首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Milk-clotting enzyme from Bacillus licheniformis 5A1 was immobilized on Amberlite IR-120 by ionic binding. Almost all the enzyme activity was retained on the support. The immobilized milk-clotting enzyme was repeatedly used to produce cheese in a batch reactor. The production of cheese was repeated 5 times with no loss of activity. The specific activity calculated on a bound-protein basis was slightly higher than that of free enzyme. The free and immobilized enzyme were highly tolerant to repeated freezing and thawing. The optimum temperature for milk-clotting activity was 70 °C with the free enzyme whereas, it was ranged from 70 to 80 °C with the immobilized milk-clotting enzyme. The activation energy (E A) of the immobilized milk-clotting enzyme was lower than the free enzyme (E A = 1.59 and 1.99 Kcal mol−1 respectively). The immobilized milk-clotting enzyme exhibited great thermal stability. The milk-clotting optimum pH was 7.0 for both free and immobilized enzyme. The Michaelis constant K m of the immobilized milk-clotting enzyme was slightly lower than the free enzyme.  相似文献   

2.
Microbial milk-clotting enzymes are valued as calf rennet substitutes in the cheese industry. Aspergillus oryzae MTCC 5341 was identified to produce the highest milk-clotting activity during screening of 16 fungal strains. Solid state fermentation using wheat bran along with 4% defatted soy flour and 2% skim milk powder as substrate was optimal for growth of A. oryzae and production of the enzyme. Nearly 40,000 U/g bran of milk-clotting activity was present at the end of 120 h. The enzyme could be recovered by percolating the bran with 0.1 M sodium chloride for 60 min at 4°C. The decolorized enzyme preparation had high ratio of milk clotting to proteolytic activity. Affinity precipitation with alginate and subsequent elution with 0.5 M sodium chloride containing 0.2 M CaCl2 resulted in an enzyme preparation with specific activity of 3,500 U/mg and 72% yield. Optimum pH and temperature for activity of the enzyme were characterized as 6.3 and 55°C, respectively. Milk-clotting enzyme showed differential degree of hydrolysis on casein components. High ratio of milk clotting to proteolytic activity coupled with low thermal stability strengthens the potential usefulness of milk-clotting enzyme of A. oryzae MTCC 5341 as a substitute for calf rennet in cheese manufacturing.  相似文献   

3.
Filamentous fungi belonging to the order of Mucorales are well known as producers of aspartic proteinases depicting milk-clotting activity. The biosynthesis level, the biochemical characteristics, and the technological properties of the resulting proteinases are affected by the producer strain and the mode of cultivation. While the milk-clotting enzymes produced by the Rhizomucor spp. have been extensively studied in the past, much less is known on the properties and potential applications of the aspartic proteinases obtained for Mucor spp. Indeed, several Mucor spp. strains have been reported as a potential source of milk-clotting enzymes having unique technological properties. Both submerged fermentation and solid substrate cultivation are proven alternatives for the production of Mucor spp. aspartic proteinases. This review provides an overview on the bioprocessing routes to obtain large amounts of these enzymes, on their structural characteristics as related to their functional properties, and on their industrial applications with focus on cheese manufacturing.  相似文献   

4.
The milk-clotting and proteolytic activities of extracellular enzyme preparations from Nocardiopsis sp. were investigated under different culture conditions. A soybean flour medium was used, with concentrations of soybean flour and of glucose varying from 0.25 to 1% w/v and from 0 to 1% w/v, respectively. Growth was monitored with 2ml samples withdrawn from the culture medium at 8-h intervals, for determination of total protein, proteolytic activity, milk-clotting activity and sugar reduction. The best milk-clotting protease production, with a specific activity of 24.49U/mg at 40h, was obtained in the glucose-free medium containing soybean flour 1% w/v.  相似文献   

5.
BasidiomycetesPhellinus chrysoloma, Kuehneromyces mutabilis andGanoderma applanatum produce extracellular milk-clotting enzymes. The enzymes are acid proteinases stable at 40°C and within pH 3–5.5. Only the enzyme preparation fromP. chrysoloma exhibits properties comparable with animal chymosin.  相似文献   

