首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics and function of membrane-spanning channels. In recent times, the availability of crystal structures of complex ion channels has challenged the role of gramicidin as a model membrane protein and ion channel. This review focuses on the suitability of gramicidin as a model membrane protein in general, and the information gained from gramicidin to understand lipid-protein interactions in particular. Special emphasis is given to the role and orientation of tryptophan residues in channel structure and function and recent spectroscopic approaches that have highlighted the organization and dynamics of the channel in membrane and membrane-mimetic media.  相似文献   

2.
To explore the possible role of Trp side chains in gramicidin channel conductance dispersity, we studied the dispersity of gramicidin M (gM), a gramicidin variant in which all four tryptophan residues are replaced with phenylalanine residues, and its enantiomer, gramicidin M(-) (gM(-)), and compared them to that of gramicidin A (gA). The conductances of highly purified gM and gM(-) were studied in alkali metal solutions at a variety of concentrations and voltages, in seven different types of lipid, and in the presence of detergent. Like gA channels, the most common gM channel conductance forms a narrow band. However, unlike gA channels, where the remaining 5-30% of channel conductances are broadly distributed below (and slightly above) the main band, in gM there is a narrow secondary band with <50% of the main peak conductance. This secondary peak was prominent in NaCl and KCl, but significantly diminished in CsCl and RbCl. Under some conditions, minor components can be observed with conductances yet lower than the secondary peak. Interconversions between the primary conductance state and these yet lower conductance states were observed. The current-voltage relations for both primary and secondary gM channel types have about the same curvature. The mean lifetime of the secondary channel type is below one third that of the primary type. The variants represent state deviations in the peptide or adjacent lipid structure.  相似文献   

3.
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been used extensively to study the organization, dynamics, and function of membrane-spanning channels. The tryptophan residues in gramicidin channels are crucial for maintaining the structure and function of the channel. We explored the structural basis for the reduction in channel conductance in the case of single-tryptophan analogs of gramicidin with three Trp → hydrophobic substitutions using a combination of fluorescence approaches, which include red edge excitation shift and membrane penetration depth analysis, size-exclusion chromatography, and circular dichroism spectroscopy. We show here that the gramicidin analogs containing single-tryptophan residues adopt a mixture of nonchannel and channel conformations, as evident from analysis of membrane penetration depth, size-exclusion chromatography, and backbone circular dichroism data. These results are potentially useful in analyzing the effect of tryptophan substitution on the functioning of other ion channels and membrane proteins.  相似文献   

4.
Compared with alkali metal cations, formamidinium ions stabilize the gramicidin A channel molecule in monoolein bilayers (Seoh and Busath, 1993a). A similar effect is observed with N-acetyl gramicidin channel molecules in spite of the modified forces at the dimeric junction (Seoh and Busath, 1993b). Here we use electrophysiological measurements with tryptophan-to-phenylalanine-substituted gramicidin analogs to show that the formamidinium-induced channel molecule stabilization is eliminated when the four gramicidin tryptophans are replaced with phenylalanines in gramicidin M-. This suggests that the stabilization is mediated by the tryptophan side chains. Tryptophan residues 9, 13, and 15 must cooperate to produce the effect because replacement of any one of the three with phenylalanine significantly reduces stabilization; replacement of Trp-11 with phenylalanine causes negligible decrease in stabilization. In addition, formamidinium-related current-voltage supralinearity and open-channel noise are absent with gramicidin M-. When the lipid bilayer was formed with monoolein ether rather than monoolein ester, the channel lifetimes were reduced markedly and, at low voltage and relative to those in KCl solution, were decreased by a factor of 2, whereas the open-channel noise was unaffected and the current-voltage relation was only modestly affected. These results suggest that formamidinium modifies the state of the tryptophan side chains, which, in turn, affects channel lifetime, current-voltage supralinearity, and open-channel noise through interactions with water or lipid headgroup atoms including the lipid ester carbonyl.  相似文献   

