首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract: Binding of [3H]glutamate, [3H]glycine, and the glutamate antagonist [3H]CGS-19755 to NMDA-type glutamate receptors was examined in homogenates of rat forebrain and cerebellum. Most glutamate agonists had a higher affinity at the [3H]glutamate binding site of cerebellar NMDA receptors as compared with forebrain, whereas all the glutamate antagonists examined showed the reverse relationship. The [3H]glycine binding site of forebrain and cerebellar NMDA receptors showed a similar pharmacology in both brain regions. In the cerebellum, however, [3H]glycine bound to a second site with a 10-fold lower affinity and with a pharmacology that resembled that of the glycine/strychnine chloride channel. [3H]Glutamate binding was not affected by glycine agonists or antagonists, nor was [3H]glycine binding affected by glutamate agonists in either forebrain or cerebellum. Both CGS-19755 and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, glutamate antagonists, reduced [3H]glycine binding in cerebellum, whereas only CGS-19755 was effective in forebrain. Glycine agonists and antagonists modulated [3H]CGS-19755 binding in forebrain and cerebellum to different extents in the two brain regions. From these studies we conclude that the cerebellar NMDA receptor has a different pattern of modulation at glutamate and glycine sites and that glycine may play a more important role in the control of NMDA function in the cerebellum as compared with forebrain.  相似文献   

2.

Background

The rewarding effects of 3,4-methylenedioxy-metamphetamine (MDMA) have been demonstrated in conditioned place preference (CPP) procedures, but the involvement of the dopaminergic system in MDMA-induced CPP and reinstatement is poorly understood.

Methodology/Principal Findings

In this study, the effects of the DA D1 antagonist SCH 23390 (0.125 and 0.250 mg/kg), the DA D2 antagonist Haloperidol (0.1 and 0.2 mg/kg), the D2 antagonist Raclopride (0.3 and 0.6 mg/kg) and the dopamine release inhibitor CGS 10746B (3 and 10 mg/kg) on the acquisition, expression and reinstatement of a CPP induced by 10 mg/kg of MDMA were evaluated in adolescent mice. As expected, MDMA significantly increased the time spent in the drug-paired compartment during the post-conditioning (Post-C) test, and a priming dose of 5 mg/kg reinstated the extinguished preference. The higher doses of Haloperidol, Raclopride and CGS 10746B and both doses of SCH 23390 blocked acquisition of the MDMA-induced CPP. However, only Haloperidol blocked expression of the CPP. Reinstatement of the extinguished preference was not affected by any of the drugs studied. Analysis of brain monoamines revealed that the blockade of CPP acquisition was accompanied by an increase in DA concentration in the striatum, with a concomitant decrease in DOPAC and HVA levels. Administration of haloperidol during the Post-C test produced increases in striatal serotonin, DOPAC and HVA concentrations. In mice treated with the higher doses of haloperidol and CGS an increase in SERT concentration in the striatum was detected during acquisition of the CPP, but no changes in DAT were observed.

Conclusions/Significance

These results demonstrate that, in adolescent mice, the dopaminergic system is involved in the acquisition and expression of MDMA-induced CPP, but not in its reinstatement.  相似文献   

3.
Abstract: Intrastriatally infused ouabain (200 or 1,000 μ M ) markedly increased the extracellular levels of striatal spermidine and spermine in dialysis experiments in halothane-anesthetized rats. The effects of ouabain (1 m M ) on sper- midine release were rapid and unaffected by local infusion of the competitive N -methyl- d -aspartate (NMDA) antagonist 3-(2-carboxypiperazin-4-yl)propyl-1 -phosphonic acid (CPP; 100 μ M ) or by systemically administered MK-801 (0.3 mg/kg i.p.), both of which treatments markedly inhibit the effects of intrastriatally administered NMDA. The peak effects of ouabain (1 m M ) on spermine release were delayed with respect to those on spermidine release, or to the effects of NMDA, and were also insensitive to locally administered CPP (100 μ M ). However, systemically administered MK-801 (0.3 mg/kg i.p., 30 min before the striatal infusion of drugs), which totally inhibits the effects of NMDA, or CPP (10 mg/kg i.p.; 30 min before the striatal infusion of drugs) partially inhibited the effects of ouabain on spermine release, suggesting partial mediation of the delayed effects of ouabain on spermine release by indirect NMDA-receptor activation. Despite partial sensitivity of ouabain-induced spermine release to systemically administered NMDA antagonists, both spermidine and spermine can be released in vivo by sodium-pump inhibition, independently of NMDA-receptor activation.  相似文献   

