首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Common snapping turtles, Chelydra serpentina (Linnaeus), were submerged in anoxic and normoxic water at 3 degrees C. Periodic blood samples were taken, and PO(2), PCO(2), pH, [Na(+)], [K(+)], [Cl(-)], total Ca, total Mg, [lactate], [glucose], hematocrit, and osmolality were measured; weight gain was determined; and plasma [HCO(3)(-)] was calculated. Submergence in normoxic water caused a decrease in PCO(2) from 10.8 to 6.9 mmHg after 125 d, partially compensating a slight increase in lactate and allowing the turtles to maintain a constant pH. Submergence in anoxic water caused a rapid increase in lactate from 1.8 to 168.1 mmol/L after 100 d. Associated with the increased lactate were decreases in pH from 8.057 to 7.132 and in [HCO(3)(-)] from 51.5 to 4.9 mmol/L and increases in total Ca from 2.0 to 36.6 mmol/L, in total Mg from 1.8 to 12.1 mmol/L, and in [K(+)] from 3.08 to 8.45 mmol/L. We suggest that C. serpentina is tolerant of anoxic submergence and therefore is able to exploit habitats unavailable to some other species in northern latitudes.  相似文献   

2.
3.
Softshell turtles (Apalone spinifera) were submerged at 3 degrees C in anoxic or normoxic water. Periodically, blood PO(2), PCO(2), pH, plasma [Cl(-)], [Na(+)], [K(+)], total Ca, total Mg, lactate, glucose, and osmolality were measured; hematocrit and body mass determined; and blood [HCO(3)(-)] calculated. On day 14 of anoxic submergence, five of eight softshell turtles were dead, one died immediately after removal, and the remaining two showed no signs of life other than a heartbeat. After 11 days of submergence in anoxic water, blood pH fell from 7.923 to 7.281 and lactate increased to 62.1 mM. Plasma [HCO(3)(-)] was titrated from 34.57 mM to 4.53 mM. Plasma [Cl(-)] fell, but [K(+)] and total Ca and Mg increased. In normoxic submergence, turtles survived over 150 days and no lactate accumulated. A respiratory alkalosis developed (pH-8.195, PCO(2)-5.49 after 10 days) early and persisted throughout; no other variables changed in normoxic submergence. Softshell turtles are very capable of extrapulmonary extraction of O(2), but are an anoxia-intolerant species of turtle forcing them to utilize hibernacula that are unlikely to become hypoxic or anoxic (e.g., large lakes and rivers).  相似文献   

4.
Freshwater turtle hatchlings primarily use visual cues for orientation while dispersing from nests; however, hatchlings rapidly develop a relationship between a sun or geomagnetic compass and a dispersal target that allows them to maintain an established direction of movement when target habitats are not visible. We examined dispersal patterns of hatchling snapping turtles (Chelydra serpentina) and Blanding's turtles (Emydoidea blandingii) dispersing in large arenas in a mowed field and in dense corn. The dispersal of three categories of hatchlings were examined: (1) naïve individuals (no previous dispersal experience), (2) arena‐experienced (limited dispersal experience in arenas in natural habitat), and (3) natural‐experienced hatchling Blanding's turtles (captured after extensive experience dispersing W in natural habitats toward wetlands). Experienced hatchlings were assigned to treatments consisting of having a magnet or a non‐magnetic aluminum sham or nothing glued to their anterior carapace before release in the corn arena. Dispersal patterns of naïve hatchlings of both species were strongly directional in the field arena with visible target horizons and primarily random in the corn arena where typical target horizons were blocked. When released in corn, dispersal patterns were similar for arena‐experienced hatchlings with magnets or shams attached and differed from their prior dispersal headings in the field arena as naïve hatchlings. Natural‐experienced hatchling Blanding's turtles with and without magnets were able to accurately maintain their prior headings to the WNW while dispersing in the field or corn arenas (i.e., the presence of a magnet did not disrupt their ability to maintain their prior heading). Based on the assumption that no other type of compass exists in hatchlings, we conclude that they were not using a geomagnetic compass, but by default were using sun compass orientation to maintain dispersal headings in dense corn where no typical target habitats were visible.  相似文献   