5.
Channel-forming peptides such as gramicidin A offer the opportunity to study the relationship between chemical structure and transport properties of an ion channel. This article summarizes a number of recent experiments with chemical analogs and derivatives of gramicidin A using artificial lipid bilayer membranes. The introduction of negative charges near the channel mouth leads to an increase in the cation transport rate. Hybrid channels consisting of a neutral and a negatively charged or of a positively and a negatively charged half-channel may be formed. The current-voltage characteristic of these hybrid channels exhibits a pronounced asymmetry.Experiments with charged derivatives of gramicidin A have been used in order to distinguish between different structural models of the dimeric channel; these studies strongly support Urry's model of a single-stranded, head-to-head associated helical dimer. In a further set of experiments gramicidin analogs with modified amino acid sequence were studied. It was found that a single substitution (tryptophan replaced by phenylalanine) leads to marked changes in the conductance of the channel. Analogs with a simplified amino acid sequence such as (L-Trp-D-Leu)7-L-Trp or L-Trp-Gly-(L-Trp-D-Leu)6-L-Trp are able to form cation permeable channels with similar properties as gramicidin A.  相似文献   

6.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

7.
The ion channel formed by the pentadecapeptide gramicidin A in planar lipid membranes is extremely sensitive to ionizing radiation. The membrane conductance may drop by several orders of magnitude under appropriate experimental conditions (low pH and presence of oxygen). The radiation sensitivity is strongly reduced for gramicidin M-. This analogue has the four tryptophan residues replaced by phenylalanines. Experiments performed in the presence of various radical scavengers suggest that the inactivation of the channel is due to a combined action of OH and of HO2 radicals at the tryptophan residues. The shape of the inactivation curves following continuous radiolysis or pulse radiolysis were found to be in fair agreement with a simple model which assumes that the damage of a single tryptophan residue is sufficient for channel inactivation. The conductance of inactivated channels could not be resolved within the experimental accuracy. This is contrary to photolysis of gramicidin channels found by Busath and Waldbilling (1983), where a broad distribution of low conductance states was observed. The inactivation by radiolysis seems to represent an 'all-or-none-process' of the channel conductance.  相似文献   

8.
We have tested the hypothesis that peptide tryptophan groups can control the ionic conductance of transmembrane channels. We report here that single gramicidin A channels change conductance state when the peptide tryptophans are flash photolyzed with ultraviolet light. The current flow through planar lipid bilayers containing multiple gramicidin A channels decreases irreversibly when exposed to ultraviolet light. The current-loss action spectrum peaks sharply at the 280 nm absorption maximum of the gramicidin A tryptophans. Gramicidin channel sensitivity to ultraviolet light is found to be about 20-fold higher than that of frog node sodium channels which is even more than expected based on the high tryptophan content of gramicidin. Channels which survive an ultraviolet light exposure exist in a wide variety of different low-conductance forms. The broad distribution of the single channel conductance of these partially photolyzed channels is attributable to the loss of different combinations of the dimer's normal complement of eight tryptophans per channel. Flash photolysis of single channels results in discrete conductance state changes. Partially photolyzed single channels manifest a further conductance cascade when exposed to a second flash of ultraviolet light. Analysis of the photolysis conductance turn-off process indicates that gramicidin A is a multistate electrochemical unit where the peptide tryptophan groups can modulate the flow of ions through the transmembrane channel.  相似文献   

9.
In order to understand how aromatic residues modulate the function of membrane-spanning proteins, we examined the role of the four tryptophans in gramicidin A (gA) in determining the average duration and permeability characteristics of membrane-spanning gramicidin channels; the tryptophan residues were replaced by tyrosine (gramicidin T, gT), tyrosine O-benzyl ether [gramicidin T(Bzl), gT(Bzl)], naphthylalanine (gramicidin N, gN), and phenylalanine (gramicidin M enantiomer, gM-). These analogues form channels with durations and conductances that differ some 10- and 16-fold, respectively. The single-channel conductance was invariably decreased by the Trp----Yyy replacement, and the relative conductance alterations were similar in phosphatidylcholine (DPhPC) and monoglyceride (GMO) bilayers. The duration variations exhibited a more complex pattern, which was quite different in the two membrane environments: in DPhPC bilayers, gN channels have an average duration that is approximately 2-fold longer than that of gA channels; in GMO bilayers, the average duration of gN channels is about one-tenth that of gA channels. The sequence-dependent alterations in channel function do not result from alterations in the channels' peptide backbone structure, because heterodimers can form between the different analogues and gramicidine A, and there is no energetic cost associated with heterodimer formation [cf. Durkin, J. T., Koeppe, R. E., II, & Andersen, O. S. (1990) J. Mol. Biol. 211, 221]. The alterations in permeability properties are consistent with the notion that Trp residues alter the energy profile for ion permeation through long-range electrostatic interactions.  相似文献   