4.
Abstract: Several amphetamine analogues are reported to increase striatal glutamate efflux in vivo, whereas other data indicate that glutamate is capable of stimulating the efflux of dopamine (DA) in the striatum via a glutamate receptor-dependent mechanism. Based on these findings, it has been proposed that the ability of glutamate receptor-blocking drugs to antagonize the effects of amphetamine may be explained by their capacity to inhibit DA release induced by glutamate. To examine this possibility further, we investigated in vivo the ability of glutamate antagonists to inhibit DA release induced by either methamphetamine (METH) or 3,4-methylenedioxymethamphetamine (MDMA). Both METH and MDMA increased DA efflux in the rat striatum and, in animals killed 1 week later, induced persistent depletions of DA and serotonin in tissue. Pretreatment with MK-801 or CGS 19755 blocked the neurotoxic effects of METH and MDMA but, did not significantly alter striatal DA efflux induced by either stimulant. Infusion of 6-cyano-7-nitroquinoxaline-2,3-dione into the striatum likewise did not alter METH-induced DA overflow, and none of the glutamatergic antagonists affected the basal release of DA when given alone. The findings suggest that the neuroprotective effects of NMDA antagonists do not involve an inhibition of DA release, nor do the data support the proposal that glutamate tonically stimulates striatal DA efflux in vivo. Whether phasic increases in glutamate content might stimulate DA release, however, remains to be determined.  相似文献   

5.
Summary In vivo voltammetry was used in freely moving rats to study the processes whereby striatal dopamine (DA) release is regulated by corticostriatal glutamatergic neurons. Electrical stimulation of the cerebral cortex was found to markedly increase the striatal DA-related voltammetric signal amplitude. Similar enhancements have been observed after intracerebroventricular administration of 10nmoles glutamate, quisqualate and AMPA, whereas NMDA was found to decrease the amplitude of the striatal signals. The NMDA receptor antagonist APV did not significantly affect the voltammetric signal but prevented the NMDA-induced depression of the DA-related signals. These data are in agreement with those obtained in numerous previous studies suggesting that the glutamatergic corticostriatal neurons exert activatory effects on the striatal DA release via non-NMDA receptors. The mechanism involved might be of a presynaptic nature. The role of the NMDA receptors may however consist of modulating the dopaminergic transmission phasically and in a depressive way, which would be consistent with behavioural data suggesting the existence of a functional antagonism between the activity of the corticostriatal glutamatergic and nigrostriatal dopaminergic systems.Abbreviations Glu glutamate - DA dopamine - NMDA N-methyl-D-aspartate - CPP 3-(2-carboxypiperazin-4µl)propyl-1-phosphonic acid - AMPA -amino-3-hydroxy-5-metylisoxazole-4-propionic acid - APV aminophosphonovaleric acid - DOPAC dihydroxyphenylacetic acid - HVA homovanillic acid - DARPP 32 dopamine-cAMP-regulated phosphoprotein 32 - CSF cerebrospinal fluid Laboratory associated with the University of Aix-Marseille II  相似文献   

