首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial permeability transition pore (MPTP) plays a key role in cell death, yet its molecular identity remains uncertain. Although knock-out studies have confirmed critical roles for both cyclophilin-D (CyP-D) and the adenine nucleotide translocase (ANT), given a strong enough stimulus MPTP opening can occur in the absence of either. Here we provide evidence that the mitochondrial phosphate carrier (PiC) may also be a critical component of the MPTP. Phenylarsine oxide (PAO) was found to activate MPTP opening in the presence of carboxyatractyloside (CAT) that prevents ANT binding to immobilized PAO. Only four proteins from solubilized CAT-treated beef heart inner mitochondrial membranes bound to immobilized PAO, one of which was the PiC. GST-CyP-D pull-down and co-immunoprecipitation studies revealed CsA-sensitive binding of PiC to CyP-D; this increased following diamide treatment. Co-immunoprecipitation of the ANT with the PiC was also observed but was insensitive to CsA treatment. N-ethylmaleimide and ubiquinone analogues (UQ(0) and Ro 68-3400) inhibited phosphate transport into rat liver mitochondria with the same concentration dependence as their inhibition of MPTP opening. UQ(0) and Ro 68-3400 also induced the "m" conformation of the ANT, as does NEM, and reduced the binding of both the PiC and ANT to the PAO column. We propose a model for the MPTP in which a calcium-triggered conformational change of the PiC, facilitated by CyP-D, induces pore opening. An interaction of the PiC with the ANT may enable agents that bind to either transporter to modulate pore opening.  相似文献   

2.
The permeability transition pore complex: another view   总被引:49,自引:0,他引:49  
Halestrap AP  McStay GP  Clarke SJ 《Biochimie》2002,84(2-3):153-166
Mitochondria play a critical role in initiating both apoptotic and necrotic cell death. A major player in this process is the mitochondrial permeability transition pore (MPTP), a non-specific pore, permeant to any molecule of < 1.5 kDa, that opens in the inner mitochondrial membrane under conditions of elevated matrix [Ca(2+)], especially when this is accompanied by oxidative stress and depleted adenine nucleotides. Opening of the MPTP causes massive swelling of mitochondria, rupture of the outer membrane and release of intermembrane components that induce apoptosis. In addition mitochondria become depolarised causing inhibition of oxidative phosphorylation and stimulation of ATP hydrolysis. Pore opening is inhibited by cyclosporin A analogues with the same affinity as they inhibit the peptidyl-prolyl cis-trans isomerase activity of mitochondrial cyclophilin (CyP-D). These data and the observation that different ligands of the adenine nucleotide translocase (ANT) can either stimulate or inhibit pore opening led to the proposal that the MPTP is formed by a Ca-triggered conformational change of the ANT that is facilitated by the binding of CyP-D. Our model is able to explain the mode of action of a wide range of known modulators of the MPTP that exert their effects by changing the binding affinity of the ANT for CyP-D, Ca(2+) or adenine nucleotides. The extensive evidence for this model from our own and other laboratories is presented, including reconstitution studies that demonstrate the minimum configuration of the MPTP to require neither the voltage activated anion channel (VDAC or porin) nor any other outer membrane protein. However, other proteins including Bcl-2, BAX and virus-derived proteins may interact with the ANT to regulate the MPTP. Recent data suggest that oxidative cross-linking of two matrix facing cysteine residues on the ANT (Cys(56) and Cys(159)) plays a key role in regulating the MPTP. Adenine nucleotide binding to the ANT is inhibited by Cys(159) modification whilst oxidation of Cys(56) increases CyP-D binding to the ANT, probably at Pro(61).  相似文献   

3.
The combination of calcium overload and oxidative stress opens a non-specific pore in the inner mitochondrial membrane known as the mitochondrial permeability transition pore (MPTP). This uncouples oxidative phosphorylation and compromises intracellular ATP levels eventually leading to necrotic cell death. In cardiac ischemia and reperfusion, as during treatment of a coronary thrombosis or cardiac surgery, the extent of MPTP opening determines the amount of irreversible damage (infarct size). Furthermore, cardioprotection can be achieved by inhibiting MPTP opening either directly with cyclosporin A analogues, or indirectly by reducing oxidative stress. The detailed molecular mechanism of the MPTP remains uncertain. Knockout studies have confirmed important regulatory roles for cyclophilin-D (CyP-D) and the adenine nucleotide translocase (ANT) but not the voltage dependent anion channel. Our own studies have implicated a calcium-triggered conformational change of the mitochondrial phosphate carrier that is facilitated by CyP-D and modulated by the conformation of the ANT.  相似文献   

