首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nature and magnitude of the surface dipole potential chi at a membrane/water interface still remain open to discussion. By combining measurements of differential capacity C and charge density sigma at the interface between self-assembled monolayers of phosphatidylserine and phosphatidic acid supported by mercury and aqueous electrolytes of different concentration and pH, a sigmoidal dependence of chi upon sigma is revealed, with the inflection at sigma = 0. This behavior is strongly reminiscent of the surface dipole potential due to reorientation of adsorbed water molecules at electrified interfaces. The small increase in C with a decrease in the frequency of the AC signal below approximately 80 Hz, as observed with phospholipid monolayers with partially protonated polar groups, is explained either by a sluggish collective reorientation of some polar groups of the lipid or by a sluggish movement of protons across the polar head region.  相似文献   

3.
The aqueous solubilities of the Na+ and Ca2+ salts and the free acid forms of phosphorylcholine, phosphorylethanolamine and d,l-phospho-serine, respectively, were found to be below the polar group concentrations calculated for bilayers of the corresponding phospholipids.  相似文献   

4.
The dipole potentials, ψ d, of phospholipid vesicles composed of pure dimyristoylphosphatidylcholine (DMPC) or vesicles in which 50 mol% of the DMPC was substituted by dimyristoylphosphatidylserine (DMPS), dimyristoylphosphatidylglycerol (DMPG), dimyristoylethanolamine (DMPE), dimyristoylphosphatidic acid (DMPA) or monomyristoylphosphatidylcholine (MMPC) were measured via a fluorescent ratiometric method utilizing the probe di-8-ANEPPS. The PS and PG headgroups were found to cause only minor changes in ψ d. PE caused an increase in ψ d of 51 mV. This could be explained by a decrease in the dielectric constant of the glycerol backbone region as well as a movement of the P–N+ dipole of the less bulky PE headgroup to a position more parallel to the membrane surface than in PC. The negatively charged PA headgroup increases ψ d by 215 mV relative to PC alone. This indicates that the positive pole of the dipole predominantly responsible for the dipole potential is located at a position closer to the interior of the membrane than the phosphate group. The increase in the charge of the negative pole of the dipole by the phosphate group of PA increases the electrical potential drop across the lipid headgroup region. The incorporation of the single chain lipid MMPC into the membrane causes a decrease in ψ d of 142 mV. This can be explained by a decrease in packing density within the membrane of carbonyl dipoles from the sn-2 chain of DMPC. The results presented should contribute to a better understanding of the electrical effect of lipid headgroups on the functioning of membrane proteins.  相似文献   

5.
The aqueous solubilities of the Na+ and Ca2+ salts and the free acid forms of phosphorylcholine, phosphorylethanolamine and D,L-phospho-serine, respectively, were found to be below the polar group concentrations calculated for bilayers of the corresponding phospholipids.  相似文献   

6.
The behavior of two gramicidins incorporated into lipid monolayers is analyzed on the basis of the force and surface potential area curves. It is shown that the position of the gramicidins (helical axis parallel or perpendicular to the interface) depends on the monolayer pressure and that these molecules are not miscible with dioleoylphosphatidylcholine. Surface potential measurements suggest the existence of a relationship between the single channel characteristics and the surface potential and indicate that the tryptophans are essential for lowering the lipid surface potential in agreement with the single channel behaviour of both gramicidin A and gramicidin M.  相似文献   

7.
8.
The dipole potential and the area changes induced by trehalose on dimyristoyl phosphatidylcholine (DMPC), 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (dietherPC), dimyristoyl phosphatidylethanolamine (DMPE), 1,2-di-O-tetradecyl-sn-glycero-3-phosphoethanolamine (dietherPE) monolayers have been studied at different temperatures. The insertion of trehalose into DMPC monolayers in the fluid and gel states requires of the presence of carbonyl groups. The area increase observed at 0.15M trehalose is congruent with the decrease in the dipole potential. However, in dietherPC, in which trehalose does not affect the area, a decrease in the dipole potential is also observed. This is interpreted as a result of the displacement of water from the phosphate groups exposed to the aqueous phase. In DMPE, trehalose also decreases the dipole potential without affecting the area of saturated monolayers and in dietherPE no effect on dipole potential and area was observed. It is concluded that the spacer effect of trehalose depends on the specific interaction with CO, which is modulated by the strength of the interaction of the PO groups with lateral NH groups. However, it is not the only contribution to the dipole potential decrease.  相似文献   

9.
The effect of channel-forming peptide gramicidin A on the dipole potential of phospholipid monolayers and bilayers has been studied. Surface pressure and surface potential isotherms of monolayers have been measured with a Langmuir trough equipped with a Wilhelmy balance and a surface potential meter (Kelvin probe). Gramicidin has been shown to shift pressure-area isotherms of phospholipids and to reduce their monolayer surface potentials. Both effects increase with the increase in gramicidin concentration and depend on the kind of phosphatidylcholine used. Application of the dual-wavelength ratiometric fluorescence method using the potential-sensitive dye RH421 has revealed that the addition of gramicidin A to dipalmitoylphosphatidylcholine liposomes leads to a decrease in the fluorescence ratio of RH421. This is similar to the effect of phloretin, which is known to decrease the dipole potential. The comparison of the concentration dependences of the fluorescence ratio for gramicidin and phloretin shows that gramicidin is as potent as phloretin in modifying the membrane dipole potential.  相似文献   