6.
This study explored further the function of the metabotropic excitatory amino acid receptor in the rat brain. The trans and cis isomers of (+-)-1-amino-1,3-cyclopentane-dicarboxylic acid (ACPD) were characterized for relative affinities at ionotropic and metabotropic excitatory amino acid receptors in vitro, as well as ability to produce in vivo excitatory or excitotoxic effects in rats. trans-ACPD was about 12 times more potent in vitro as an agonist for metabotropic excitatory amino acid receptors when compared to its ability to displace N-methyl-D-aspartate (NMDA) ([3H]CGS-19755) receptor binding, cis-ACPD was about 30 times more potent as a displacer of [3H]CGS-19755 binding than as a stimulant of phosphoinositide hydrolysis. When administered intraperitoneally to neonatal rats, both cis- and trans-ACPD produced convulsions that were prevented by the competitive NMDA receptor antagonists, LY233053 and LY274614. cis-ACPD was six times more potent as a convulsant when compared to trans-ACPD. Both compounds were examined for excitotoxic effects in vivo following stereotaxic injection into the mature or neonatal rat striatum. Doses of trans-ACPD of up to 5,000 or 1,200 nmol produced few signs of striatal neuronal degeneration in the mature or neonatal brain, respectively. However, cis-ACPD produced extensive dose-related neuronal degeneration at doses of 100-1,000 nmol in the mature brain and 50-200 nmol in the neonatal brain. These studies suggest that, unlike the ionotropic excitatory amino acid receptors, activation of the metabotropic excitatory amino acid receptor does not result directly in excitatory effects, such as excitotoxicity.  相似文献   

7.
Abstract: The object of this investigation was to determine whether glutamate uptake affects the apparent potency of the competitive antagonists dl -2-amino-5-phosphonovalerate and CGS-19755 in blocking NMDA receptor-mediated neurotoxicity. In astrocyte-rich rat cortical cultures we observed that dl -2-amino-5-phosphonovalerate and CGS-19755 were 24 and 16 times more potent against NMDA than against glutamate-induced toxicity. In contrast, dl -2-amino-5-phosphonovalerate was equipotent against the two agonists in astrocyte-poor cultures, in which dendrites are directly exposed to the extracellular medium. With the noncompetitive NMDA antagonist MK-801, similar potencies were observed against glutamate (212 ± 16 n M ) and against NMDA (155 ± 9 n M ) neurotoxicity. These results may be explained if we assume that the neuronal cell body is less susceptible than the dendrites to NMDA receptor-mediated toxicity, and that the action of glutamate in astrocyte-rich cultures is confined to the cell body. In this case, one would expect that higher concentrations of glutamate would be needed to produce toxicity in astrocyte-rich cultures, and that higher concentrations of competitive antagonists would be needed to overcome this toxicity. Our observations help explain the pharmacology of the competitive NMDA antagonists against NMDA receptor-mediated neurotoxicity but also suggest the possibility that, because the cell body and dendrites may be distinct sites for neurotoxicity, they might also involve different mechanisms of toxicity.  相似文献   

8.
Abstract: The N-methyl-d -aspartate (NMDA) receptor possesses two distinct amino acid recognition sites, one for glutamate and one for glycine, which appear to be allosterically linked. Using rat cortex/hippocampus P2 membranes we have investigated the effect of glutamate recognition site ligands on [3H]glycine (agonist) and (±)4-trans-2-car-boxy-5,7-dichloro-4-[3H]phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline ([3H]l -689,560; antagonist) binding to the glycine site and the effect of glycine recognition site ligands on l -[3H]glutamate (agonist), dl -3-(2-carboxypiperazin-4-yl)-[3H]propyl-1 -phosphonate ([3H]-CPP; “C-7” antagonist), and cis-4-phosphonomethyl-2-[3H]piperidine carboxylate ([3H]CGS-19755; “C-5” antagonist) binding to the glutamate site. “C-7” glutamate site antagonists partially inhibited [3H]l -689,560 binding but had no effect on [3H]glycine binding, whereas “C-5” antagonists partially inhibited the binding of both radioligands. Glycine, d -serine, and d -cycloserine partially inhibited [3H]CGS-19755 binding but had little effect on l -[3H]-glutamate or [3H]CPP binding, whereas the partial agonists (+)-3-amino-1-hydroxypyrrolid-2-one [(+)-HA-966], 3R-(+)cis-4-methyl-HA-966 (l -687,414), and 1-amino-1-carboxycyclobutane all enhanced [3H]CPP binding but had no effect on [3H]CGS-19755 binding, and (+)-HA-966 and l -687,414 inhibited l -[3H]glutamate binding. The association and dissociation rates of [3H]l -689,560 binding were decreased by CPP and d -2-amino-5-phosphonopentanoic acid (“C-5”). Saturation analysis of [3H]l -689,560 binding carried out at equilibrium showed that CPP had little effect on the affinity or number of [3H]l -689,560 binding sites. These results indicate that complex interactions occur between the glutamate and glycine recognition sites on the NMDA receptor. In addition, mechanisms other than allosterism may underlie some effects, and the possibility of a steric interaction between CPP and [3H]l -689,560 is discussed.  相似文献   