4.
The mitochondrial permeability transition pore (MPTP) plays a key role in cell death, especially necrosis, and mediates the injury tissues such as the heart and brain experience following ischaemia and reperfusion. However, the molecular identity of the MPTP remains uncertain. Knockout studies have confirmed a role for cyclophilin-D (CyP-D) in pore opening, probably mediated by its peptidyl-prolyl cis-trans isomerase activity that facilitates a conformational change in an inner membrane protein. However, similar knockout studies have cast doubt on the central role of the adenine nucleotide translocase (ANT), previously regarded as a leading contender for the membrane component that forms the transmembrane channel of the MPTP. Here we review the evidence for and against a role for the ANT in MPTP opening and conclude that it usually plays a regulatory role rather than provide the transmembrane pore component. We suggest that the protein fulfilling the latter role is the mitochondrial phosphate carrier (PiC) and summarise recent evidence in support of this proposal. Our data are consistent with a model for the MPTP in which a calcium-triggered conformational change of the PiC, facilitated by CyP-D, induces pore opening. We propose that this is enhanced by an association of the PiC with the "c" conformation of the ANT. Agents that modulate pore opening may act on either or both the PiC and the ANT.  相似文献   

5.
Phosphate activation of the mitochondrial permeability transition pore (MPTP) opening is well-documented and could involve the phosphate carrier (PiC) that we have proposed is the pore's cyclophilin-D binding component. However, others have reported that following CyP-D ablation Pi inhibits MPTP opening while cyclosporine-A (CsA) inhibits MPTP opening only when Pi is present. Here we demonstrate that Pi activates MPTP opening under all energised and de-energised conditions tested while CsA inhibits pore opening whether or not Pi is present. Using siRNA in HeLa cells we could reduce PiC expression by 65-80% but this inhibited neither mitochondrial calcium accumulation nor MPTP opening.  相似文献   

6.
Andrew P. Halestrap  Philippe Pasdois 《BBA》2009,1787(11):1402-1415
Like Dr. Jeckyll and Mr. Hyde, mitochondria possess two distinct persona. Under normal physiological conditions they synthesise ATP to meet the energy needs of the beating heart. Here calcium acts as a signal to balance the rate of ATP production with ATP demand. However, when the heart is overloaded with calcium, especially when this is accompanied by oxidative stress, mitochondria embrace their darker side, and induce necrotic cell death of the myocytes. This happens acutely in reperfusion injury and chronically in congestive heart failure. Here calcium overload, adenine nucleotide depletion and oxidative stress combine forces to induce the opening of a non-specific pore in the mitochondrial membrane, known as the mitochondrial permeability transition pore (mPTP). The molecular nature of the mPTP remains controversial but current evidence implicates a matrix protein, cyclophilin-D (CyP-D) and two inner membrane proteins, the adenine nucleotide translocase (ANT) and the phosphate carrier (PiC). Inhibition of mPTP opening can be achieved with inhibitors of each component, but targeting CyP-D with cyclosporin A (CsA) and its non-immunosuppressive analogues is the best described. In animal models, inhibition of mPTP opening by either CsA or genetic ablation of CyP-D provides strong protection from both reperfusion injury and congestive heart failure. This confirms the mPTP as a promising drug target in human cardiovascular disease. Indeed, the first clinical trials have shown CsA treatment improves recovery after treatment of a coronary thrombosis with angioplasty.  相似文献   

