首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
目的:探讨显微操作纠正多原核合子对胚胎发育潜能的影响.方法:收集2008年5-10月在广州医学院第三附属医院进行体外受精-胚胎移植周期中的多原核合子,运用显微操作技术纠正多原核合子,使其成为二倍体合子,继续培养,观察胚胎发育情况.结果:研究结果显示,经显微操作纠正多原核后,合子的分裂率及8细胞胚胎形成率与3PN对照组及2PN对照组相比,无显著性差异(P>0.05).操作组的囊胚形成率与3PN对照组相比,无显著性差异(P>0.05);但显著地低于2PN对照组(P<0.001).荧光染色结果发现,多原核胚胎第一次分裂时形成的纺锤体有三个极点;纠正后部分胚胎形成两个极点的纺锤体,但仍有部分胚胎形成三个极点的纺锤体.结论:显微操作成功的合子能够正常发育,但是其发育潜能并没有显著地改善,其原因之一可能与中心体的数目异常有关.  相似文献   

2.
利用抗5-甲基胞嘧啶(5MeC)抗体免疫荧光法检测了体外成熟(IVM)、体外受精(IVF)和体外培养(IVC)的牛合子及早期胚胎的基因组甲基化模式. 实验结果表明: 有61.5%的合子发生了雄原核去甲基化, 而34.6%的合子没有发生去甲基化; 当胚胎发育到8-细胞时, 甲基化水平明显下降, 且一直到桑椹胚期仍维持低甲基化状态, 但同一枚胚胎的不同卵裂球之间甲基化水平不同; 在囊胚期, 内细胞团细胞的甲基化水平很低, 而滋养层细胞的甲基化水平却很高. 本研究结果至少部分地提示, IVM/IVF/IVC可能对牛合子及早期胚胎的甲基化模式有一定影响.  相似文献   

3.
昆明小鼠原核胚在不同培养液中的体外发育   总被引:1,自引:0,他引:1  
目的优化昆明小鼠原核胚胎体外培养系统,提高胚胎发育率.方法小鼠经超排获得原核期胚胎,制备小鼠输卵管上皮共培养系统,使用M16、CZB和KSOM培养液进行体外培养,并对体内和体外发育的囊胚细胞计数.结果在KSOM和CZB中添加胎牛血清能显著提高胚胎囊胚发育率(14.71%对85.71%;6.45%对10.81%);输卵管上皮共培养可以提高胚胎的卵裂率和囊胚发育率,同时提高胚胎质量和同步发育,小鼠胚胎在KSOMFBS中囊胚发育率达85.19%,显著高于CZB和M16.结论在小鼠输卵管上皮共培养条件下,KSOMFBS能够很好支持昆明小鼠原核期胚胎体外发育.  相似文献   

4.
利用小鼠抗5-甲基胞嘧啶(5MeC)单克隆抗体检测了体外培养小鼠四倍体早期胚胎的基因组甲基化模式。结果表明: 利用电融合方法制备的小鼠四倍体胚胎在体外培养体系中经历细胞质融合、细胞核融合及细胞继续分裂发育直到囊胚期的过程, 在细胞质融合的时候胚胎卵裂球同体内体外培养二倍体胚胎一样, 呈现高度甲基化状态; 在细胞核开始融合的时候, 甲基化水平急速下降, 在细胞核完全融合的时候甲基化水平达到最低点; 随着胚胎继续分裂, 胚胎甲基化水平逐渐增加, 在桑葚胚期甲基化水平最高; 但是囊胚期四倍体胚胎内细胞团同滋养层细胞甲基化荧光信号没有差别, 这与体内体外培养二倍体囊胚内细胞团细胞甲基化荧光强度高于滋养层细胞甲基化荧光强度不同。因此, 小鼠体外培养四倍体胚胎的甲基化模式是不正常的, 这可能是四倍体小鼠难以发育到妊娠足月的原因之一。这是对小鼠四倍体早期胚胎基因组甲基化模式的首次报道。  相似文献   