9.
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors.  相似文献   

10.
A comparison was made of the actions of phencyclidine receptor agonists and N-methyl-D-aspartate (NMDA) receptor antagonists in two well-defined neurochemical test systems. These included (i) [3H]acetylcholine release from striatal cholinergic interneurons in vitro, a system known to be positively modulated by corticostriatal excitatory amino acid inputs in vivo; and (ii) cerebellar cGMP levels in vivo, an indicator of cerebellar Purkinje cell activity, which is also modulated by excitatory amino acid inputs. Using these neuronal systems, we report that phencyclidine receptor agonists demonstrated a noncompetitive antagonism of NMDA receptor agonist actions.  相似文献   

11.
Unilateral injection of 5,7-dihydroxytryptamine (DHT) into the rat neostriatum markedly reduced not only striatal tryptophan hydroxylase (TPH) activity but also striatal tyrosine hydroxylase (TH) activity and dopamine (DA) concentration measured 10--15 days later. The decrease in striatal TH activity was dose related over the range of 8--32 micrograms of DHT; a dose of 16 micrograms reduced striatal TH activity to 40--50% of control, DA concentration to 38% of control, and TPH activity to 5--20% of control. Intrastriatal injection of 16 micrograms of DHT reduced TH activity in the ipsilateral substantia nigra to 51% of control. Pretreatment with amfonelic acid, a potent DA uptake inhibitor, significantly reduced the effect of DHT on striatal and nigral TH activity and striatal DA concentration without affecting the DHT-induced decrease in striatal TPH activity. Desmethylimipramine (5 and 25 mg/kg) had no effect on the DHT-induced decrease in striatal TH activity. Striatal choline acetyltransferase and glutamic acid decarboxylase activities were not decreased by 16 micrograms of DHT. The results indicate that DHT can alter dopaminergic function in the rat neostriatum through a direct effect of the drug on DA neurons.  相似文献   

12.
Dextromethorphan, a noncompetitive blocker of N-methyl-D- aspartate (NMDA) type of glutamate receptor, at 7.5-75 mg/kg, ip did not induce oral stereotypies or catalepsy and did not antagonize apomorphine stereotypy in rats. These results indicate that dextromethorphan at 7.5-75 mg/kg does not stimulate or block postsynaptic striatal D2 and D1 dopamine (DA) receptors. Pretreatment with 15 and 30 mg/kg dextromethorphan potentiated dexamphetamine stereotypy and antagonised haloperidol catalepsy. Pretreatment with 45, 60 and 75 mg/kg dextromethorphan, which release 5-hydroxytryptamine (5-HT), however, antagonised dexamphetamine stereotypy and potentiated haloperidol catalepsy. Apomorphine stereotypy was not potentiated or antagonised by pretreatment with 7.5-75 mg/kg dextromethorphan. This respectively indicates that at 7.5-75 mg/kg dextromethorphan does not exert facilitatory or inhibitory effect at or beyond the postsynaptic striatal D2 and D1 DA receptors. The results are explained on the basis of dextromethorphan (15-75 mg/kg)-induced blockade of NMDA receptors in striatum and substantia nigra pars compacta. Dextromethorphan at 15 and 30 mg/kg, by blocking NMDA receptors, activates nigrostriatal dopaminergic neurons and thereby potentiates dexampetamine stereotypy and antagonizes haloperidol catalepsy. Dextromethorphan at 45, 60 and 75 mg/kg, by blocking NMDA receptors, releases 5-HT and through the released 5-HT exerts an inhibitory influence on the nigrostriatal dopaminergic neurons with resultant antagonism of dexampetamine stereotypy and potentiation of haloperidol catalepsy.  相似文献   