6.
Abstract

Cheese production is projected to reach 20 million metric tons by 2020, of which 33% is being produced using calf rennet (EC 3.4.23.4). There is shortage of calf rennet, and use of plant and microbial rennets, hydrolyze milk proteins non-specifically resulting in low curd yields. This study reports fungal enzymes obtained from cost effective medium, with minimal down streaming, whose activity is comparable with calf and Mucor rennet. Of the fifteen fungi that were screened, Mucor thermohyalospora (MTCC 1384) and Rhizopus azygosporus (MTCC 10195) exhibited the highest milk-clotting activity (MCA) of 18,383?±?486?U/ml and 16,373?± 558?U/ml, respectively. Optimization exhibited a 33% increase in enzyme production (30?g wheat bran containing 6% defatted soy meal at 30?°C, pH 7) for M. thermohyalospora. The enzyme was active from pH 5–10 and temperature 45–55?°C. Rhizopus azygosporus exhibited 31% increase in enzyme production (30?g wheat bran containing 4% defatted soy meal at 30?°C, pH 6) and the enzyme was active from pH 6–9 at 50?°C. Curd yields prepared from fungal enzyme extract decreased (5–9%), when compared with calf rennet and Mucor rennet. This study describes the potential of fungal enzymes, hitherto unreported, as a viable alternative to calf rennet  相似文献   

7.
Two degenerate primers established from the consensus sequences of bacterial leucine aminopeptidases (LAP) were used to amplify a 360-bp gene fragment from the chromosomal DNA of thermophilic Bacillus kaustophilus CCRC 11223 and the amplified fragment was successfully used as a probe to clone a leucine aminopeptidase (lap) gene from a genomic library of the strain. The gene consists of an open reading frame (ORF) of 1,494 bp and encodes a protein of 497 amino acid residues with a calculated molecular mass of 53.7 kDa. The complete amino acid sequence of the cloned enzyme showed greater than 30% identity with prokaryotic and eukaryotic LAPs. Phylogenetic analysis showed that B. kaustophilus LAP is closely related to the enzyme from Bacillus subtilis and is grouped with the M17 family. His6-tagged LAP was generated in Escherichia coli by cloning the coding region into pQE-30 and the recombinant enzyme was purified by nickel-chelate chromatography. The pH and temperature optima for the purified enzyme were 8 and 65°C, respectively, and 50% of its activity remained after incubation at 60°C for 32 min. The enzyme preferentially hydrolyzed l-leucine-p-nitroanilide (l-Leu-p-NA) followed by Cys derivative.Communicated by G. Antranikian  相似文献   

8.
Agro-industrial residues, a cheap source of energy have high potential in the area of fermentation for the production of enzymes. Twenty agro-industrial residues were evaluated to check the possibility of potential utilization of substrates in SSF for milk clotting enzyme protease production by Mucor circinelloides. In this study, dhal husk holds the greatest promise for cost effective production of the milk clotting enzyme. The dhal husk supported maximum milk clotting protease production, and yield was improved with the supplementation of sucrose and yeast extract as carbon and nitrogen source, respectively. Among all the physico-chemical parameters tested, the best results were obtained in a medium having moisture content of 20% at pH 7.0, when inoculated with 30% of spore suspension and incubated at 30°C for 5 days. The activity was increased further on addition of Ca2+, Cu2+, and Mg2+ ions. The purified milk-clotting protease obtained from M. circinelloides was successfully applied and compared with commercial rennet in the manufacture of a cheddar cheese.  相似文献   

9.
An extracellular polygalacturonase (EC 3.2.1.15) fromGeotrichum candidum ATCC 34614 grown onsauerkraut brine was produced and characterized. Polygalacturonic acid markedly increased the enzyme yield in the brine. The fungus produced the highest activity (290 U/l) in brine with 0.3% (w/v) polygalacturonic acid. The pH and temperature optima of the enzymes were 4.5 to 5.0 and 30°C, respectively. It was stable from pH 4.0 to 5.8 and at 30°C but lost its activity at higher temperatures. The Km and Vmax values for polygalacturonic acid were 4.2 mg/ml and 0.19mm galacturonic acid/min, respectively. The enzyme was not substrate inhibited.  相似文献   

10.
Some properties of an extracellular lipase produced byLactobacillus delbrueckii subsp.bulgaricus were studied. Maximum enzyme activity was found against olive and butter oil as enzyme substrates. Addition of 9% acacia gum, 0.1% Na-deoxycholate and 0.01 M CaCl2 to the enzyme reaction mixture increased-lipase activity from 5.3 to 14.5 (FFA/mg protein/minute) at pH 6.0 and at 40° C. Maximum lipase production was reached in the presence of glucose as a sole source of carbon, wheat bran as nitrogen source, olive oil as a sole lipid source and butyric acid as fatty acid supporting the growth medium. An initial pH value of the culture medium of 6.0 and a temperature of 35° C gave the highest lipolytic activity.  相似文献   

