首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the development of mutation assay systems, a number of approaches have been performed with a particular view to improve sensitivity. The inhibition of mutagen-efflux from tester bacteria might lead to increased mutagenic activity as the concentration of mutagen increases inside the cell. In this study, we constructed a series of Escherichia coli CC strains lacking the TolC protein to determine if mutation is actually enhanced by the inhibition of mutagen reflux. TolC is an outer-membrane protein that forms part of an excretion system in E. coli. The frequency of induction of mutations by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) and ethyl methanesulfonate (EMS) were significantly higher in TolC-deficient strain KA796-1/CC102 than in TolC-proficient strains, especially that of MNNG was seven times higher and detected at lower doses than in the parent strain. In a KA796-1/CC108 TolC-deficient strain, mutation induced by Trp-P-2 was detected at significant levels, even at low doses that did not induce detectable levels of mutation in the parent strain KA796/CC108. When the wild-type E. coli tolC gene was introduced into a strain lacking the gene, TolC function was restored and the frequency of induction by MNNG became similar to that of the wild-type. In contrast, introduction of a mutant tolC gene did not complement the TolC deficiency and the frequency of MNNG-induced mutations remained high. These results suggest that some mutagens are excreted at least in part via the TolC system, and that the lack of functional TolC increases the susceptibility of bacteria to many mutagens.  相似文献   

2.
Mutations of Escherichia coli K-12 were isolated that increase the frequency of deletion formation. Three of these mutations map to the gene sbcB at 43.5 min on the E. coli chromosome. Two types of mutations at sbcB have been previously defined: sbcB-type that suppress both the UV sensitivity and recombination deficiency of recBC mutants, and xonA-type that suppress only the UV sensitivity. Both types are defective for production of exonuclease I activity. The mutations isolated here were similar to xonA alleles of sbcB because they suppressed the UV sensitivity of recBC mutants but did not restore recombination proficiency. Indeed, two previously characterized xonA alleles were shown to increase the frequency of deletion formation, although an sbcB allele did not. This result demonstrates that loss of exonuclease I activity is not sufficient to confer a high deletion phenotype, rather, the product of the sbcB gene possesses some other function that is important for deletion formation. Because deletion formation in this system is recA independent and does not require extensive DNA homology, these mutations affect a pathway of illegitimate recombination.  相似文献   

3.
We developed a system to examine forward mutations that occurred in the rpsL gene of Escherichia coli placed on a multicopy plasmid. Using this system we determined the mutational specificity for a dnaE173 mutator strain in which the editing function of DNA polymerase III is impeded. The frequency of rpsL- mutations increased 32,000-fold, due to the dnaE173 mutator, and 87 independent rpsL- mutations in the mutator strain were analyzed by DNA sequencing, together with 100 mutants recovered from dnaE+ strain, as the control. While half the number of mutations that occurred in the wild-type strain were caused by insertion elements, no such mutations were recovered from the mutator strain. A novel class of mutation, named "sequence substitution" was present in mutants raised in the dnaE173 strain; seven sequence substitutions induced in the mutator strain occurred at six sites, and all were located in quasipalindromic sequences, carrying the GTG or CAC sequence at one or both endpoints. While other types of mutation were found in both strains, single-base frameshifts were the most frequent events in the mutator strain. Thus, the mutator effect on this class of mutation was 175,000-fold. A total of 95% of the single-base frameshifts in the mutator strain were additions, most of which occurred at runs of A or C bases so as to increase the number of identical residues. Base substitutions, the frequency of which was enhanced 25,000-fold by the mutator effect, occurred primarily at several hotspots in the mutator strain, whereas those induced in the wild-type strain were more randomly distributed throughout the rpsL sequence. The dnaE173 mutator also increased the frequency of duplications 28,000-fold. Of the three duplications recovered from the mutator strain, one was a simple duplication, the region of which was flanked by direct repeats. The other duplications were complex, one half part of which was in the inverted orientation of a region containing two sets of inverted repeats. The same duplications were also recovered from the wild-type strain. The present data suggest that dnaE173 is a novel class of mutator that sharply induces sequence-directed mutagenesis, yielding high frequencies of single base frameshifts, duplications with inversions, sequence substitutions and base substitutions at hotspots.  相似文献   