7.
Cyclosporine A (CsA), a widely used immunosuppressant shows cytotoxic effects by either inducing apoptosis or redirecting the cell towards non-apoptotic cell death. However, there still remains a lacuna in understanding the mechanism of CsA induced non-apoptotic cell death. In the present study we investigated calcineurin dependent or independent cytotoxic effects of CsA, a calcineurin inhibitor, in cervical cancerous SiHa cells. Decreased cell viability and massive cytoplasmic vacuolations were observed in CsA treated SiHa cells, having increased calcineurin activity. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR), accompanied by a decrease in cyclophilin B (ER resident PPIase), preceded the formation of the vacuoles. These vacuoles stained positive for many ER resident markers confirming their ER origin; but the absence of autophagosomal marker, LC3II, ruled out autophagy. Extensively vacuolated cells eventually undergo cell death which lacked the typical apoptotic features, but showed significant decrease in AIP (ALG2 interacting protein) as seen in paraptosis. ER-vacuolation was prevented by cycloheximide and salubrinal thereby indicating requirement of active protein synthesis. Inhibiting calcineurin activity by either Tacrolimus (FK506) or by knockdown of calcineurin B subunit did not result in either ER-stress or cellular vacuolation. However, knockdown of cyclophilin B by siRNA resulted in increased expression of Bip and IRE1α, together with cytoplasmic vacuolation. In conclusion, we report that persistent ER stress due to cyclophilin B inhibition in CsA treated cervical cancer cells caused cellular vacuolation which culminated in a non-apoptotic cell death response similar to paraptosis. Additionally, the paraptotic effects of CsA are independent of calcineurin inhibition.  相似文献   

8.
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca2+-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys56 relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca2+-induced ANT conformational change and mitochondrial swelling. ANT-Pro61 isomerization increased ANT-Cys56 relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca2+ induced ANT “c” conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca2+-induced ANT “c” conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca2+ induces the ANT “c” conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.  相似文献   

9.
Antamanide is a cyclic decapeptide derived from the fungus Amanita phalloides. Here we show that antamanide inhibits the mitochondrial permeability transition pore, a central effector of cell death induction, by targeting the pore regulator cyclophilin D. Indeed, (i) permeability transition pore inhibition by antamanide is not additive with the cyclophilin D-binding drug cyclosporin A, (ii) the inhibitory action of antamanide on the pore requires phosphate, as previously shown for cyclosporin A; (iii) antamanide is ineffective in mitochondria or cells derived from cyclophilin D null animals, and (iv) abolishes CyP-D peptidyl-prolyl cis-trans isomerase activity. Permeability transition pore inhibition by antamanide needs two critical residues in the peptide ring, Phe6 and Phe9, and is additive with ubiquinone 0, which acts on the pore in a cyclophilin D-independent fashion. Antamanide also abrogates mitochondrial depolarization and the ensuing cell death caused by two well-characterized pore inducers, clotrimazole and a hexokinase II N-terminal peptide. Our findings have implications for the comprehension of cyclophilin D activity on the permeability transition pore and for the development of novel pore-targeting drugs exploitable as cell death inhibitors.  相似文献   

10.
The permeability transition pore (PTP) regulates the structural re-organization of mitochondria in response to changes in cellular Ca2+ and is thought to be an important participant in mitochondrial responses to cell death signals. Although the proteins forming the PTP have yet to be rigorously identified, recent examination of the response of mitochondria, cells and tissues lacking putative components of the PTP have been reported. Studies on mitochondria lacking cyclophilin D (CyP-D) have proved that this protein is the target for PTP inhibition by CsA; yet they have also unequivocally demonstrated that the PTP can form and open in the absence of CyP-D. Likewise, studies in mice lacking the two adenine nucleotide translocators expressed in this species have shown that a functional PTP can form in the absence of these proteins. Thus, the inner mitochondrial membrane components of the PTP remain to be identified, and the absence of CyP-D may not preclude PTP opening in vivo – a finding that questions the conclusion that the PTP participates in cell death pathways only in response to a restricted set of challenges.  相似文献   

11.
Based on recent X-ray structural information, six site-directed mutants of human cyclophilin A (hCyPA) involving residues in the putative active site--H54, R55, F60, Q111, F113, and H126--have been constructed, overexpressed, and purified from Escherichia coli to homogeneity. The proteins W121A (Liu, J., Chen, C.-M., & Walsh, C.T., 1991a, Biochemistry 30, 2306-2310), H54Q, R55A, F60A, Q111A, F113A, and H126Q were assayed for cis-trans peptidyl-prolyl isomerase (PPIase) activity, their ability to bind the immunosuppressive drug cyclosporin A (CsA), and protein phosphatase 2B (calcineurin) inhibition in the presence of CsA. Results indicate that H54Q, Q111A, F113A, and W121A retain 3-15% of the catalytic efficiency (kcat/Km) of wild-type recombinant hCyPA. The remaining three mutants (R55A, F60A, and H126Q) each retain less than 1% of the wild-type catalytic efficiency, indicating participation by these residues in PPIase catalysis. Each of the mutants bound to a CsA affinity matrix. The mutants R55A, F60A, F113A, and H126Q inhibited calcineurin in the presence of CsA, whereas W121A did not. Although CsA is a competitive inhibitor of PPIase activity, it can complex with enzymatically inactive cyclophilins and inhibit the phosphatase activity of calcineurin.  相似文献   

