首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abscisic acid-insensitive mutants of Arabidopsis thaliana L. var. Landsberg erecta were selected for their decreased sensitivity to ABA during germination. Two of these mutants, abi-1 and abi-2 , display a wilty phenotype as adult plants, indicating disturbed water relations. Experiments were undertaken to find out if this results from insensitivity of mutant stomates to ABA.
Growth conditions and methods to isolate epidermal strips were optimized to study stomatal movement. Wild type stomates required external ionic conditions comparable to those found for other species such as Commelina communis . The largest light-induced opening of A. thaliana stomates was found at an external KCl concentration of 50 m M . Stomatal apertures were increased by lowering external Ca2+ to 0.05 m M . The apertures of stomates incubated with 10 μ M ABA were not altered by changes in Ca2+ from 0.05 to 1.0 m M .
Stomates of all abi mutants showed a light-stimulated stomatal opening. The opening of wild type and abi-3 stomates was inhibited by ABA, while stomates of abi-1 and abi-2 did not respond to ABA. The insensitivity of abi-1 and abi-2 stomates to ABA may thus explain the observed disturbed water relations.  相似文献   

2.
Zhang X  Zhang L  Dong F  Gao J  Galbraith DW  Song CP 《Plant physiology》2001,126(4):1438-1448
One of the most important functions of the plant hormone abscisic acid (ABA) is to induce stomatal closure by reducing the turgor of guard cells under water deficit. Under environmental stresses, hydrogen peroxide (H(2)O(2)), an active oxygen species, is widely generated in many biological systems. Here, using an epidermal strip bioassay and laser-scanning confocal microscopy, we provide evidence that H(2)O(2) may function as an intermediate in ABA signaling in Vicia faba guard cells. H(2)O(2) inhibited induced closure of stomata, and this effect was reversed by ascorbic acid at concentrations lower than 10(-5) M. Further, ABA-induced stomatal closure also was abolished partly by addition of exogenous catalase (CAT) and diphenylene iodonium (DPI), which are an H(2)O(2) scavenger and an NADPH oxidase inhibitor, respectively. Time course experiments of single-cell assays based on the fluorescent probe dichlorofluorescein showed that the generation of H(2)O(2) was dependent on ABA concentration and an increase in the fluorescence intensity of the chloroplast occurred significantly earlier than within the other regions of guard cells. The ABA-induced change in fluorescence intensity in guard cells was abolished by the application of CAT and DPI. In addition, ABA microinjected into guard cells markedly induced H(2)O(2) production, which preceded stomatal closure. These effects were abolished by CAT or DPI micro-injection. Our results suggest that guard cells treated with ABA may close the stomata via a pathway with H(2)O(2) production involved, and H(2)O(2) may be an intermediate in ABA signaling.  相似文献   

3.
Effects of abscisic acid on K+ channels in Vicia faba guard cell protoplasts   总被引:11,自引:0,他引:11  
Potassium channels were resolved in Vicia faba guard cell protoplasts by patch voltage-clamp. Whole-cell currents and single K+ channels had linear instantaneous current-voltage relations, reversing at the calculated Nernst potential for K+. Whole cell K+ currents activated exponentially during step depolarizations, with half-activation times of 400-450 msec at +80 mV and 90-110 msec at +150 mV. Single K+ channel conductance was 65 +/- 5 pS with a mean open time of 1.25 +/- 0.30 msec at 150 mV. Potassium channels were blocked by internal Cs+ and by external TEA+, but they were insensitive to external 4-aminopyridine. Application of 10 microM abscisic acid increased mean open time and caused long-lasting bursts of channel openings. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology.  相似文献   

4.
H2O2 is an essential signal in absicic acid (ABA)-induced stomatalclosure. It can be synthesized by several enzymes in plants.In this study, the roles of copper amine oxidase (CuAO) in H2O2production and stomatal closure were investigated. ExogenousABA stimulated apoplast CuAO activity, increased H2O2 productionand [Ca2+]cyt levels in Vicia faba guard cells, and inducedstomatal closure. These processes were impaired by CuAO inhibitor(s).In the metabolized products of CuAO, only H2O2 could inducestomatal closure. By the analysis of enzyme kinetics and polyaminecontents in leaves, putrescine was regarded as a substrate ofCuAO. Putrescine showed similar effects with ABA on the regulationof H2O2 production, [Ca2+]cyt levels, as well as stomatal closure.The results suggest that CuAO in V. faba guard cells is an essentialenzymatic source for H2O2 production in ABA-induced stomatalclosure via the degradation of putrescine. Calcium messengeris an important intermediate in this process. Key words: Abscisic acid, calcium, copper amine oxidase, hydrogen peroxide, putrescine, stomatal closure, Vicia faba Received 13 October 2007; Revised 16 December 2007 Accepted 20 December 2007  相似文献   