11.
Growth and production of lipase by a new Geotrichum-like strain, R59, were studied. Production of extracellular lipase was substantially enhanced when the initial pH of the culture medium, types of carbon and nitrogen sources, substances probably stimulating the lipase biosynthesis, the temperature, and time of growth were optimized. Sucrose and triolein were the most effective carbon sources for lipase production. Maximum lipase activity (146 U/ml–1) was obtained with urea as the nitrogen source. Growth at 30°C, an initial pH of 6.0 and incubation time of 48 h were found as optimum conditions for cell growth and production of lipase by Geotrichum-like strain R59. The enzyme was thermostable and exhibited very high activity after 1 h incubation at 60°C.  相似文献   

12.
Summary Eight thermophilic fungi were tested for production of mannanases and galactanases. Highest mannanase activities were produced byTalaromyces byssochlamydoides andTalaromyces emersonii. Mannanases from all strains tested were induced by locust bean gum except in the case ofThermoascus aurantiacus, where mannose had a greater inducing effect. Locust bean gum was also the best inducer of -mannosidase and galactanase except in the case ofT. emersonii where galactose was a better inducer of both these enzymes. Highest mannanase activity was produced byTalaromyces species when peptone was used as nitrogen source whereas sodium nitrate promoted maximum production of this enzyme byThielavia terrestris andT. aurantiacus. The pH optima of mannanases from the thermophilic fungi were in the range 5.0–6.6 and contrasted with the low pH optimum (3.2) of the enzyme fromAspergillus niger. Galactanases had pH optima in the range 4.3–5.8. The mannanase fromT. emersonii and the galactanase fromT. terrestris were most thermostable, each retaining 100% activity for 3 h at 60°C.  相似文献   

13.
The milk-clotting enzyme fraction from Irpex lacteus (IR) was obtained by affinity chromatography. To evaluate IR as a calf rennet substitute, Cheddar cheese-making trials were done. There was no difference in cheese yield, protein recovery, or fat recovery between cheese made with calf rennet (CR) and that made with IR. Although IR cheese showed a slightly higher extent of proteolysis in comparison to the control during ripening, IR cheese did not develop a bitter taste even after 6 months of ripening. These facts indicate that IR is a promising rennet substitute for cheese-making.  相似文献   

14.
A cDNA of a structural gene encoding pyranose 2-oxidase (P2O) from Trametes ochracea strain MB49 was cloned into Escherichia coli strain BL21(DE3) on a multicopy plasmid under the control of the trc promoter. Synthesis of P2O was studied in batch cultures in LB or M9-based mineral medium at 28°C. While there was a low specific activity of P2O in LB medium, the enzyme was synthesised constitutively in mineral medium and represented 3% of the cell soluble protein (0.3 U mg–1). The effect of isopropyl -d-thiogalactoside on the expression of P2O was studied in mineral medium at 25 and 28°C. The synthesis of P2O at 28°C corresponded to 39% of the cell soluble protein but the major portion of P2O (93%) was in the form of non-active inclusion bodies (activity of P2O equalled 0.19 U mg–1). At 25°C, the amount of P2O represented 14% of the cell soluble protein and the activity of P2O was 1.1 U mg–1. The soluble enzyme represented 70% of the total amount of P2O.  相似文献   

15.
A gene that codes for an alkaline phosphatase was cloned from the thermophilic bacterium Meiothermus ruber, and its nucleotide sequence was determined. The deduced amino acid sequence indicates that the enzyme precursor including the putative signal sequence is composed of 503 amino acid residues and has an estimated molecular mass of 54,229 Da. Comparison of the peptide sequence with that of the prototype alkaline phosphatase from Escherichia coli revealed conservation of the regions in the vicinity of the corresponding phosphorylation site and metal binding sites. The protein was expressed in E. coli and its enzymatic properties were characterized. In the absence of exogenously added metal ions, activity was negligible; to obtain maximal activity, addition of free Mg2+ ions was required. Zn2+ ions had an inhibitory effect on the activity of the M. ruber enzyme. The pH and temperature optima for activity were found to be 11.0 and 62°C, respectively. The enzyme was moderately thermostable: it retained about 50% activity after incubation for 6 h at 60°C, whereas at 80°C it was completely inactivated within 2 h. The Michaelis constant for cleavage of 4-nitrophenylphosphate was 0.055 mM. While having much in common with other alkaline phosphatases, the M. ruber enzyme presents some unique features, such as a very narrow pH range for activity and an absolute requirement for magnesium for activity.Communicated by G. P. Georgiev  相似文献   