4.
Segments of DNA are deleted from recombinant cosmid DNAs with high frequency during propagation in standard recA Escherichia coli hosts. An attempt has been made to derive an appropriate strain of E. coli, suitable for cosmid cloning, in which such deletions do not occur. We examined the effects of a series of host recombinational mutations on the deletion process, using six independent recombinant cosmids that carry inserts of mouse, Chinese hamster, or human DNA. Various E. coli host cells carrying the recombinant cosmids were cultured serially in liquid medium, and the recombinant cosmid DNAs were extracted from the host cells and analyzed by agarose gel electrophoresis and by gene transfer of the DNAs into cultured mammalian cells. Of the mutations examined, only a recB recC sbcB recJ (or recN) quadruple combination of host mutations prevented the deletion of DNA segments. The recombinant cosmid DNAs propagated in E. coli hosts that carried this combination of mutations were functionally as well as structurally intact. We propose that the recJ (and/or recN) gene is involved in some aspect of the events that lead to deletions of cosmid DNA in a recB recC sbcB genetic background.  相似文献   

5.
The Escherichia coli MutT protein hydrolyzes 8-hydroxy-dGTP (8-OH-dGTP) in vitro, and mutT gene deficiencies cause increased spontaneous A:T-->C:G mutations. However, no direct evidence exists for enhanced mutagenicity of 8-OH-dGTP in mutT cells. In this study, 8-OH-dGTP was introduced into wild type and mutT E. coli cells, and mutations of a chromosomal gene were monitored. 8-OH-dGTP induced mutations of the rpoB gene, the degree of the mutation induction in the mutT strain being approximately 6-fold higher than that in the wild type strain. On the other hand, 2-hydroxy-dATP, which is not a substrate of the MutT protein, increased the mutation to similar degrees in the two strains. These results constitute the first evidence that the MutT protein suppresses mutation by 8-OH-dGTP in vivo.  相似文献   

6.
Although neocarzinostatin (NCS) attacks DNA almost exclusively at adenine and thymine residues in vitro, exposure of Escherichia coli to this antitumor drug resulted in a high frequency of mutations at guanine:cytosine base pairs in the lacI gene. Thus, NCS-induced base substitution mutations do not appear to result from the major DNA lesions that have been biochemically characterized. The overall distribution of nonsense mutations produced by NCS was distinctly nonrandom, consisting in part of a few "hotspots" and a large number of "coldspots." The existence of these coldspots implies that untargeted mutagenesis does not make a significant contribution to the mutations induced by this SOS-dependent mutagen.  相似文献   

7.
To examine whether base excision repair suppresses mutations induced by oxidized deoxyribonucleotide 5'-triphosphates in the nucleotide pool, 8-hydroxy-dGTP (8-OH-dGTP) and 2-hydroxy-dATP were introduced into Escherichia coli strains deficient in endonucleases III (Nth) and VIII (Nei) and MutY, and mutations in the chromosomal rpoB gene were analyzed. The spontaneous rpoB mutant frequency was also examined in mutT/nth and mutT/nei strains, to assess the influence on the mutations induced by the endogenous 8-OH-dGTP accumulated in the mutT mutant. The mutations induced by exogenous 2-hydroxy-dATP were similar in all of the strains tested. Exogenous 8-OH-dGTP increased the rpoB mutant frequency more efficiently in the nth strain than that in the wild-type strain. The spontaneous mutant frequency in the mutT/nth strain was 2-fold higher than that in the mutT strain. These results suggest that E. coli endonuclease III also acts as a defense against the mutations caused by 8-OH-dGTP in the nucleotide pool.  相似文献   