5.
Feng XQ  Lin YW  Chen YJ  Zhong SQ  Yan XF  Dong JJ  Lei L 《生理学报》2008,60(1):113-118
为研究微管在体外受精与孤雌活化过程中的动态变化,本实验比较了体外受精胚胎、SrCl2激活的孤雌胚胎和体内受精的原核期胚胎在体外发育的情况,采用免疫荧光化学与激光共聚焦显微术检测卵母细胞孤雌活化过程中及体外受精后微管及核的动态变化,以分析微管在减数分裂过程中的作用及其对早期发育的影响.结果显示,体内受精胚胎的发育率显著高于体外受精和孤雌激活胚胎体外发育率(P<0.05),而体外受精与孤雌激活胚胎在各阶段发育率差异均不显著.在体外受精中,精子入卵,激活卵母细胞,减数分裂恢复,纺锤丝牵拉赤道板卜致密排列的母源染色体向纺锤体两侧迁移;后期将染色体拉向两极;末期时,微管分布于两组已去凝集的母源染色体之间,卵母细胞排出第二极体(the second polarbody,Pb2),解聚的母源染色体形成雌原核.同时,在受精后5~8 h精子染色质发生去浓缩与再浓缩,形成雄原核.在原核形成的同时,胞质星体在雌、雄原核的周围重组形成长的微管,负责雌、雄原核的迁移靠近.孤雌活化过程中,卵母细胞恢复减数分裂,姐妹染色单体分离,被拉向两极,经细胞松弛素B处理后,活化4~6 h,卵周隙中未见Pb2,而在胞质中出现两个混合的单倍体原核,之间由微管相连接,负责两个单倍体原核的迁移靠近.与体外受精相比较,孤雌活化时卵母细胞更容易被激活,减数分裂期间微管的发育早且更完善.  相似文献   

6.
利用亚硫酸氢盐测序法分析Holstein奶牛胎儿成纤维细胞(FFB)和输卵管上皮细胞(FOV)来源的克隆囊胚Xist基因DNA甲基化状况,以体外受精囊胚(IVF)和供体细胞作对照.克隆囊胚Xist基因处于较低程度的DNA甲基化状态,其中,FFB来源的克隆囊胚Xist基因DNA甲基化程度为43%,而FOV来源的克隆囊胚仅为17%.在体外受精囊胚中,Xist基因DNA甲基化处于中等状态,为49%.然而,在体细胞中,Xist基因的甲基化程度较高,FFB为66%,FOV为63%.这些结果说明,Xist基因DNA甲基化是可以被重编程的,所检测的CpG岛可能调节Xist基因的表达.结合已发表的实验数据,在同一个体中,FFB来源的克隆囊胚发育率比FOV的低,但其克隆牛胎儿的妊娠率和产犊率比FOV的高,这暗示不同供体核克隆囊胚的重编程是有差异的,并可能影响到胚胎及个体的发育.  相似文献   

7.
奥利亚罗非鱼与鳜杂交的受精细胞学及胚胎发育研究   总被引:5,自引:0,他引:5  
通过对奥利亚罗非鱼(♀)和鳜(♂)杂交的受精细胞学观察发现:异源精子入卵后产生星光,并核化成雄性原核,与雌原核互相靠近,接触最终完全融合为一个合子核,合子核继续分裂。分析比较了奥利亚罗非鱼,鳜以及奥鳜杂种胚胎发育情况,发现杂种胚胎的发育速度在囊胚早期与母本奥利亚罗非鱼基本一致,到囊胚后期速度有所减慢,但与鳜胚胎发育速度相差很大。这表明奥利亚罗非鱼和鳜虽属不同科间的远缘杂交,但有正常的受精细胞学程序和常规的细胞分裂(卵裂)方式。  相似文献   

8.
为考察体外受精、操作及培养环境对体外受精的小鼠植入前胚胎全基因组DNA甲基化模式的影响,本研究以体内受精的植入前胚胎作为对照,采用间接免疫荧光法检测小鼠体内外受精植入前胚胎基因组DNA甲基化模式.实验结果表明,体外受精各期植入前胚胎呈现出与之相应时期的体内受精植入前胚胎不同的DNA甲基化模式和水平,原核期甲基化水平较高,2-4-、8-细胞期明显降低,而桑葚胚和囊胚期又略有升高.各期体外受精植入前胚胎的基因组DNA甲基化水平都比同时期体内受精胚胎的甲基化水平低.本实验结果部分显示了体外受精、操作及培养环境可能对正常的DNA甲基化模式产生影响,造成体外受精植入前胚胎甲基化模式异常.  相似文献   

