARS-CoV-2 strain. The results obtained from these two advanced models of human respiratory tract epithelia confirm previous findings from in vitro SARS-CoV-2 infection assays and demonstrate that topically applied IC can effectively prevent SARS-CoV-2 infection and replication. Moreover, the absence of toxicity and functional and structural impairment of the mucociliary epithelium demonstrates that the nebulized IC is well tolerated.  相似文献   

6.

In December 2019, the emergence and expansion of novel and infectious respiratory virus SARS-CoV-2 originated from Wuhan, China caused an unprecedented threat to the public health and became a global pandemic. SARS-CoV-2 is an enveloped, positive sense and single stranded RNA virus belonging to genera betacoronavirus, of Coronaviridae family. The viral genome sequencing studies revealed 75–80% similarity with SARS-CoV. SARS-CoV-2 mainly affects the lower respiratory system and may progress to pneumonia and Acute Respiratory Distress Syndrome (ARDS). Apart from life-threatening situations and burden on the global healthcare system, the COVID-19 pandemic has imposed several challenges on the worldwide economics and livelihood. The novel pathogen is highly virulent, rapidly mutating and has a tendency to cross the species boundaries such as from bats to humans through the evolution and natural selection from intermediate host. In this review we tried to summarize the overall picture of SARS-CoV-2 including origin/ emergence, epidemiology, pathogenesis, genome organization, comparative analysis with other CoVs, infection and replication mechanism along with cellular tropism and immunopathogenesis which will provide a brief panoramic view about the virus and disease.

  相似文献   

7.
The new coronavirus pandemic started in China in 2019. The intensity of the disease can range from mild to severe, leading to death in many cases. Despite extensive research in this area, the exact molecular nature of virus is not fully recognized; however, according to pieces of evidence, one of the mechanisms of virus pathogenesis is through the function of viral miRNAs. So, we hypothesized that SARS-CoV-2 pathogenesis may be due to targeting important genes in the host with its miRNAs, which involved in the respiratory system, immune pathways and vitamin D pathways, thus possibly contributing to disease progression and virus survival. Potential miRNA precursors and mature miRNA were predicted and confirmed based on the virus genome. The next step was to predict and identify their target genes and perform functional enrichment analysis to recognize the biological processes connected with these genes in the three pathways mentioned above through several comprehensive databases. Finally, cis-acting regulatory elements in 5′ regulatory regions were analysed, and the analysis of available RNAseq data determined the expression level of genes. We revealed that thirty-nine mature miRNAs could theoretically derive from the SARS-CoV-2 genome. Functional enrichment analysis elucidated three highlighted pathways involved in SARS-CoV-2 pathogenesis: vitamin D, immune system and respiratory system. Our finding highlighted genes' involvement in three crucial molecular pathways and may help develop new therapeutic targets related to SARS-CoV-2.  相似文献   

8.
Coxsackie disease comprises three clinical entities-herpangina, so-called non-paralytic poliomyelitis, and epidemic pleurodynia. Several strains of antigenically-related viruses, Groups A and B, designated as Coxsackie virus have been isolated from stool specimens and from material from the throat of many patients with the diseases mentioned. Inasmuch as the virus has also been recovered from normal persons, there is as yet uncertainty as to causal relationship between the presence of the virus and the disease. Reports of the isolation of Coxsackie virus and poliomyelitis virus from the same patient make difficult the interpretation of the findings. The diagnosis of Coxsackie disease entails animal inoculation and serologic procedures. Emphasis is placed on the necessity of obtaining stool specimens, throat washings, and "paired" blood specimens from patients suspected of the disease.  相似文献   

9.
《遗传学报》2020,47(10):610-617
In response to the current coronavirus disease 2019 (COVID-19) pandemic, it is crucial to understand the origin, transmission, and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which relies on close surveillance of genomic diversity in clinical samples. Although the mutation at the population level had been extensively investigated, how the mutations evolve at the individual level is largely unknown. Eighteen time-series fecal samples were collected from nine patients with COVID-19 during the convalescent phase. The nucleic acids of SARS-CoV-2 were enriched by the hybrid capture method. First, we demonstrated the outstanding performance of the hybrid capture method in detecting intra-host variants. We identified 229 intra-host variants at 182 sites in 18 fecal samples. Among them, nineteen variants presented frequency changes > 0.3 within 1–5 days, reflecting highly dynamic intra-host viral populations. Moreover, the evolution of the viral genome demonstrated that the virus was probably viable in the gastrointestinal tract during the convalescent period. Meanwhile, we also found that the same mutation showed a distinct pattern of frequency changes in different individuals, indicating a strong random drift. In summary, dramatic changes of the SARS-CoV-2 genome were detected in fecal samples during the convalescent period; whether the viral load in feces is sufficient to establish an infection warranted further investigation.  相似文献   