8.
EMS-induced mutations within a 180 base pair region of the lacI gene of E. coli were cloned and sequenced. In total, 105 and 79 EMS-induced mutations from a Uvr+ and a UvrB- strain, respectively, were sequenced. The specificity of EMS-induced mutagenesis was very similar in the two strains; G:C----A:T transitions accounted for all but three of the mutants. The overall frequency of induced mutation was fivefold higher in the UvrB- strain compared to the Uvr+ strain. This demonstrates, at the DNA sequence level, that the presumed premutagenic lesion, O6-ethylguanine, is subject to repair by the uvrABC excision repair system of E. coli. An analysis of mutation frequencies with respect to neighboring base sequence, in the two strains, shows that O6-ethylguanine lesions adjacent to A:T base pairs present better targets for the excision repair machinery than those not adjacent to A:T base pairs.  相似文献   

9.
By DNA sequence analysis, we have determined a spectrum of 61 spontaneous mutations occurring in the endogenous tonB gene in the polA1 strain of Escherichia coli. The overall mutation frequency was approximately 2.4-fold higher in the polA1 strain and this was attributable to enhanced rates of deletion and frameshift mutations. Among 39 deletions, a hot spot (17 mutations) was detected: a 13-bp deletion presumably directed by a 3-bp repeated sequence at its end points. The remaining 22 were distributed among 19 different mutations either flanked (16/19) or not flanked (3/19) by repeated sequences. Single-base frameshifts accounted for 8 mutations of either repeated (3/8) or nonrepeated (5/8) bases among which 6 were minus one frameshift. In contrast to previous reports, we did not frequently observe a 5'-GTGG-3' sequence in the vicinity of the deletions and frameshifts. The results presented here indicated an anti-deletion and anti-frameshift role for DNA polymerase I.  相似文献   

10.
Tn5 insertion mutations in the recN gene, and in what appears to be a new RecF pathway gene designated recO and mapping at approximately 55.4 min on the standard genetic map, were isolated by screening Tn5 insertion mutations that cotransduced with tyrA. The recO1504::Tn5 mutation decreased the frequency of recombination during Hfr-mediated crosses and increased the susceptibility to killing by UV irradiation and mitomycin C when present in a recB recC sbcB background, but only increased the sensitivity to killing by UV irradiation when present in an otherwise Rec+ background. The effects of these and other RecF pathway mutations on plasmid recombination were tested. Mutations in the recJ, recO, and ssb genes, when present in otherwise Rec+ E. coli strains, decreased the frequency of plasmid recombination, whereas the lexA3, recAo281, recN, and ruv mutations had no effect on plasmid recombination. Tn5 insertion mutations in the lexA gene increased the frequency of plasmid recombination. These data indicate that plasmid recombination events in wild-type Escherichia coli strains are catalyzed by a recombination pathway that is related to the RecF recombination pathway and that some component of this pathway besides the recA gene product is regulated by the lexA gene product.  相似文献   

11.
We have shown previously that dam mutants of Escherichia coli have a weak mutator phenotype which generates mostly transition mutations in the P22 mnt gene. In contrast, in mutD5 cells, which have a strong mutator phenotype, transversion mutations were the most prevalent. A dam-16 mutD5 strain, defective in both DNA polymerase III associated-proofreading and Dam-directed mismatch repair exhibits a strong mutator phenotype but, surprisingly, its mutation spectrum is similar to that of the dam rather than the mutD parent. The most likely explanation is that Dam-directed mismatch repair in the mutD5 strain corrects most of the potential transition mutations (therefore yielding transversions) in the newly synthesised strand. When the dam-16 allele is present together with mutD5 a reduced efficiency of repair as well as loss of strand discrimination and misdirected repair results in the appearance of transition mutations at high frequency.  相似文献   