10.
Mixed monolayers of the surface-active lipopeptide surfactin-C15 and various lipids differing by their chain length (DMPC, DPPC, DSPC) and polar headgroup (DPPC, DPPE, DPPS) were investigated by atomic force microscopy (AFM) in combination with molecular modeling (Hypermatrix procedure) and surface pressure-area isotherms. In the presence of surfactin, AFM topographic images showed phase separation for each surfactin-phospholipid system except for surfactin-DMPC, which was in good agreement with compression isotherms. On the basis of domain shape and line tension theory, we conclude that the miscibility between surfactin and phospholipids is higher for shorter chain lengths (DMPC > DPPC > DSPC) and that the polar headgroup of phospholipids influences the miscibility of surfactin in the order DPPC > DPPE > DPPS. Molecular modeling data show that mixing surfactin and DPPC has a destabilizing effect on DPPC monolayer while it has a stabilizing effect towards DPPE and DPPS molecular interactions. Our results provide valuable information on the activity mechanism of surfactin and may be useful for the design of surfactin delivery systems.  相似文献   

11.
Mixed monolayers of the surface-active lipopeptide surfactin-C(15) and various lipids differing by their chain length (DMPC, DPPC, DSPC) and polar headgroup (DPPC, DPPE, DPPS) were investigated by atomic force microscopy (AFM) in combination with molecular modeling (Hypermatrix procedure) and surface pressure-area isotherms. In the presence of surfactin, AFM topographic images showed phase separation for each surfactin-phospholipid system except for surfactin-DMPC, which was in good agreement with compression isotherms. On the basis of domain shape and line tension theory, we conclude that the miscibility between surfactin and phospholipids is higher for shorter chain lengths (DMPC>DPPC>DSPC) and that the polar headgroup of phospholipids influences the miscibility of surfactin in the order DPPC>DPPE>DPPS. Molecular modeling data show that mixing surfactin and DPPC has a destabilizing effect on DPPC monolayer while it has a stabilizing effect towards DPPE and DPPS molecular interactions. Our results provide valuable information on the activity mechanism of surfactin and may be useful for the design of surfactin delivery systems.  相似文献   

12.
The effects of flavonoids, phloridzin, quercetin, myricetin and biochanin A on the dipole potential of planar lipid bilayers formed from dioleylphosphoethanolamine, dioleylphosphoserine, dioleoylphosphocholine, and diphytanoylphosphocholine are investigated. The characteristic parameters of the Langmuir adsorption isotherm, the maximum changes in the membrane dipole potential at an infinitely large concentration of flavonoid and its dissociation constant, which reflects the affinity of flavonoid to the membrane lipids, are determined. Modifying effects of chalcones, flavonols and isoflavones are compared. The influence of the surface charge of the lipid bilayer and the spontaneous curvature of the membrane-forming phospholipids on the adsorption of flavonoids on the model membranes is discussed.  相似文献   

13.
The large intrinsic membrane dipole potential, phi(d), is important for protein insertion and functioning as well as for ion transport across natural and model membranes. However, the origin of phi(d) is controversial. From experiments carried out with lipid monolayers, a significant dependence on the fatty acid chain length is suggested, whereas in experiments with lipid bilayers, the contribution of additional -CH(2)-groups seems negligibly small compared with that of the phospholipid carbonyl groups and lipid-bound water molecules. To compare the impact of the -CH(2)-groups of dipalmitoylphosphatidylcholine (DPPC) near and far from the glycerol backbone, we have varied the structure of DPPC by incorporation of sulfur atoms in place of methylene groups in different positions of the fatty acid chain. The phi(d) of symmetric lipid bilayers containing one heteroatom was obtained from the charge relaxation of oppositely charged hydrophobic ions. We have found that the substitution for a S-atom of a -CH(2)-group decreases phi(d). The effect (deltaphi(d) = -22.6 mV) is most pronounced for S-atoms near the lipid head group while a S-atom substitution in the C(13)- or C(14)-position of the hydrocarbon chain does not effect the bilayer dipole potential. Most probably deltaphi(d) does not originate from an altered dipole potential of the acyl chain containing an heteroatom but is mediated by the disruption of chain packing, leading to a decreased density of lipid dipoles in the membrane.  相似文献   