12.
Energized mouse liver mitochondria displayed the same calcium retention capacity (a sensitive measure of the propensity of the permeability transition pore (PTP) to open) irrespective of whether phosphate, arsenate, or vanadate was the permeating anion. Unexpectedly, however, phosphate was specifically required for PTP desensitization by cyclosporin A (CsA) or by genetic inactivation of cyclophilin D (CyP-D). Indeed, when phosphate was replaced by arsenate, vanadate, or bicarbonate, the inhibitory effects of CsA and of CyP-D ablation on the PTP disappeared. After loading with the same amount of Ca(2+) in the presence of arsenate or vanadate but in the absence of phosphate, the sensitivity of the PTP to a variety of inducers was identical in mitochondria from wild-type mice, CyP-D-null mice, and wild-type mice treated with CsA. These findings call for a reassessment of conclusions on the role of the PTP in cell death that are based on the effects of CsA or of CyP-D ablation.  相似文献   

13.
14.
Although the immediate receptors (immunophilins) of the immunosuppressants cyclosporin A (CsA) and FK506 are distinct, their similar mechanisms of inhibition of cell signaling suggest that their associated immunophilin complexes interact with a common target. We report here that the complexes cyclophilin-CsA and FKBP-FK506 (but not cyclophilin, FKBP, FKBP-rapamycin, or FKBP-506BD) competitively bind to and inhibit the Ca(2+)- and calmodulin-dependent phosphatase calcineurin, although the binding and inhibition of calcineurin do not require calmodulin. These results suggest that calcineurin is involved in a common step associated with T cell receptor and IgE receptor signaling pathways and that cyclophilin and FKBP mediate the actions of CsA and FK506, respectively, by forming drug-dependent complexes with and altering the activity of calcineurin-calmodulin.  相似文献   

15.
Cyclophilin D (CyPD) is thought to sensitize opening of the mitochondrial permeability transition pore (mPTP) based on the findings that cyclosporin A (CsA), a pseudo-CyPD substrate, hyperpolarizes the mitochondrial membrane potential (DeltaPsi) and inhibits apoptosis. We provide evidence that contrasts with this model. Using live cell imaging and two photon microscopy, we report that overexpression of CyPD desensitizes HEK293 and rat glioma C6 cells to apoptotic stimuli. By site-directed mutagenesis of CyPD that compromises peptidyl-prolyl cis-trans isomerase (PPIase) activity, we demonstrate that the mechanism involved in this protective effect requires PPIase activity. Furthermore, we show that, under resting conditions, DeltaPsi is hyperpolarized in CyPD wild type-overexpressing cells but not in cells overexpressing mutant forms of CyPD that lack PPIase activity. Finally, in glutathione S-transferase (GST) pull-down assays, we demonstrate that CyPD binding to the adenine nucleotide translocator (ANT), which is considered to be the core component of the mPTP, is not affected by the loss of PPIase activity. Collectively, our data suggest that CyPD should be viewed as a cell survival-signaling molecule and indicate a protective role of CyPD against apoptosis that is mediated by one or more targets other than the ANT.  相似文献   