12.
An approach utilizing fluorescence-activated DNA sequencing technology was used to study the position and frequency of UV-induced lesions in the lacI gene of Escherichia coli. The spectrum of sites of UV damage in the NC+ region of the gene was compared with a published spectrum of UV-induced mutation in lacI (Schaaper, R.M., Dunn, R.L., and Glickman, B.W. (1987) J. Mol. Biol. 198, 187-202). On average, the frequency of UV-induced lesions in the nontranscribed strand was higher than that in the transcribed strand in the region analyzed. A large fraction of mutations occurs at sites of UV-induced lesions in the nontranscribed strand, but not in the transcribed strand. This bias is reduced in an excision repair deficient (UvrB-) strain. In addition, mutations occur overwhelmingly at sites where a dipyrimidine sequence is present in the nontranscribed strand. This bias is also markedly reduced in the UvrB- strain. In light of recent work Mellon and Hanawalt (Mellon, I., and Hanawalt, P.C. (1989) Nature 342, 95-98) describing the preferential removal of cyclobutane dimers from the transcribed strand of the expressed lacZ gene in E. coli, our data suggest that preferential strand repair may have a significant effect on mutagenesis.  相似文献   

13.
Ozaki K  Shibata Y  Yamashita Y  Nakano Y  Tsuda H  Koga T 《FEBS letters》2002,532(1-2):159-163
We have cloned two genes (rgpH and rgpI) that encode proteins for the formation of the glucose side-chains of the Streptococcus mutans rhamnose-glucose polysaccharide (RGP), which consists of a rhamnan backbone with glucose side-chains. The roles of rgpH and rgpI were evaluated in a rhamnan-synthesizing Escherichia coli. An E. coli strain that harbored rgpH reacted with antiserum directed against complete RGP, whereas the E. coli strain that carried rgpI did not react with this antiserum. Although E. coli:rgpH reacted strongly with rhamnan-specific antiserum, co-transformation of this strain with rgpI increased the number of glucose side-chains and decreased immunoreactivity with the rhamnan-specific antiserum significantly. These results suggest that two genes are involved in side-chain formation during S. mutans RGP synthesis in E. coli: one gene encodes a glucosyltransferase, and the other gene probably controls the frequency of branching. This is the first report to identify a gene that is involved in regulation of branching frequency in polysaccharide synthesis.  相似文献   

14.
Previous workers reported that the T4 bacteriophage UvsX protein could promote neither RecA-LexA-mediated DNA repair nor induction of lysogenized bacteriophage, only recombination. Reexamination of these phenotypes demonstrated that, in contrast to these prior studies, when this gene was cloned into a medium but not a low-copy-number vector, it stimulated both a high frequency of spontaneous induction and mitomycin C-stimulated bacteriophage induction in a strain containing a recA13 mutation, but not a recA1 defect. The gene when cloned into a low- or medium- copy-number vector also promoted a low frequency of recombination of two duplicated genes in Escherichia coli in a strain with a complete recA gene deletion. These results suggest that a narrow concentration range of T4 UvsX protein is required to promote both high-frequency spontaneous and mitomycin C-stimulated bacteriophage induction in a recA13 gene mutant, but it facilitates recombination of duplicated genes at only a very low frequency in E. coli RecA(-) mutants with a complete recA deletion. These results also suggest that the different UvsX phenotypes are affected differentially by the concentration of UvsX protein present.  相似文献   

15.
In Citrobacter freundii and Enterobacter cloacae, synthesis of AmpC beta-lactamase is inducible by the addition of beta-lactams to the growth medium. Spontaneous mutants that constitutively overproduce the enzyme occur at a high frequency. When the C. freundii ampC beta-lactamase gene is cloned into Escherichia coli together with the regulatory gene ampR, beta-lactamase expression from the clone is inducible. Spontaneous cefotaxime-resistant mutants were selected from an E. coli strain carrying the cloned C. freundii ampC and ampR genes on a plasmid. Virtually all isolates had chromosomal mutations leading to semiconstitutive overproduction of beta-lactamase. The mutation ampD2 in one such mutant was caused by an IS1 insertion into the hitherto unknown ampD gene, located between nadC and aroP at minute 2.4 on the E. coli chromosome. The wild-type ampD allele cloned on a plasmid could fully trans-complement beta-lactamase-overproducing mutants of both E. coli and C. freundii, restoring the wild-type phenotype of highly inducible enzyme synthesis. This indicates that these E. coli and C. freundii mutants have their lesions in ampD. We hypothesize that induction of beta-lactamase synthesis is caused by blocking of the AmpD function by the beta-lactam inducer and that this leads directly or indirectly to an AmpR-mediated stimulation of ampC expression.  相似文献   