14.
The interaction of Pseudomonas aeruginosa exotoxin A (ETA) with lipid monolayers was studied by measuring the variation in surface pressure. ETA adsorbs to the monolayer, occupying an average area of approximately 4.6 nm2 per molecule, up to a maximum density of one molecule per 28 nm2 of lipid film, which corresponds roughly to the cross-sectional area of the toxin. This suggests that ETA molecules adsorb until they contact each other, but insert only a small portion into the lipid film. The kinetic process could be described by a Langmuir adsorption isotherm. The apparent association and dissociation rate constants were determined, as were their dependence upon toxin concentration, membrane composition, pH, and ionic strength. Two parameters were found to be paramount for this interaction: pH and surface potential of the lipid. It appears that ETA binding occurs only in a conformational state induced by low pH and is promoted by an electrostatic interaction between a positively charged region of the protein and the negative charge of acidic phospholipids. On the basis of a simple model, the salient features of ETA involved in its adsorption were derived: 1) the existence of a conformational state induced by the protonation of a group with pK 4.5 +/- 0.2; 2) a positive charge of 1.9 +/- 0.3 e.u. able to interact with the surface potential of the membrane; 3) the fraction of potential experienced by the protein in the activated state that precedes binding, approximately 80%; 4) the intrinsic adsorption and desorption rate constants, k(a)0 = (4.8 +/- 0.3) x 10(3) M(-1) s(-1) and k(d)0 = (4.4 +/- 0.4) x 10(-4) s(-1). These rate constants are independent of pH and lipid and buffer composition, and provide a dissociation constant Kd approximately 90 nM.  相似文献   

15.
16.
Critical issues in applications of self-assembled monolayers   总被引:2,自引:0,他引:2  
Molecular self-assembly of supported monolayers can produce a variety of structures with different types of surface functional groups and with varied topography. Such structural flexibility promises many applications. In addition, strategies for precision chemical patterning have evolved which expand the possibilities. Real applications of these monolayers will require precise control of structural features which in turn depends critically upon improved understanding of such factors as formation mechanisms and mixed composition phase stability. Recent advances show that such an understanding should evolve in the future.  相似文献   

17.
To enhance the feasibility of surface plasmon resonance (SPR) immunosensor as a tool for diagnosing type I diabetes, we enhanced the sensitivity of immunoresponse for detecting the monoclonal anti-glutamic acid decarboxylase (GAD) antibody by modification of mixed self-assembled monolayers (SAMs). The effects of the different mixed SAMs were evaluated with respect to the degree of streptavidin immobilization, the degree of biotin-GAD immobilization, and the immunoresponse sensitivity. Consequently, the sensitivity of the immunoresponse for the detection of anti-GAD antibody was enhanced as a result of the reduction in steric hindrance brought about by using SAMs of heterogeneous lengths. The immunoresponse for detecting the monoclonal anti-GAD antibody was also enhanced with the reduction of the excess immobilization of biotin-GAD and the minimization of non-specific binding that resulted from the simple substitution of the spacer from a carboxylic-terminated SAM for the hydroxyl-terminated SAM.  相似文献   

18.
Phospholipase A2 activity against mixed monolayers of dilauroylphosphatidic acid or dilauroylphosphatidylcholine with glycosphingolipids can be reversibly modulated by external constant electrostatic fields. The changes of enzymatic activity are correlated to the depolarization or hyperpolarization of the film caused by specific dipolar properties of glycosphingolipids. Hyperpolarizing fields enhance the enzymatic activity against pure dilauroylphosphatidic acid while depolarizing fields induce a decrease of activity. Compared to the pure substrate, the interface of mixed films containing neutral glycosphingolipids or gangliosides is already partially depolarized and the magnitude of activation induced by an external hyperpolarizing field is decreased; conversely, depolarizing fields cause an increased inhibition of activity. Differing from gangliosides, sulfatides bring about a hyperpolarization of the mixed lipid monolayer and external hyperpolarizing or depolarizing fields cause enhanced activation and reduced inhibition, respectively. The effects of glycosphingolipids depend on their relative proportion in the monolayer. Results were similar with dilauroylphosphosphatidylcholine but the field effects were less than half of those found with dilauroylphosphatidic acid. Our work shows that the activity of phospholipase A2 in addition to responding reversibly to external electrostatic fields, is directly modulated by the polarity and magnitude of the lipid polar head group dipole moments.  相似文献   

19.
20.
The overall objective of our work was to make a hydrogel-supported phospholipid bilayer that models a cytoskeleton-supported cell membrane and provides a platform for studying membrane biology. Previously, we demonstrated that a pre-Lipobead, consisting of phospholipids covalently attached to the surface of a hydrogel, could give rise to a Lipobead when incubated with liposomes because the attached phospholipids promote self-assembly of a phospholipid membrane on the pre-Lipobead. We now report the properties of that Lipobead membrane. The lateral diffusion coefficient of fluorescently labeled phosphatidylcholine analogs in the membrane was measured by fluorescence recovery after photobleaching and was found to decrease as the surface anchor density and hydrogel crosslinking density increased. Results from the quenching of phosphatidylcholine analogs suggest that the phospholipid membrane of the Lipobead was composed mostly of a semipermeable lipid bilayer. However, the diffusional barrier properties of the Lipobead membrane were demonstrated by the entrapment of 1.5-3.0 K dextran molecules in the hydrogel core after liposome fusion. This hydrogel-supported bilayer membrane preparation shows promise as a new platform for studying membrane biology and for high throughput drug screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号