16.
A strain of Rhizopus stolonifer produced a high activity of extracellular DNAase when grown on YPG (yeast extract peptone glucose) medium. The source of peptone had a marked effect on the enzyme yield and only one peptone (i.e. from Sarabhai M. Chemicals Ltd, India) supported enzyme production. Maximum enzyme activity (88 U/ml) was obtained after 4 days' growth under submerged conditions in YPG medium containing 100 M Mn2+, Co2+ or Mg2+, and glucose as the sole carbon source. The unpurified enzyme was optimally active at pH 7.5 and 45°C. It had a higher activity with sonicated and heat-denatured DNA than native DNA.  相似文献   

17.
Summary Serratia marcescens and Myxococcus xanthus cells were immobilized in calcium alginate gel beads. Immobilization under various conditions had no effect on the extracellular proteolytic activity of S. marcescens cells. Protease production seemed rather to depend on the free cells in the medium. However, the stability over time of enzyme production was enhanced, as immobilization increased protease production half-life from 5 to 12 days. On the other hand, Myxococcus xanthus produced proteases inside the gel beads which could diffuse into the medium. The proteolytic activity increased as a function of the initial cell content of the beads and of the bead inoculum. Compared to free cells, immobilized cells of Myxococcus xanthus could produce 8 times more proteolytic activity, with a very low free-cell concentration in the medium.  相似文献   

18.
An extracellular carboxymethylcellulase (endo-1,4--glucanase) fromCurvularia lunata, grown at 30°C with an initial pH of 6.0, had optimal activity at pH 4.8 and 50°C. The enzyme was unstable above 50°C. The enzyme had aK m for carboxymethylcellulose of 0.97 g/l and aV max of 5.4 IU/ml.  相似文献   

19.
Several mutants and other variants of Myxococcus xanthus HP100 were obtained with differences in their sensitivity to carbenicillin and other penicillin derivatives. The specific activities of -lactamase in different resistant organisms varied from strain to strain but were consistently higher than in HP100. The relative molecular mass (M r ) of the enzyme in M. xanthus HP100 was found to be 22,300. In certain carbenicillin resistant strains a second fraction of -lactamase activity of molecular weight 186,000 presumed to be an octamer of the other form was present. The enzyme was found in cell free extracts and also in culture supernatants of all carbenicillin resistant mutants but not in culture supernatants of strain HP100. In all the carbenicillin resistant mutants a part of the intracellular enzyme activity was released by osmotic shock and this activity may be periplasmic. The forms of the enzyme present in the culture supernatants and released by osmotic shock were monomeric. Carbenicillin resistance was not transferable between strains by conjugation. One resistance allele inhibited the transfer of the R factor Sa between myxococci.Non-standard abbreviations CS CR sensitivity and resistance to carbenicillin - C u R C S R unstable and stable resistance to carbenicillin  相似文献   

20.
A bacterial strain WJ-98 found to produce active extracellular keratinase was isolated from the soil of a poultry factory. It was identified asParacoccus sp. based on its 16S rRNA sequence analysis, morphological and physiological characteristics. The optimal culture conditions for the production of keratinase byParacoccus sp. WJ-98 were investigated. The optimal medium composition for keratinase production was determined to be 1.0% keratin, 0.05% urea and NaCl, 0.03% K2HPO4, 0.04% KH2PO4, and 0.01% MgCl2·6H2O. Optimal initial pH and temperature for the production of keratinase were 7.5 and 37°C, respectively. The maximum keratinase production of 90 U/mL was reached after 84 h of cultivation under the optimal culturing conditions. The keratinase fromParacoccus sp. WJ-98 was partially purified from a culture broth by using ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, followed by gel filtration chromatography on Sephadex G-75. Optimum pH and temperature for the enzyme reaction were pH 6.8 and 50°C, respectively and the enzymes were stable in the pH range from 6.0 to 8.0 and below 50°C. The enzyme activity was significantly inhibited by EDTA, Zn2+ and Hg2+. Inquiry into the characteristics of keratinase production from these bacteria may yield useful agricultural feed processing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号