16.
Transplant recipients have an elevated risk of skin cancer, with a 65- to 250-fold increase in squamous cell carcinoma. Usage of the immunosuppressant cyclosporine A (CsA) is associated with the development of skin cancer. We hypothesized that the increased incidence of skin cancer was due to the action of CsA within keratinocyte mitochondria where it can inhibit mitochondrial permeability transition pore (MPTP) opening. Normally, MPTP opening is induced by oxidative stress such as that caused by UV light and leads to cell death, thereby eliminating a cell that has been exposed to genotoxic insult. However, in the presence of CsA, damaged cells may survive and consequently form tumors. To test this hypothesis, we treated keratinocytes with levels of CsA used therapeutically in transplant patients and assessed their viability following UVA-irradiation. CsA prevented cell death by inhibiting MPTP opening, even though the levels of oxidative stress were increased markedly. Nim811, a non-immunosuppressive drug that can block the MPTP had a similar effect while the immunosuppressive drug tacrolimus that does not interact with the mitochondria had no effect. These findings suggest that CsA may promote skin cancer in transplant patients by allowing keratinocyte survival under conditions of increased genotoxic stress.  相似文献   

17.
After an episode of myocardial ischemia, opening of the mitochondrial permeability transition pore (mPTP), at the onset of reperfusion, is a critical determinant of myocyte death. We investigated the role of the mPTP as a target for cardioprotection in the human heart. We subjected human atrial tissue, harvested from patients undergoing cardiac surgery, to a period of lethal hypoxia and investigated the effect of suppressing mPTP opening at the onset of reoxygenation. We found that suppressing mPTP opening at the onset of reoxygenation with known mPTP inhibitors cyclosporin A (CsA, 0.2 micromol/l) and sanglifehrin A (SfA, 1.0 micromol/l) 1) improved recovery of baseline contractile function from 29.4 +/- 2.0% under control conditions to 48.7 +/- 2.2% with CsA and 46.1 +/- 2.3% with SfA (P < 0.01) and 2) improved cell survival from 62.8 +/- 5.3% under hypoxic control conditions to 91.4 +/- 4.1% with CsA and 87.2 +/- 6.2% with SfA (P < 0.001). Furthermore, with a cell model in which oxidative stress was used to induce mPTP opening in human atrial myocytes, we demonstrated directly that CsA and SfA mediated their cardioprotective effects by inhibiting mPTP opening, as evidenced by an extension in the time required to induce mPTP opening from 116 +/- 8 s under control conditions to 189 +/- 10 s with CsA and 183 +/- 12 s with SfA (P < 0.01). We report that suppressing mPTP opening at the onset of reoxygenation protects human myocardium against lethal hypoxia-reoxygenation injury. This suggests that, in the human heart, the mPTP is a viable target for cardioprotection.  相似文献   

18.
19.
We have studied the properties of the permeability transition pore (PTP) in mitochondria from the liver of mice where the Ppif gene encoding for mitochondrial Cyclophilin D (CyP-D) had been inactivated. Mitochondria from Ppif-/- mice had no CyP-D and displayed a striking desensitization of the PTP to Ca2+, in that pore opening required about twice the Ca2+ load necessary to open the pore in strain-matched, wild-type mitochondria. Mitochondria lacking CyP-D were insensitive to Cyclosporin A (CsA), which increased the Ca2+ retention capacity only in mitochondria from wild-type mice. The PTP response to ubiquinone 0, depolarization, pH, adenine nucleotides, and thiol oxidants was similar in mitochondria from wild-type and Ppif-/- mice. These experiments demonstrate that (i) the PTP can form and open in the absence of CyP-D, (ii) that CyP-D represents the target for PTP inhibition by CsA, and (iii) that CyP-D modulates the sensitivity of the PTP to Ca2+ but not its regulation by the proton electrochemical gradient, adenine nucleotides, and oxidative stress. These results have major implications for our current understanding of the PTP and its modulation in vitro and in vivo.  相似文献   

20.
Receptor-interacting protein (RIP) has been implicated in the induction of death receptor-mediated, nonapoptotic cell death. However, the mechanisms remain to be elucidated. Here we show that tumor necrosis factor alpha induced RIP-dependent inhibition of adenine nucleotide translocase (ANT)-conducted transport of ADP into mitochondria, which resulted in reduced ATP and necrotic cell death. The inhibition of ADP/ATP exchange coincided with the loss of interaction between ANT and cyclophilin D and the inability of ANT to adopt the cytosolic conformational state, which prevented cytochrome c release. Neither overexpression of Bcl-xL nor inhibition of reactive oxygen species prevented necrosis. In contrast, the ectopic expression of ANT or cyclophilin D was effective at preventing cell death. These observations demonstrate a novel mechanism initiated through death receptor ligation and mediated by RIP that results in the suppression of ANT activity and necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号