5.
We assessed the effects of cold and submergence on blood oxygen transport in common map turtles (Graptemys geographica). Winter animals were acclimated for 6-7 wk to one of three conditions at 3 degrees C: air breathing (AB-3 degrees C), normoxic submergence (NS-3 degrees C), and hypoxic (PO2=49 Torr) submergence (HS-3 degrees C). NS-3 degrees C turtles exhibited a respiratory alkalosis (pH 8.07; PCO2=7.9 Torr; [lactate]=2.2 mM) relative to AB-3 degrees C animals (pH 7.89; PCO2=13.4 Torr; [lactate]=1.1 mM). HS-3 degrees C animals experienced a profound metabolic acidosis (pH 7.30; PCO2=7.9 Torr; [lactate]=81 mM). NS-3 degrees C turtles exhibited an increased blood O2 capacity; however, isoelectric focusing revealed no seasonal changes in the isohemoglobin (isoHb) profile. Blood O2 affinity was significantly increased by cold acclimation; half-saturation pressures (P50's) for air-breathing turtles at 3 degrees and 22 degrees C were 6.5 and 18.8 Torr, respectively. P50's for winter animals submerged in normoxic and hypoxic water were 5.2 and 6.5 Torr, respectively. CO2 Bohr slopes (Delta logP50/Delta pH) were -0.15, -0.16, and -0.07 for AB-3 degrees C, NS-3 degrees C, and HS-3 degrees C turtles, respectively; the corresponding value for AB-22 degrees C was -0.37. The O2 equilibrium curve (O2EC) shape was similar for AB-3 degrees C and NS-3 degrees C turtles; Hill plot n coefficients ranged from 1.8 to 2.0. The O2EC shape for HS-3 degrees C turtles was anomalous, exhibiting high O2 affinity below P50 and a right-shifted segment above half-saturation. We suggest that increases in Hb-O2 affinity and O2 capacity enhance extrapulmonary O2 uptake by turtles overwintering in normoxic water. The anomalous O2EC shape and reduced CO2 Bohr effect of HS-3 degrees C turtles may also promote some aerobic metabolism in hypoxic water.  相似文献   

6.
Eastern painted turtles (Chrysemys picta picta) from Connecticut were submerged at 3 degrees C in normoxic and anoxic water to simulate potential respiratory environments within their hibernacula. Those in normoxic water could survive submergence for at least 150 d, while those in anoxic water could survive for a maximum of about 125 d. Turtles in normoxic water developed a slight metabolic acidosis as plasma lactate accumulated to about 50 mM in 150 d, while anoxic turtles developed a severe lactic acidosis as plasma lactate reached about 200 mM in 125 d; there was no respiratory acidosis in either group. Plasma [Na+] changed little in either group, [Cl-] fell by about one-third in both, and [K+] increased by about fourfold in anoxic turtles but only slightly in those in normoxic water. Total plasma magnesium and calcium increased profoundly in anoxic turtles but moderately in those in normoxic water. Consideration of charge balance indicates that all major ions were measured in both groups. Plasma glucose remained unchanged in anoxic turtles until after about 75 d of submergence, when it increased and continued to increase with the duration of anoxia, with much variation among individuals; glucose remained unchanged throughout in turtles in normoxic water. Hematocrit doubled in 150 d in turtles in normoxic water; in anoxic turtles, an initial increase was no longer significant by day 100. Plasma osmolality increased markedly in anoxic turtles, largely because of accumulation of lactate, but anoxic turtles only gained about half the mass of turtles in normoxic water, who showed no increase in osmolality. The higher weight gain in the latter group is attributed to selective perfusion and ventilation of extrapulmonary gas exchange surfaces, resulting in a greater osmotic influx of water. The physiologic responses to simulated hibernation of C. picta picta are intermediate between those of Chrysemys picta bellii and Chrysemys picta dorsalis, which correlates with the severity of the winter each subspecies would be expected to encounter.  相似文献   

7.
Canadian northern leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana) were acclimated to 3 degrees C and submerged in anoxic (0-5 mmHg) and normoxic (Po(2) approximately 158 mmHg) water. Periodic measurements of blood Po(2), Pco(2), and pH were made on samples taken anaerobically from subsets of each species. Blood plasma was analyzed for [Na(+)], [K(+)], [Cl(-)], [lactate], [glucose], total calcium, total magnesium, and osmolality. Blood hematocrit was determined, and plasma bicarbonate concentration was calculated. Both species died within 4 d of anoxic submergence. Anoxia intolerance would rule out hibernation in mud, which is anoxic. Both species survived long periods of normoxic submergence (R. pipiens, 125 d; R. catesbeiana, 150 d) with minimal changes in acid-base and ionic status. We conclude that ranid frogs require a hibernaculum where the water has a high enough Po(2) to drive cutaneous diffusion, allowing the frogs to extract enough O(2) to maintain aerobic metabolism, but that an ability to tolerate anoxia for several days may still be ecologically meaningful.  相似文献   