5.
In the bright fields, stomata of the plants are fully opened to raise the transpiration rate and CO2 uptake required for photosynthesis. Stomatal opening is driven by the activation of plasma membrane H+-ATPase and K+in channels, and the Ca2+-dependent inactivation and blockage of both components were supposed to be inevitable function to regulate the stomatal aperture. Although, it is still obscure how these activities are regulated at the open state. Application of an amphipathic membrane creator, trinitrophenol (TNP), instantly generates the convex curvature in the plasma membrane, which occurs in the phases of stomatal opening and closure. TNP surely activates mechanosensitive Ca2+-permeable channels and attenuates the promotion of stomatal opening, but does not inhibit and promote stomatal closure. These results suggest that activation of mechanosensitive Ca2+-permeable channels regulates the opening phase of stomata in plants.  相似文献   

6.
Levels of abscisis acid (ABA) were determined in isolated guard cell (GCP) and mesophyll cell (MCP) protoplasts of Vicia faba L. in relation to water stress. Incubation of GCP and MCP in 0.4 M or 0.8 M mannitol resulted in an average increase in the level of free abscisic acid (ABA) in the cells of 34% (GCP) and 38% (MCP) within 15–60 min. It is concluded that guard cell protoplasts form ABA in response to osmotic stress.Abbreviations ABA abscisic acid - BHT butylated hydroxytoluene - GCP guard cell protoplasts - MCP mesophyll cell protoplasts - MES [2-(N-morpholino)-ethanesulfonic acid] - TLC thin layer chromatography Part 20 in the series, Use of Immunoassay in Plant Science  相似文献   

7.
The influence of exogenous proline on the stomatal resistance in Vicia faba   总被引:1,自引:0,他引:1  
Both the upper and lower stomata of Vicia faba responded to different concentrations of proline supplied either to the 'detached' leaves or sprayed to 'intact' leaves. The stomatal resistance of abaxial surfaces was increased more than that of the adaxial surfaces. A 1-h treatment with 5 m M proline had greater influence than a prolonged treatment. The 'young' leaves responded more than the 'mature' ones to the exogenous proline. A relationship could be demonstrated between endogenous proline, which increased markedly due to exogenous supply, and stomatal resistance.  相似文献   

8.
Abscisic acid (ABA) integrates the water status of a plant and causes stomatal closure. Physiological mechanisms remain poorly understood, however, because guard cells flanking stomata are small and contain only attomol quantities of ABA. Here, pooled extracts of dissected guard cells of Vicia faba L. were immunoassayed for ABA at sub‐fmol sensitivity. A pulse of water stress was imposed by submerging the roots in a solution of PEG. The water potentials of root and leaf declined during 20 min of water stress but recovered after stress relief. During stress, the ABA concentration in the root apoplast increased, but that in the leaf apoplast remained low. The ABA concentration in the guard‐cell apoplast increased during stress, providing evidence for intra‐leaf ABA redistribution and leaf apoplastic heterogeneity. Subsequently, the ABA concentration of the leaf apoplast increased, consistent with ABA import via the xylem. Throughout, the ABA contents of the guard‐cell apoplast, but not the guard‐cell symplast, were convincingly correlated with stomatal aperture size, identifying an external locus for ABA perception under these conditions. Apparently, ABA accumulates in the guard‐cell apoplast by evaporation from the guard‐cell wall, so the ABA signal in the xylem is amplified maximally at high transpiration rates. Thus, stomata will display apparently higher sensitivity to leaf apoplastic ABA if stomata are widely open in a relatively dry atmosphere.  相似文献   