16.
17.
We describe the isolation and characterization of amber mutations in the lexA gene of Escherichia coli K-12. These mutations, designated spr(Am), were isolated and characterized in a lexA tif sfi genetic background. They abolished the sensitivity of the strain to UV light and resulted in high rates of synthesis of recA protein. Phage lambda+ failed to lysogenize the strains as observed with similar strains carrying non-amber spr mutations described previously, thereby indicating a constitutive expression of the phage induction pathway. Introduction of an amber suppressor mutation into a strain bearing the spr(Am) mutation restored expression of the LexA mutant phenotype. We conclude that spr mutations either inactivate or prevent synthesis of the lexA gene product and that loss of this product results in constitutive expression of the E. coli induction system in the tif sfi genetic background.  相似文献   

18.
Spontaneous mutators of Salmonella typhimurium LT2 were generated by inserting the transposable element Tn5 or Tn10 into the bacterial chromosome. Two mutators mapped at the position of the mutH and mutL loci of S. typhimurium, and two other mutators mapped at positions corresponding to the mutS and uvrD loci of Escherichia coli. A fifth mutator, mutB, did not map at a position corresponding to any of the known mutators of S. typhimurium or E. coli. The mutH,L,S and uvrD alleles increased the frequency of both spontaneous base substitution and frameshift mutations, whereas the mutB allele increased the frequency only of spontaneous base substitution mutations. The increased frequency of base substitution mutations was recA+ independent in the mutH, mutL, and uvrD strains and partially recA+ independent in the mutS strain. The uvrD mutation decreased the resistance of the cells to killing by ultraviolet irradiation. The mutH,L,S and uvrD strains showed an increased sensitivity to mutagenesis by the alkylating agents methyl methane sulfonate and ethyl methane sulfonate, but not to mutagenesis by 4-nitroquinoline-1-oxide.  相似文献   

19.
Introduction into Escherichia coli WP2 bacteria of a mutation in the gyrB locus previously shown to reduce the degree of chromosomal superhelicity caused a small decrease in the frequency of UV-induced mutations to streptomycin resistance (but not significantly) and to tryptophan independence (mostly ochre suppressors) in excision repair-proficient bacteria. It did not influence the 'broth effect' or the rate or extent of 'mutation frequency decline' of suppressor mutations. In an excision-deficient (uvrA 155) background the yield of UV-induced streptomycin-resistant mutations was lower in gyrB bacteria at all doses; the yield of tryptophan-independent mutations was slightly lower at low doses and slightly higher at high doses. In both excision-proficient and -deficient bacteria the yield of UV-induced mutations to rifampicin resistance was apparently lower in gyrB mutants but this could be due at least in part to a hypersensitivity of some Rifr gyrB bacteria to UV. The number of spontaneous tryptophan-independent mutations was lower in gyrB bacteria but this was almost certainly due to their poorer viability on tryptophan-limiting plates and not to a lower spontaneous mutation rate. In a temperature-sensitive presumed gyrase-deficient strain a small decrease in mutant yield at low doses was observed following incubation at restrictive temperature before UV. This was ascribed to an enhancement of excision repair. Our failure to find any significant effect of gyrB mutations does not support the hypothesis that hairpin formation (which should be dependent on a high degree of superhelicity) is involved in determining the 'broth effect', 'mutation frequency decline' or the probability that a mutation will occur spontaneously. Dramatic effects of superhelicity on UV mutagenesis also seem to be unlikely.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号