8.
Orientation and dispersal to suitable habitat affects fitness in many animals, but the factors that govern these behaviors are poorly understood. In many turtle species, hatchlings must orient and disperse to suitable aquatic habitat immediately after emergence from subterranean nests. Thus, the location of nest sites relative to aquatic habitats ideally should be associated with the direction of hatchling dispersal. At our study site, painted turtles (Chrysemys picta) nest to the west (on an island) and east (on the mainland) of a wetland, which determines the direction that hatchlings must travel to reach suitable aquatic habitat. To determine if hatchling orientation is intrinsically influenced by the location where their mothers nest, we employed a two-part cross-fostering experiment in the field, whereby half the eggs laid in mainland nests were swapped with half the eggs laid in island nests. Moreover, because C. picta hatchlings overwinter inside their nests, we performed a second cross-fostering experiment to fully decouple the effects of (1) the maternally chosen nest location, (2) the embryonic developmental location, and (3) the overwinter location. We released hatchlings into a circular arena in the field and found that turtles generally dispersed in a westerly direction, regardless of the maternally chosen nest location and independent of the locations of embryonic development and overwintering. Although this westerly direction was towards suitable aquatic habitat, we could not distinguish whether naïve hatchling turtles (i) use environmental cues/stimuli to orient their movement, or (ii) have an intrinsic bias to orient west in the absence of stimuli. Nevertheless, these findings suggest that the orientation behavior of naïve hatchling turtles during terrestrial dispersal is not dependent upon the location of maternally-chosen nest sites.  相似文献   

9.
10.
Locomotion is a common measure of performance used in studies of thermal acclimation because of its correlation with predator escape and prey capture. However, for sedentary animals such as freshwater turtles, we propose that diving behavior may be a more ecologically relevant measure of performance. Increasing dive duration in hatchling turtles reduces predator exposure and therefore functions as an ecological benefit. Diving behavior is thermally dependent, and in some species of freshwater turtles, it is also reliant on aquatic respiration. This study examined the influence of thermal acclimation on diving behavior, aquatic respiration, and locomotor performance in the endangered, bimodally respiring Mary River turtle Elusor macrurus. Diving behavior was found to partially acclimate at 17 degrees C, with turtles acclimated to a cold temperature (17 degrees C) having a significantly longer dive duration than hatchlings acclimated to a warm temperature (28 degrees C). This increase in dive duration at 17 degrees C was not a result of physiological alterations in metabolic rate but was due instead to an increase in aquatic oxygen consumption. Increasing aquatic oxygen consumption permitted cold-acclimated hatchlings to remain submerged for significantly longer periods, with one turtle undertaking a dive of over 2.5 d. When burst-swimming speed was used as the measure of performance, thermal acclimation was not detected. Overall, E. macrurus demonstrated a partial ability to acclimate to changes in environmental temperature.  相似文献   

11.
12.
River impoundments are characterized by low oxygen levels as a result of reduced water velocity and increased water depth. Bimodally respiring turtle species are likely to be highly sensitive to changes in aquatic PO2 with decreases in oxygen levels impacting upon their diving ability. The acute and long-term effects of aquatic hypoxia on dive duration, oxygen consumption and blood respiratory properties were examined in hatchlings of the endangered Mary River turtle Elusor macrurus . It was hypothesized that acute exposure to aquatic hypoxia would cause a decrease in dive duration as a consequence of a decrease in reliance on aquatic respiration. With long-term exposure to hypoxia, we predicted that Elu. macrurus would have the capacity to compensate for the acute effect of hypoxia and that dive duration would increase due to an increase in aquatic respiration, haemoglobin concentration and oxygen affinity (P50). When exposed to hypoxic conditions, aquatic respiration in Elu. macrurus was substantially reduced resulting in a 51% decrease in dive duration. Contrary to our predictions, Elu. macrurus hatchlings did not acclimate, and long-term exposure to hypoxic conditions caused Elu. macrurus to lose significantly more oxygen to the hypoxic water than the normoxic acclimated turtles. The exacerbation of long-term hypoxia on the respiratory physiology and diving ecology of Elu. macrurus raises concerns about the impacts of long-term environmental change as a result of habitat alteration on the survival of freshwater turtle populations.  相似文献   