9.
目的探讨自制冷冻载体冷冻保存昆明小鼠体内原核期胚胎的可行性。方法首先,比较了两种流行的商业化载体:开放式拉长麦管(open pulled straw,OPS)和冷冻帽(cryotop)开展小鼠原核胚玻璃化冷冻保存效果。其次,以cryotop为对照,利用自制简易载体(cryotip)开展小鼠原核期胚胎的玻璃化冷冻保存。之后,利用ANOVA对各组胚胎在复苏后的体外培养卵裂率、囊胚率进行统计分析。结果 OPS和cryotop两组之间,胚胎在玻璃化冷冻/复苏后发育的2-细胞率、4-细胞率和囊胚率差异均无显著性(P0.05),但cryotop冷冻效果更接近对照组;cryotip玻璃化冷冻载体与cryotop相比,胚胎复苏后各组差异均无显著性(P0.05),数值上除了2-细胞发育率外,cryotip其他几项结果都稍微高于cryotop组。结论 OPS,cryotop,cryotip冷冻保存昆明小鼠体内原核期胚胎均是可行的;cryotop在冷冻效果上要优于OPS,笔者自制的cryotip因其成本低,制作简单,操作安全可靠,在实验中替代昂贵的商业化载体OPS和cryotop是可行的。  相似文献   

10.
泥鳅雄核发育纯合二倍体的产生   总被引:10,自引:0,他引:10  
刘汉勤  易泳兰  陈宏溪 《水生生物学报》1987,11(3):241-246,i005
以机械方法挑去泥鳅(Misgurnus anguillicaudatus)×大鳞副泥鳅(Paramisgurnus dabryanus)(♀)属间杂交受精卵的雌核,得到泥鳅雄核发育单倍体胚胎。将这种单倍体胚胎的囊胚细胞核移植到大鳞副泥鳅去核卵中,获得了243个原肠胚胎,其染色体鉴定表明,29.6%的核移植体的染色体发生了加倍。在另一实验组中,从769个核移植卵得到了5尾2cm以上的个体。尾鳍染色体鉴定、肌肉LDH同工酶电泳和形态鉴别表明,这5尾核移植体为泥鳅雄核发育纯合二倍体。  相似文献   

11.
Virtually all mammalian species including mouse, rat, pig, cow, and human, but not sheep and rabbit, undergo genome-wide epigenetic reprogramming by demethylation of the male pronucleus in early preimplantation development. In this study, we have investigated and compared the dynamics of DNA demethylation in preimplantation mouse and rat embryos by immunofluorescence staining with an antibody against 5-methylcytosine. We performed for the first time a detailed analysis of demethylation kinetics of early rat preimplantation embryos and have shown that active demethylation of the male pronucleus in rat zygotes proceeds with a slower kinetic than that in mouse embryos. Using dated mating we found that equally methylated male and female pronuclei were observed at 3 hr after copulation for mouse and 6 hr for rat embryos. However, a difference in methylation levels between male and female pronuclei could be observed already at 8 hr after copulation in mouse and 10 hr in rat. At 10 hr after copulation, mouse male pronuclei were completely demethylated, whereas rat zygotes at 16 hr after copulation still exhibited detectable methylation of the male pronucleus. In addition in both species, a higher DNA methylation level was found in embryos developed in vitro compared to in vivo, which may be one of the possible reasons for the described aberrations in embryonic gene expression after in vitro embryo manipulation and culture.  相似文献   

12.
DNA methylation reprogramming (DMR) during preimplantation development erases differentiation-associated, unessential epigenetic information accumulated during gametogenesis, and ultimately brings pluripotency to the resulting embryo. Two patterns of DMR of sperm-derived pronucleus have been reported in mammals. In the first, the male pronucleus is actively demethylated whereas in the second, the methylation state seems to be maintained. The maintenance-type DMR has been seen only through immunocytochemical observations, and waits to be proven by additional molecular-level evidence. We demonstrate that, in pig, paternally derived DNA methylation is preserved during pronucleus development, based on the following observations. First, immunostaining of pig zygotes at different time points showed the DNA methylation state to be balanced between parental pronuclei throughout pronucleus development. Second, bisulfite analysis of PRE-1 repetitive sequences found mono- and polyspermic eggs to have similar methylation states. Third, the methylation state of a human erythropoietin gene delivered by transgenic pig spermatozoa was maintained in the male pronucleus. Finally, 5-aza-2'-deoxycytidine treatment, which blocks re-methylation, did not show the male pronucleus to be stalled in a demethylated state. In pig zygotes, paternally derived cytosine methylation was preserved throughout pronucleus development. These findings from multilateral DMR analyses provide further support to the view that DMR occurs in a non-conserved manner during early mammalian development.  相似文献   