13.
The studies examined the effects of three antagonists (CPP, CGS 19755, and CGP 37849) that act competitively at the glutamate recognition site of the NMDA receptor complex on cortical neuronal morphology and cerebral limbic glucose metabolism. Responses were compared to the effects of dizocilpine, an uncompetitive NMDA receptor ion channel antagonist as a positive control. CGS 19755 and CGP 37849 (100 mg kg–1i.p.) caused vacuolation in cortical pyramidal neurons in the posterior cingulate cortex four hours after dosing and this dose of CGP 37849 caused a pattern of limbic glucose metabolism activation similar to that seen after dizocilpine. CPP was without effect at 100 mg/kg i.p. probably due to poor brain penetration. The data indicates that the functional consequences (structural and metabolic) of NMDA receptor blockade with NMDA antagonists acting competitively at the glutamate recognition site and uncompetitively in the receptor ion channel are ultimately the same. Comparisons of the potential therapeutic window for CGS 19755 and CGP 37849 with dizocilpine (neuroprotection versus vacuolation) suggests that the window for the competitive antagonists is greater. This indicates that the potential therapeutic window for the different classes of NMDA antagonists may vary with the site in the receptor complex at which they interact.  相似文献   

14.
Dopaminergic Regulation of Septohippocampal Cholinergic Neurons   总被引:3,自引:1,他引:2  
Abstract: The extent to which acetylcholine (ACh) release in the hippocampus is regulated by dopaminergic mechanisms was assessed using in vivo microdialysis in freely moving rats. Systemic administration of the dopamine (DA) receptor agonist apomorphine (1.0 mg/kg) or the specific D1 agonist CY 208–243 (1.0 mg/kg) increased microdialysate concentrations of ACh in the hippocampus. The D2 receptor agonist quinpirole (0.5 mg/kg) produced a small but statistically significant decrease in hippocampal ACh release. d -Amphetamine (2.0 mg/kg) increased ACh release, an effect that was blocked by the D1 receptor antagonist SCH 23390 (0.3 mg/kg) but not by the D2 antagonist raclopride (1.0 mg/kg). These findings suggest that endogenous DA stimulates septo-hippocampal cholinergic neurons primarily via actions at D1 receptors. In addition, these results are similar to previous findings regarding the dopaminergic regulation of cortical ACh release, and suggest that the anatomical continuum formed by basal forebrain cholinergic neurons that project to the cortex and hippocampus acts as a functional unit, at least with respect to its regulation by DA.  相似文献   

15.
In synaptic plasma membranes from rat forebrain, the potencies of glycine recognition site agonists and antagonists for modulating [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding and for displacing strychnine-insensitive [3H]glycine binding are altered in the presence of N-methyl-D-aspartate (NMDA) recognition site ligands. The NMDA competitive antagonist, cis-4-phosphonomethyl-2-piperidine carboxylate (CGS 19755), reduces [3H]glycine binding, and the reduction can be fully reversed by the NMDA recognition site agonist, L-glutamate. Scatchard analysis of [3H]glycine binding shows that in the presence of CGS 19755 there is no change in Bmax (8.81 vs. 8.79 pmol/mg of protein), but rather a decrease in the affinity of glycine (KD of 0.202 microM vs. 0.129 microM). Similar decreases in affinity are observed for the glycine site agonists, D-serine and 1-aminocyclopropane-1-carboxylate, in the presence of CGS 19755. In contrast, the affinity of glycine antagonists, 1-hydroxy-3-amino-2-pyrrolidone and 1-aminocyclobutane-1-carboxylate, at this [3H]glycine recognition site increases in the presence of CGS 19755. The functional consequence of this change in affinity was addressed using the modulation of [3H]TCP binding. In the presence of L-glutamate, the potency of glycine agonists for the stimulation of [3H]TCP binding increases, whereas the potency of glycine antagonists decreases. These data are consistent with NMDA recognition site ligands, through their interactions at the NMDA recognition site, modulating activity at the associated glycine recognition site.  相似文献   