13.
14.
Temperature acclimation of adult vertebrates typically induces changes in metabolic physiology. During early development, such metabolic compensation might have profound consequences, yet acclimation of metabolism is little studied in early life stages. We measured the effect of egg incubation temperature on resting metabolic rate (RMR) and blood thyroid hormone levels of hatchling snapping turtles (Chelydra serpentina). Like many reptiles, snapping turtles have temperature-dependent sex determination (TSD), in which embryonic temperature determines sex. Therefore, we designed the experiments to separately measure effects of temperature and of sex on the response variables. We incubated eggs in the laboratory at 21. 5 degrees, 24.5 degrees, 27.5 degrees, and 30.5 degrees C, producing both sexes, all males, both sexes, and all females, respectively. Hatchling RMR, when measured at a common temperature (either 25 degrees or 31 degrees C), was negatively correlated with egg temperature in both males and females, such that RMR of turtles from 21.5 degrees C-incubated eggs averaged 160% that of turtles from 30.5 degrees C-incubated eggs. These results indicate that egg temperatures induced positive metabolic compensation in both sexes. Thyroid hormone levels of hatchlings showed similar correlations with egg temperature; thyroxine level of turtles from 21.5 degrees C-incubated eggs averaged 220% that of turtles from 30.5 degrees C-incubated eggs. To examine the possibility that thyroid hormones contribute to positive metabolic compensation, we added triiodothyronine to eggs during mid-incubation. RMR of hatchlings from these treated eggs averaged 131% that of controls, consistent with the previous possibility. Moreover, the effects of embryonic temperature on metabolic physiology, in combination with effects on sex, can result in differences in RMR and thyroid hormone levels between male and female hatchling turtles. Such differences may be important to the ecology and evolution of TSD.  相似文献   

15.
When placed in a temperature gradient, most ectotherms have a strict thermal preference that is lowered on exposure to hypoxia. Branchiopods, small aquatic crustaceans, are known to synthesise haemoglobin (Hb) when exposed to hypoxia; hypoxia can occur diurnally and seasonally in ponds. The effect of Hb on behavioural thermoregulation in the branchiopod Daphnia carinata following exposure to both normoxia and hypoxia was examined. Control animals raised in normoxia (Po2=150 mmHg, [Hb]=0.026+/-0.007 mg g dry wt-1) and Hb-rich animals raised in hypoxia (Po2=70 mmHg, [Hb]=0.080+/-0.017 mg g dry wt-1) were placed (N=30) in a tube (length=500 mm, diameter=8 mm) filled with pond water. In the absence of a thermal gradient, control and Hb-rich animals in normoxic water were uniformly distributed along the tube. The presence of a thermal gradient (13 degrees -28 degrees C) elicited clustering at a preferred temperature, T approximately 23 degrees C for both groups. Exposure to hypoxic water in a thermal gradient resulted in a behavioural shift: T approximately 16 degrees C for controls and T approximately 19 degrees C for Hb-rich animals. Measurements of oxygen consumption (V&d2;o2) at fixed temperatures revealed that Hb is associated with a metabolic acclimation to hypoxia.  相似文献   

16.
17.
Musk turtles (Sternotherus odoratus) can survive at least 150 days of submergence in normoxic water at 3 degreesC, during which time there are large increases in packed cell volume (PCV). We investigated the effects of submergence in normoxic water at 3 degreesC on the blood viscosity of musk turtles from northern (Massachusetts) and southern (Alabama) locales. Blood was collected from air-breathing turtles and after 20, 50, 100, and 150 days of submergence in normoxic water at 3 degreesC. Hematological responses to submergence were similar in the two groups, therefore the results were combined. Packed cell volume increased steadily above that of controls after 20, 50, 100, and 150 days of submergence. Hemoglobin concentration also progressively increased above that of controls after 20, 50, and 100 days of submergence but declined to near control values after 150 days. Blood viscosity increased with increasing PCV; however, blood viscosity of musk turtles appears less affected by PCV than is blood viscosity of mammalian species. As such, musk turtles appear to be able to maintain adequate blood flow to tissues while increasing the oxygen carrying capacity of the blood during prolonged submergence. However, after 150 days submergence, oxygen delivery should decrease due to a reduced oxygen carrying capacity of the blood and an increased resistance to blood flow, which may limit the length of time these turtles can remain viable during hibernation.  相似文献   