13.
Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells.  相似文献   

14.
15.
《Epigenetics》2013,8(4):199-209
The oocyte is remarkable in its ability to remodel parental genomes following fertilization and to reprogram somatic nuclei after nuclear transfer (NT). To characterise the patterns of histone H4 acetylation and DNA methylation during development of bovine gametogenesis and embryogenesis, specific antibodies for histone H4 acetylated at lysine 5 (K5), K8, K12 and K16 residues and for methylated cytosine of CpG dinucleotides were used. Oocytes and sperm lacked the staining for histone acetylation, when DNA methylation staining was intense. In IVF zygotes, both pronuclei were transiently hyper-acetylated. However, the male pronucleus was faster in acquiring acetylated histones, and concurrently it was rapidly demethylated. Both pronuclei were equally acetylated during the S to G2-phase transition, while methylation staining was only still observed in the female pronucleus. In parthenogenetically activated oocytes, acetylation of the female pronucleus was enriched faster, while DNA remained methylated. A transient de-acetylation was observed in NT embryos reconstructed using a non-activated ooplast of a metaphase second arrested oocyte. Remarkably, the intensity of acetylation staining of most H4 lysine residues peaked at the 8-cell stage in IVF embryos, which coincided with zygotic genome activation and with lowest DNA methylation staining. At the blastocyst stage, trophectodermal cells of IVF and parthenogenetic embryos generally demonstrated more intense staining for most acetylated H4 lysine, whilst ICM cells stained very weakly. In contrast methylation of the DNA stained more intensely in ICM. NT blastocysts showed differential acetylation of blastomeres but not methylation. The inverse association of histone lysine acetylation and DNA methylation at different vital embryo stages suggests a mechanistically significant relationship. The complexities of these epigenetic interactions are discussed.  相似文献   

16.
Uniparental embryos have uniparental genomes and are very useful models for studying the specific gene expression of parents or for exploring the biological significance of genomic imprinting in mammals. However, the early developmental efficiency of androgenetic embryos is significantly lower than that of parthenogenetic embryos. In addition, oocytes are able to reprogram sperm nuclei after fertilization to guarantee embryonic development by maternally derived reprogramming factors, which accumulate during oogenesis. However, the importance of maternal material in the efficiency of reprogramming the pronucleus of androgenetic embryos is not known. In this study, androgenetic embryos were constructed artificially by pronucleus transfer (PT) or double sperm injection (DS). Compared with DS embryos, PT embryos that were derived from two zygotes contained more maternal material, like 10–11 translocation methylcytosine deoxygenase 3 (Tet3) and histone variant 3.3 (H3.3). Our experiments confirmed the better developmental potential of PT embryos, which had higher blastocyst rates, a stronger expression of pluripotent genes, a lower expression of apoptotic genes, and superior blastocyst quality. Our findings indicate that the aggregation of more maternal materials in the paternal pronucleus facilitate the reprogramming of the paternal genome, improving embryonic development in PT androgenesis.  相似文献   