9.
The movement of 2-14C-abscisic acid applied to a mature leaf of broad-bean plants ( Vicia faba L. cv. Aguadulce) was investigated by liquid scintillation counting and autoradiography. The radioactivity was readily transported into the whole plant by the phloem after 90 min. Thereafter, radioactivity moved towards the upper part of the plant, where it accumulated in the young growing leaves and in the apical bud. During transport, 2-14C- ABA was slightly metabolized, and a subsequent rapid metabolism occurred in the young leaves of the apical part of the plant and in the axillary buds released from apical dominance in decapitated plants. Transport of exogenous ABA from the apical bud presented the characteristics of a diffusion transport.  相似文献   

10.
Recent evidence suggests that nitric oxide (NO) acts as an intermediate of ABA signal transduction for stomatal closure. However, NO's effect on stomatal opening is poorly understood even though both opening and closing activities determine stomatal aperture. Here we show that NO inhibits stomatal opening specific to blue light, thereby stimulating stomatal closure. NO inhibited blue light-specific stomatal opening but not red light-induced opening. NO inhibited both blue light-induced H(+) pumping and H(+)-ATPase phosphorylation. The NO scavenger 2-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) restored all these inhibitory effects. ABA and hydrogen peroxide (H(2)O(2)) inhibited all of these blue light-specific responses in a manner similar to NO. c-PTIO partially restored the ABA-induced inhibition of all of these opening responses but did not restore inhibition of the responses by H(2)O(2). ABA, H(2)O(2) and NO had slight inhibitory effects on the phosphorylation of phototropins, which are blue light receptors in guard cells. NO inhibited neither fusicoccin-induced H(+) pumping in guard cells nor H(+) transport by H(+)-ATPase in the isolated membranes. From these results, we conclude that both NO and H(2)O(2) inhibit blue light-induced activation of H(+)-ATPase by inhibiting the component(s) between phototropins and H(+)-ATPase in guard cells and stimulate stomatal closure by ABA.  相似文献   

11.
Leaflets of Vicia faba L. (faba bean) were used to determine whether the mechanical forces resulting from the turgor potentials (Φp) of the larger epidermal cells neighbouring guard cells play a significant role in regulating stomatal aperture. When Φp, of epidermis and Φp of bulk leaflet tissue were compared at midday, Φp of epidermis were only 15–25% those of bulk leaflet tissue at all but the most negative leaflet water potentials (Φ). When plants were bagged to increase Φ by reducing vapour pressure differences between leaflets and air, Φp of bulk leaflet tissue increased to predawn values, but Φp, of epidermis increased to only = 20% of predawn values and stomata opened to their widest apertures. Stomatal apertures were positively correlated with Φp of bulk leaflet tissue but they were not correlated with Φp of epidermis. Reductions in epidermal Φp, began predawn, before stomata were open, and reached minimum values at midday, when stomata were open. We conclude that, in Vicia faba, (1) reduction of Φp of epidermal cells begins predawn, reducing the counterforce to stomatal opening that would exist if full epidermal turgor were maintained throughout the day, and (2) changes in Φp, of leaf epidermal cells do not play a significant role in regulating stomatal aperture.  相似文献   

12.
Accumulation of malate in guard cells of Vicia faba during stomatal opening   总被引:1,自引:3,他引:1  
W. G. Allaway 《Planta》1973,110(1):63-70
Summary The level of malate in the epidermis from illuminated leaves of Vicia faba was greater than in that from dark-treated leaves. A difference in the malate level was still detected after the epidermis had been treated by rolling so that only the guard cells remained alive. The results suggest that malate may accumulate in guard cells on illumination. In subsequent experiments, stomatal apertures were measured, and potassium as well as malate was analysed in extracts of epidermis. In illuminated leaves, the potassium content of rolled epidermis increased from about 90 to about 335 picoequivalents mm-2 of epidermis whele malate increased from about zero to about 71 pmoles mm-2 and the stomata opened; in dark-treated leaves, the potassium content of rolled epidermis decreased slightly, the malate level remained about zero, and the stomata showed very slight further closure. The measured increase in potassium is likely to represent an increase in potassium concentration in the guard cells of about 0.4 Eq l-1 with stomatal opening; the increase in malate could correspond to 0.23 Eq l-1 (with respect to potassium) in the guard cells. Thus, malate accumulating in guard cells could balance about half of the potassium taken up by guard cells when stomata open in the light.  相似文献   