16.
The possible control of tyrosine hydroxylase (TH) activity by dopaminergic receptor-dependent mechanisms was investigated using rat striatal slices or synaptosomes incubated in the presence of various 3,4-dihydroxyphenylethylamine (dopamine or DA) agonists and antagonists. Under "normal" conditions (4.8 mM K+ in the incubating medium), the DA agonists apomorphine, 6,7-dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99), 7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT), Trans-(-)-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-2H-pyrazolo-3,4- quinoline, and 3-(3-hydroxyphenyl)-N-n-propylpiperidine decreased TH activity in soluble extracts of incubated tissues. In the case of the catechol-containing drugs apomorphine and TL-99, this effect was partly due to a direct inhibition of the enzyme, but in all other cases it appeared to depend on the stimulation of presynaptic DA autoreceptors. No effect of DA antagonists was detected on TH activity under "normal" conditions. In contrast, when tissues were incubated in a K+ -enriched (60 mM) medium, (-)-sulpiride and other DA antagonists enhanced TH activation due to depolarization whereas DA agonists were ineffective. Because (-)-sulpiride also increased the enzyme activity in striatal slices exposed to drugs inducing release of DA, such as veratridine and d-amphetamine, it is concluded that the stimulating effect of the DA antagonist resulted in fact from the blockade of the negative control of TH normally triggered by endogenous DA acting on presynaptic autoreceptors. In contrast to TH activation due to K+ -induced depolarization, the activation evoked by tissue incubation with dibutyryl cyclic AMP was unaffected by the typical agonist 7-OH-DPAT or the antagonist (-)-sulpiride. This would suggest that TH control via presynaptic DA autoreceptors normally concerns possible modulations of the cyclic AMP-dependent phosphorylation of the enzyme.  相似文献   

17.
The binding of [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([3H]CPP), a rigid analogue of 2-amino-7-phosphonoheptanoic acid (AP7) and reported to be a selective N-methyl-D-aspartate (NMDA) antagonist, was studied in rat striatal membranes using a centrifugation procedure to separate bound and free radioligand. [3H]CPP bound with high affinity (KD = 272 nM) in a saturable, reversible, and protein concentration-dependent manner. Specific binding was suggested to involve a single class of noninteracting binding sites. The most potent [3H]CPP binding inhibitors tested were CPP, L-glutamate, 2-amino-5-phosphonovalerate, and AP7. NMDA, L-aspartate, and alpha-aminoadipate were also shown to be efficient in inhibiting the binding, whereas quisqualate, D,L-2-amino-4-phosphonobutyrate, kainate, L-glutamate diethylester, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid were found to be essentially inactive. These data are therefore consistent with the view that [3H]CPP selectively binds to NMDA receptors in the rat striatum. Lesions of intrastriatal neurons using local injections of kainic acid revealed a marked decrease in [3H]CPP binding, suggesting an almost exclusively postsynaptic location of binding sites in the striatum. Conversely, bilateral lesion of corticostriatal glutamatergic fibers resulted in an increased number of [3H]CPP striatal binding sites, providing evidence for a putative supersensitivity response to this striatal deafferentation. Interestingly, lesion of the nigrostriatal dopaminergic neurons using intranigral 6-hydroxydopamine injections resulted, 2-3 weeks later, in a similar increase in the number of [3H]CPP striatal binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Abstract: The existence of both nitric oxide synthase (NOS) immunoreactive interneurons and amino acid neurotransmitter-mediated nitric oxide (NO) release in the striatum suggests a role for NO in modulating striatal function. To explore the potential interaction between NO and dopaminergic neurotransmission, the NO-releasing agent (±)-S-nitroso-N-acetylpenicillamine (SNAP) was administered locally into the anterior medial striatum of chloral hydrate-anesthetized rats. SNAP, at 0.5, 1, and 2 mM concentrations, elevated striatal extracellular (EC) dopamine (DA) to 200 ± 42, 472 ± 120, and 2,084 ± 496%, respectively, above baseline levels. Perfusion with (±)-penicillamine (PEN, 1 mM), the non-NO-containing carrier component of SNAP, was ineffective, indicating that PEN is not responsible for SNAP-mediated DA release. Additional microdialysis experiments suggest SNAP-mediated DA release is not due to NO-induced neurotoxicity or blockade of the DA transporter. The DA-releasing effect of SNAP was attenuated under calcium-free conditions and abolished in rats pretreated with reserpine (5 mg/kg), implicating a calcium-sensitive vesicular-dependent release process. To determine the mechanism of SNAP-mediated DA release, the guanylyl cyclase (GC) inhibitor LY 83583 (100 µM) was administered 100 min before and during the SNAP pulse. LY 83583 elevated EC DA levels approximately fivefold and potentiated the DA-releasing effect of SNAP to 2,598 ± 551% above basal DA levels. Similar pretreatments with both the noncompetitive N-methyl-d -aspartate (NMDA) antagonist MK-801 (10 µM) and the competitive NMDA-receptor antagonist (±)-3-(carboxypiperazin-4-yl)propyl-1-phosphonic acid [(±)-CPP, 100 µM] blocked SNAP-mediated DA release. SNAP-mediated DA release was also significantly blunted by pretreatment and coperfusion with MgSO4 (10 mM) and 6,7-dinitroquinoxaline-2,3-dione (DNQX, 10 µM) but not (+)-2-amino-3-phosphonopropionic acid (AP-3, 10 µM). These results suggest that NO releases DA via a calcium-sensitive vesicular-dependent process that is independent of GC activation. In addition, NMDA and kainate/(±)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated mechanisms are implicated in NO-induced DA release.  相似文献   