17.
Global demethylation of DNA which marks the onset of development occurs asynchronously in the mouse; paternal DNA is demethylated at the the zygote stage, whereas maternal DNA is demethylated later in development. The biological function of such asymmetry and its underlying mechanisms are currently unknown. To test the hypothesis that the early demethylation of male DNA may be associated with protamine-histone exchange, we ,used round spermatids, whose DNA is still associated with histones, for artificial fertilization (round spermatid injection or ROSI), and compared the level of methylation of metaphase chromosomes in the resulting zygotes with the level of methylation in zygotes obtained after fertilization using mature sperm heads (intracytoplasmic sperm injection or ICSI). In contrast to ICSI-derived zygotes, ROSI-derived zygotes possessed only slightly demethylated paternal DNA. Both types of zygotes developed to term with similar rates which shows that hypomethylation of paternal DNA at the zygotic metaphase is not essential for full development in mice. Incorporation of exogenously expressed histone H2BYFP into paternal pronuclei was significantly higher in ICSI-derived zygotes than in ROSI-derived zygotes. Surprisingly, in the latter the incorporation of histone H2BYFP into the paternal pronucleus was still significantly higher than into the maternal pronucleus, suggesting that some exchange of chromatin-associated proteins occurs not only after ICSI but also after ROSI. This may explain why after ROSI, some transient demethylation of paternal DNA occurs early after fertilization, thus providing support for the hypothesis regarding the link between paternal DNA demethylation and protamine/histone exchange.  相似文献   

18.
L E Andreeva  I A Serova 《Ontogenez》1992,23(6):637-643
Non-specific effects of micromanipulation techniques used for producing transgenic mice on processes of embryonic development were studied. Zygotes obtained from C57BL and BALBxDD mice were treated as follows: (1) incubated in culture medium; (2) the male pronucleus punctured with a glass microneedle; (3) microinjected with a buffer solution; and (4) DNA (mouse P-35 oncogene with human insulin gene promoter) injected into the male pronucleus. Then zygotes were transferred into oviducts of syngeneic or allogeneic pseudopregnant females. Such treatment resulted in the intrauterine death of embryos, as well as in birth of the dead or non-viable offspring with numerous defects of development. Zygote pronucleus puncturing is the most damaging manipulation, since its effect exceeds that of the zygote incubation and is comparable with the effect of buffer of DNA injections.  相似文献   

19.
The composition of nucleosomes at an intermediate stage of male pronucleus formation was determined in sea urchins. Nucleosomes were isolated from zygotes harvested 10 min post-insemination, whole nucleoprotein particles were obtained from nucleus by nuclease digestion, and nucleosomes were subsequently purified by a sucrose gradient fractionation. The nucleosomes derived from male pronucleus were separated from those derived from female pronucleus by immunoadsorption to antibodies against sperm specific histones (anti-SpH) covalently bound to Sepharose 4B (anti-SpH-Sepharose). The immunoadsorbed nucleosomes were eluted, and the histones were analyzed by Western blots. Sperm histones (SpH) or alternatively, the histones from unfertilized eggs (CS histone variants), were identified with antibodies directed against each set of histones. It was found that these nucleosomes are organized by a core formed by sperm histones H2A and H2B combined with two major CS histone variants. Such a hybrid histone core interacts with DNA fragments of approximately 100 bp. It was also found that these atypical nucleosome cores are subsequently organized in a chromatin fiber that exhibits periodic nuclease hypersensitive sites determined by DNA fragments of 500 bp of DNA. It was found that these nucleoprotein particles were organized primarily by the hybrid nucleosomes described above. We postulate that this unique chromatin organization defines an intermediate stage of male chromatin remodeling after fertilization.  相似文献   

20.
Genome editing tools such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system (Cas) have been widely used to modify genes in model systems including animal zygotes and human cells, and hold tremendous promise for both basic research and clinical applications. To date, a serious knowledge gap remains in our understanding of DNA repair mechanisms in human early embryos, and in the efficiency and potential off-target effects of using technologies such as CRISPR/Cas9 in human pre-implantation embryos. In this report, we used tripronuclear (3PN) zygotes to further investigate CRISPR/Cas9-mediated gene editing in human cells. We found that CRISPR/Cas9 could effectively cleave the endogenous β-globin gene (HBB). However, the efficiency of homologous recombination directed repair (HDR) of HBB was low and the edited embryos were mosaic. Off-target cleavage was also apparent in these 3PN zygotes as revealed by the T7E1 assay and whole-exome sequencing. Furthermore, the endogenous delta-globin gene (HBD), which is homologous to HBB, competed with exogenous donor oligos to act as the repair template, leading to untoward mutations. Our data also indicated that repair of the HBB locus in these embryos occurred preferentially through the non-crossover HDR pathway. Taken together, our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR/Cas9 platform, a prerequisite for any clinical applications of CRSIPR/Cas9-mediated editing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号