18.
Turtles are a small taxon that has nevertheless attracted much attention from biologists for centuries. However, a major portion of their life cycle has received relatively little attention until recently - namely what turtles are doing, and how they are doing it, during the winter. In the northern parts of their ranges in North America, turtles may spend more than half of their lives in an overwintering state. In this review, I emphasise the ecological aspects of overwintering among turtles, and consider how overwintering stresses affect the physiology, behaviour, distributions, and life histories of various species.Sea turtles are the only group of turtles that migrate extensively, and can therefore avoid northern winters. Nevertheless, each year a number of turtles, largely juveniles, are killed when trapped by cold fronts before they move to safer waters. Evidently this risk is an acceptable trade-off for the benefits to a population of inhabiting northern developmental habitats during the summer.Terrestrial turtles pass the winter underground, either in burrows that they excavate or that are preformed. These refugia must provide protection against desiccation and lethal freezing levels. Some burrows are extensive (tortoise genus Gopherus), while others are shallow, or the turtles may simply dig into the ground to a safe depth (turtle genus Terrapene). In the latter genus, freeze tolerance may play an adaptive role.Most non-marine aquatic turtles overwinter underwater, although Clemmys (Actinemys) marmorata routinely overwinters on land when it occurs in riverine habitats, Kinosternon subrubrum often overwinters on land, and several others may overwinter terrestrially on occasion, especially in more southern climates. For northern species that overwinter underwater, there are two physiological groupings, those that are anoxia-tolerant and those that are relatively anoxia-intolerant. All species fare well physiologically in water with a high partial pressure of oxygen (PO2). A lack of anoxia tolerance limits the types of habitats that a freshwater turtle may live in, since unlike sea turtles, they cannot travel long distances to hibernate.Hatchlings of some species of turtles spend their first winter in or below the nest cavity, while hatchlings of other species in the same area, including northern areas, emerge in the autumn and presumably hibernate underwater. All hatchlings are relatively anoxia-intolerant, and there are no studies to date of where hatchling turtles that do not overwinter in or below the nest cavity spend their first winter. Equally little is known of the ontogeny of anoxia tolerance, other than that adults of all species are more anoxia-tolerant than their hatchlings, probably because of their better ossified shells, which provide adults with more buffer reserves and a larger site in which to sequester lactate. The northern limits of turtles are most likely determined by reproductive limitations (time for egg-laying, incubation, and hatching) than by the rigors of hibernation.Mortality is typically lower in turtle populations during hibernation than it is during their active periods. However, episodic mortality events do occur during hibernation, due to freezing, prolonged anoxia, or predation.  相似文献   

19.
The loggerhead turtle (Caretta caretta) is an endangered marine reptile for whom assessing population health requires knowledge of demographic parameters such as individual growth rate. In Cape Verde, as within several populations, adult female loggerhead sea turtles show a size-related behavioral and trophic dichotomy. While smaller females are associated with oceanic habitats, larger females tend to feed in neritic habitats, which is reflected in their physiological condition and in their offspring. The ratio of RNA/DNA provides a measure of cellular protein synthesis capacity, which varies depending on changes in environmental conditions such as temperature and food availability. The purpose of this study was to evaluate the combined use of morphometric data and biochemical indices as predictors of the physiological condition of the females of distinct sizes and hatchlings during their nesting season and how temperature may influence the physiological condition on the offspring. Here we employed biochemical indices based on nucleic acid derived indices (standardized RNA/DNA ratio-sRD, RNA concentration and DNA concentration) in skin tissue as a potential predictor of recent growth rate in nesting females and hatchling loggerhead turtles. Our major findings were that the physiological condition of all nesting females (sRD) decreased during the nesting season, but that females associated with neritic habitats had a higher physiological condition than females associated with oceanic habitats. In addition, the amount of time required for a hatchling to right itself was negatively correlated with its physiological condition (sRD) and shaded nests produced hatchlings with lower sRD. Overall, our results showed that nucleic acid concentrations and ratios of RNA to DNA are an important tool as potential biomarkers of recent growth in marine turtles. Hence, as biochemical indices of instantaneous growth are likely temperature-, size- and age-dependent, the utility and validation of these indices on marine turtles stocks deserves further study.  相似文献   

20.
We investigated physiological responses to supercooling in hatchling painted turtles (Chrysemys picta) which remain in their natal nests over winter and therefore may become exposed to subzero temperatures. These turtles are freeze tolerant but also must rely on supercooling to survive exposure to the lower temperatures occurring in nests during winter. We compared whole-body concentrations of lactate, glucose, glycerol, and ATP in turtles chilled at 0 degrees C, -4 degrees C, or -6 degrees C for 5 days, or at 6 degrees C for 19 days. In a companion experiment, we measured metabolite concentrations in turtles exposed to a hypoxic environment for 1 day, 4 days, or 8 days. Supercooling and hypoxia exposure were both associated with an increase in concentrations of lactate and glucose and a decrease in glycerol concentrations (albeit no change in the ATP pool), suggesting that supercooling induces functional hypoxia. We conclude that hypoxia tolerance may be an important pre-adaptation for surviving exposure to subzero temperatures in hatchling C. picta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号