13.
Stomatal phosphoenolpyruvate carboxylase (PEPCase EC 4.1.1.31), extracted from abaxial epidermal peels of Vicia faba L. cv. Frühe Weiβkeimige, was partially purified by ammoniumsulfate precipitation, and molecular sieve (Sepharosc S-400) and ion exchange (DEAE-Sepharose) chromatography. The partially purified enzyme, essentially free of a PEPCase isoform existing in mesophyll and epidermal cells, had a specific activity of 300 nkat mg-1 protein at 25°C. Western immunoblot analysis revealed that the stomatal enzyme had two bands (M: of 110000 and 112000), crossreacting with PEPCase antibodies raised against PEPCase from Ka-lanchoe daigremontiana . The native molecular mass of the enzyme (467000) points to a tetrameric subunit structure. The temperature optimum was found to be 35°C; cold treatments of PEPCase before assaying were accompanied by inactivation. The energy of activation was calculated to 51 kJ mol-1. The kinetic behaviour of the enzyme at fixed MgCl2 concentrations is characterized by a pH optimum between pH 8.0–8.2 with or without 1 m M malate or 5 m M glucose-6-phosphate (Glc-6-P), but a combination of both effectors resulted in a shift of the optimum to pH 7.6. The enzyme showed a pH sensitive inhibition by 1 m M malate and an activation by Glc-6-P. At low pH (6–7), Glc-6-P was able to compensate for the malate induced inhibition of the enzyme. Malate and Glc-6-P both affected Km(PEP), drastically and influenced Vmax at pH 7, but not at pH 8.3. The inhibition constant of malate was determined to be 1.2 m M at pH 7. From the Dixon plot, a competitive inhibition of malate was assumed under defined assay conditions.  相似文献   

14.
Salicylic acid (SA), the known mediator of systemic acquired resistance, induced stomatal closure of Vicia faba L. Application of SA to the epidermal peels evoked an elevation of chemiluminescence of Cripridina lucigenin-derived chemiluminescent reagent (CLA) which is sensitive to superoxide anion (O(2)(.-)). The SA-induced generation of chemiluminescence was suppressed by O(2)(.-)-specific scavengers superoxide dismutase (SOD) and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron). These results suggest that O(2)(.-) was generated in epidermal peels by SA-treatment. A peroxidase inhibitor salicylhydroxamic acid (SHAM) inhibited guaiacol peroxidase activity and suppressed the SA-induced CLA chemiluminescence in the epidermal peels, suggesting that O(2)(.-) generation occurred by the peroxidase-catalyzed reaction as proposed for SA-treated tobacco cell suspension culture [Kawano et al. (1998) Plant Cell Physiol. 39: 721]. SOD, Tiron or SHAM suppressed the SA-induced stomatal closure. Moreover, application of superoxide-generating system also induced stomatal closure. These results support the concept of involvement of reactive oxygen species in signal transduction in SA-induced stomatal closure.  相似文献   

15.
An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H(2)O(2), and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K(+) (K(in)) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba.  相似文献   

16.
17.
18.
The effect of pH on stomatal sensitivity to abscisic acid   总被引:2,自引:3,他引:2  
Abstract. The sensitivity of stomata of Commelina communis L. to abscisic acid (ABA) was evaluated by analysing the initial rates of response to the compound at different hormone concentrations. This was carried out at pH 6.8 and pH 5.5. The data were modelled and statistically analyzed by means of a computer program employing non-linear regression techniques and step-down analysis of variance. The response kinetics as quantified in terms of three sensitivity parameters were found to differ significantly between the two pH values. This finding is discussed in relation to previous research on purified ABA-binding proteins.  相似文献   

19.
Effects of abscisic acid and its derivatives on stomatal closing   总被引:2,自引:0,他引:2  
Abscisic acid and its derivatives, formed with the terminalcarboxyl group replaced respectively by aldehyde, hydroxymethyland methyl groups, were examined for their effects on stomatalclosing. Only the derivative with the methyl group was inactive.The acid and the other two derivatives were very active forclosing stomata at low concentrations. (Received January 28, 1975; )  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号