10.
Coxsackie disease comprises three clinical entities—herpangina, so-called non-paralytic poliomyelitis, and epidemic pleurodynia. Several strains of antigenically-related viruses, Groups A and B, designated as Coxsackie virus have been isolated from stool specimens and from material from the throat of many patients with the diseases mentioned. Inasmuch as the virus has also been recovered from normal persons, there is as yet uncertainty as to causal relationship between the presence of the virus and the disease. Reports of the isolation of Coxsackie virus and poliomyelitis virus from the same patient make difficult the interpretation of the findings.The diagnosis of Coxsackie disease entails animal inoculation and serologic procedures. Emphasis is placed on the necessity of obtaining stool specimens, throat washings, and “paired” blood specimens from patients suspected of the disease.  相似文献   

11.
Considering common childhood respiratory viruses and SARS-CoV-2 share similar transmission routes, non-pharmaceutical interventions (NPIs) to prevent SARS-CoV-2 may affect the epidemiology of respiratory viruses. Therefore, our study aimed to observe the epidemiologic characteristics of common childhood respiratory viruses in 2020 (after the pandemic) compared with 2019 (before the pandemic) in Hangzhou, China. The data were compared between 2019 and 2020 based on age and month, respectively. One or more viruses were detected in 3135/21452 (14.61%) specimens in 2019, which was significantly lower in 1110/8202 (13.53%) specimens in 2020. Respiratory syncytial virus (RSV) was the most commonly detected virus in 2019 and 2020. The positive rate of adenovirus (ADV), parainfluenza virus (PIV)1, PIV2, and PIV3 in 2020 was significantly decreased in 2019. In 2020, RSV replaced ADV as the most predominant virus in children aged 1–6 years, and the positive rate of influenza virus A (FluA), influenza virus B (FluB), PIV1, and PIV2 was not correlated to age. FluA, FluB, and PIV2 were not almost detected from February 2020. The positive rates of ADV and PIV1 were uncorrelated to the month in 2020. By strict NPIs, besides controlling the COVID-19 pandemic, incredible progress has been made to reduce the prevalence of common childhood respiratory viruses.  相似文献   

12.
At the end of 2019, an outbreak of a severe respiratory disease occurred in Wuhan China, and an increase in cases of unknown pneumonia was alerted. In January 2020, a new coronavirus named SARS-CoV-2 was identified as the cause. The virus spreads primarily through the respiratory tract, and lymphopenia and cytokine storms have been observed in severely ill patients. This suggests the existence of an immune dysregulation as an accompanying event during a serious illness caused by this virus. Natural killer (NK) cells are innate immune responders, critical for virus shedding and immunomodulation. Despite its importance in viral infections, the contribution of NK cells in the fight against SARS-CoV-2 has yet to be deciphered. Different studies in patients with COVID-19 suggest a significant reduction in the number and function of NK cells due to their exhaustion. In this review, we summarize the current understanding of how NK cells respond to SARS-CoV-2 infection.  相似文献   

13.
We report the identification of a novel polyomavirus present in respiratory secretions from human patients with symptoms of acute respiratory tract infection. The virus was initially detected in a nasopharyngeal aspirate from a 3-year-old child from Australia diagnosed with pneumonia. A random library was generated from nucleic acids extracted from the nasopharyngeal aspirate and analyzed by high throughput DNA sequencing. Multiple DNA fragments were cloned that possessed limited homology to known polyomaviruses. We subsequently sequenced the entire virus genome of 5,229 bp, henceforth referred to as WU virus, and found it to have genomic features characteristic of the family Polyomaviridae. The genome was predicted to encode small T antigen, large T antigen, and three capsid proteins: VP1, VP2, and VP3. Phylogenetic analysis clearly revealed that the WU virus was divergent from all known polyomaviruses. Screening of 2,135 patients with acute respiratory tract infections in Brisbane, Queensland, Australia, and St. Louis, Missouri, United States, using WU virus-specific PCR primers resulted in the detection of 43 additional specimens that contained WU virus. The presence of multiple instances of the virus in two continents suggests that this virus is geographically widespread in the human population and raises the possibility that the WU virus may be a human pathogen.  相似文献   

14.
15.
《Genomics》2021,113(6):4109-4115
Genetic variants of SARS-CoV-2 have been emerging and circulating in many places across the world. Rapid detection of these variants is essential since their dissemination can impact transmission rates, diagnostic procedures, disease severity, response to vaccines or patient management. Sanger sequencing has been used as the preferred approach for variant detection among circulating human immunodeficiency and measles virus genotypes. Using primers to amplify a fragment of the SARS-CoV-2 genome encoding part of the Spike protein, we showed that Sanger sequencing allowed us to rapidly detect the introduction and spread of three distinct SARS-CoV-2 variants in two major Brazilian cities. In both cities, after the predominance of variants closely related to the virus first identified in China, the emergence of the P.2 variant was quickly followed by the detection of the P1 variant, which became dominant in less than one month after it was first detected.  相似文献   