19.
Summary The possibility to visualize the NMDA recognition site with [3H]CGS 19755in vitro autoradiography was evaluated in rat brain and spinal cord sections and thereafter used to study the distribution of the NMDA recognition site in rat and mouse spinal cord. The [3H]CGS 19755 binding was concentrated to the dorsal horn, in particular to the substantia gelatinosa. Notable binding was also seen in the intermediate area and ventral horn, while some binding was observed in the funiculi. No major differences were seen in [3H]CGS 19755 binding at various levels of the rat or mouse spinal cord, although a more dense binding was seen in the mouse. A similar distribution of the [3H]CGS 19755 specific binding and the NMDA receptor associated ion-channel site, labeled with [3H]TCP, was found in the mouse spinal cord. Taken together, our data indicate that the NMDA recognition site can be visualized in rat and mouse spinal cord byin vitro [3H]CGS 19755 autoradiography.Abbreviations NMDA N-methyl-D-aspartate - CGS 19755 Cis-4-phosphonomethyl-2-piperidine carboxylic acid - D-AP5 D(—)-2-Amino-5-phosphonopentanoic acid - TCP N-(1-2-thienylcyclohexyl)-3,4-piperidine - MK-801 (±)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate - AMPA -Amino-3-hydroxy-5-methyl-isoxazolepropionic acid - kainate 2-Carboxy-3-carboxymethyl-4-isopropenyl pyrrolidine - CGP 39653 D,L-(E)-2-amino-4-propyl-5-phosphonopentenoic acid  相似文献   

20.
Methylmercury (MeHg) produces significant increases in the spontaneous output of dopamine (DA) from rat striatal tissue. The mechanism through MeHg produces such increase in the extracellular DA levels could be due to increased DA release or decreased DA uptake into DA terminals. One of the aims of this study was to investigate the role of DA transporter (DAT) in the MeHg-induced DA release. Coinfusion of 400 microM MeHg and nomifensine (50 microM) or amphetamine (50 microM) produced increases in the release of DA similar to those produced by nomifensine and amphetamine alone. In the same way, MeHg-induced DA release was not attenuated under Ca(2+)-free conditions or after pretreatment with reserpine (10 mg/kg i.p.) or tetrodotoxin (TTX), suggesting that the DA release was independent of calcium and vesicular stores, as well as it was not affected by the blockade of voltage sensitive sodium channels. Thus, to investigate whether depolarization of dopaminergic terminal was able to affect MeHg-induced DA release, we infused 75 mM KCl through the dialysis membrane. Our results clearly showed a decrease induced by MeHg in the KCl-evoked DA release. Taken together, these results suggest that MeHg induces release of DA via transporter-dependent, calcium- and vesicular-independent mechanism and it decreases the KCl-evoked DA release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号