16.
Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene as well as the A22920T mutation, resulting in the Y453F substitution within this protein, seen previously in mink. The infected mink recovered and after free-testing of 300 mink (a level giving 93% confidence of detecting a 1% prevalence), the animals remained seropositive. During further follow-up studies, after a period of more than 2 months without any virus detection, over 75% of tested animals again scored positive for SARS-CoV-2 RNA. Whole genome sequencing showed that the viruses circulating during this re-infection were most closely related to those identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies in serum samples after the second round of infection than at free-testing or during recovery from initial infection, consistent with a boosted immune response. Thus, it was concluded that following recovery from an initial infection, seropositive mink were readily re-infected by SARS-CoV-2.  相似文献   

17.
18.
Rapid and reliable laboratory diagnosis of persons suspected of Middle East respiratory syndrome coronavirus (MERS-CoV) infection is important for timely implementation of infection control practices and disease management. In addition, monitoring molecular changes in the virus can help elucidate chains of transmission and identify mutations that might influence virus transmission efficiency. This was illustrated by a recent laboratory investigation we conducted on an imported MERS-CoV case in Greece. Two oropharyngeal swab specimens were collected on the 1st and 2nd day of patient hospitalization and tested using two real-time RT-PCR (rRT-PCR) assays targeting the UpE and Orf-1a regions of the MERS-CoV genome and RT-PCR and partial sequencing of RNA-dependent RNA polymerase and nucleocapsid genes. Serum specimens were also collected and serological test were performed. Results from the first swab sample were inconclusive while the second swab was strongly positive for MERS-CoV RNA by rRT-PCR and confirmed positive by RT-PCR and partial gene sequencing. Positive serologic test results further confirmed MERS-CoV infection. Full-length nucleocapsid and spike gene coding sequences were later obtained from the positive swab sample. Phylogenetic analysis revealed that the virus was closely related to recent human-derived MERS-CoV strains obtained in Jeddah and Makkah, Saudi Arabia, in April 2014 and dromedary camels in Saudi Arabia and Qatar. These findings were consistent with the patient’s history. We also identified a unique amino acid substitution in the spike receptor binding domain that may have implications for receptor binding efficiency. Our initial inconclusive rRT-PCR results highlight the importance of collecting multiple specimens from suspect MERS-CoV cases and particularly specimens from the lower respiratory tract.  相似文献   

19.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces coronavirus disease 2019 (COVID-19) and may increase the risk of adverse outcomes in lung cancer patients. In this study, we investigated the expression and function of mucin 1 (MUC1) after SARS-CoV-2 infection in the lung epithelial cancer cell line Calu-3. MUC1 is a major constituent of the mucus layer in the respiratory tract and contributes to pathogen defense. SARS-CoV-2 infection induced MUC1 C-terminal subunit (MUC1-C) expression in a STAT3 activation-dependent manner. Inhibition of MUC1-C signaling increased apoptosis-related protein levels and reduced proliferation-related protein levels; however, SARS-CoV-2 replication was not affected. Together, these results suggest that increased MUC1-C expression in response to SARS-CoV-2 infection may trigger the growth of lung cancer cells, and COVID-19 may be a risk factor for lung cancer patients.  相似文献   

20.
Routine screening of lung transplant recipients and hospital patients for respiratory virus infections allowed to identify human rhinovirus (HRV) in the upper and lower respiratory tracts, including immunocompromised hosts chronically infected with the same strain over weeks or months. Phylogenetic analysis of 144 HRV-positive samples showed no apparent correlation between a given viral genotype or species and their ability to invade the lower respiratory tract or lead to protracted infection. By contrast, protracted infections were found almost exclusively in immunocompromised patients, thus suggesting that host factors rather than the virus genotype modulate disease outcome, in particular the immune response. Complete genome sequencing of five chronic cases to study rhinovirus genome adaptation showed that the calculated mutation frequency was in the range observed during acute human infections. Analysis of mutation hot spot regions between specimens collected at different times or in different body sites revealed that non-synonymous changes were mostly concentrated in the viral capsid genes VP1, VP2 and VP3, independent of the HRV type. In an immunosuppressed lung transplant recipient infected with the same HRV strain for more than two years, both classical and ultra-deep sequencing of samples collected at different time points in the upper and lower respiratory tracts showed that these virus populations were phylogenetically indistinguishable over the course of infection, except for the last month. Specific signatures were found in the last two lower respiratory tract populations, including changes in the 5'UTR polypyrimidine tract and the VP2 immunogenic site 2. These results highlight for the first time the ability of a given rhinovirus to evolve in the course of a natural infection in immunocompromised patients and complement data obtained from previous experimental inoculation studies in immunocompetent volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号