10.
Gramicidin A is a linear polypeptide antibiotic that facilitates the diffusion of monovalent cations across lipid bilayer membranes by forming channels. It has been proposed that the conducting channel is a dimer which is in equilibrium with nonconducting monomers in the membrane. To directly test this model in several independent ways, we have prepared and purified a series of gramicidin C derivatives. All of these derivatives are fully active analogs of gramicidin A, and each derivative has a useful chromophore esterified to the phenolic hydroxyl of tyrosine #11. Simultaneous conductance and fluorescence measurements on planar lipid bi-layer membranes containing dansyl gramicidin C yielded four conclusions: (1) A plot of the logarithm of the membrane conductance versus the logarithm of the membrane fluorescence had a slope of 2.0 ± 0.3, over a concentration range for which nearly all the gramicidin was monomeric. Hence, the active channel is a dimer of the nonconducting species. (2) In a membrane in which nearly all of the gramicidin was dimeric, the number of channels was approximately equal to the number of dimers. Thus, most dimers are active channels and so it should be feasible to carry out spectroscopic studies of the conformation of the transmembrane channel. (3) The association constant for dimerization is more than 1,000-fold larger in a glycerolester membrane with 26 Å-hydrocarbon thickness than in a 47 Å-glycerolester membrane. The dimerization constant in a 48 Å-phosphatidyl choline membrane was 200 times larger than in a 47 Å-glycerolester membrane, showing that it depends on the type of lipid as well as on the thickness of the hydrocarbon core. (4) We were readily able to detect 10?14 mole cm?2 of dansyl gramicidin C in a bilayer membrane, which corresponds to 60 fluorescent molecules per square μm. The fluorescent techniques described here should be sufficiently sensitive for fluorescence studies of reconstituted gates and receptors in planar bilayer membranes. An alternative method of determining the number of molecules of gramicidin in the channel is to measure the fraction of hybrid channels present in a mixture of 2 chemically different gramicidins. The single-channel conductance of p-phenylazo-benzene-sulfonyl ester gramicidin C (PABS gramicidin C) was found to be 0.68 that of gramicidin A. In membranes containing a mixture of these 2 gramicidins, a hybrid channel was evident in addition to 2 pure channels. The hybrid channel conductance was 0.82 that of gramicidin A. Fluorescence energy transfer from dansyl gramicidin C to diethylamino-phenylazobenzene-sulfonyl ester gramicidin C (DPBS gramicidin C), provided an independent way to measure the fraction of hybrid channels on liposomes. For both techniques the fraction of hybrid channels was found to be 2ad where a2 and d2 were the fractions of the 2 kinds of pure channels. This result strongly supports a dimer channel and the hybrid data excludes the possibility of a tetramer channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes. The various models which have been proposed for the conformation of the gramicidin transmembrane channel are briefly discussed.  相似文献   

11.
Jordan JB  Shobana S  Andersen OS  Hinton JF 《Biochemistry》2006,45(47):14012-14020
Tryptophan residues often are found at the lipid-aqueous interface region of membrane-spanning proteins, including ion channels, where they are thought to be important determinants of protein structure and function. To better understand how Trp residues modulate the function of membrane-spanning channels, we have examined the effects of Trp replacements on the structure and function of gramicidin A channels. Analogues of gramicidin A in which the Trp residues at positions 9, 11, 13, and 15 were sequentially replaced with Gly were synthesized, and the three-dimensional structure of each analogue was determined using a combination of two-dimensional NMR techniques and distance geometry-simulated annealing structure calculations. Though Trp --> Gly substitutions destabilize the beta6.3-helical gA channel structure, it is possible to determine the structure of analogues with Trp --> Gly substitutions at positions 11, 13, and 15, but not for the analogue with the Trp --> Gly substitution at position 9. The Gly11-, Gly13-, and Gly15-gA analogues form channels that adopt a backbone fold identical to that of native gramicidin A, with only small changes in the side chain conformations of the unsubstituted residues. Single-channel current measurements show that the channel function and lifetime of the analogues are significantly affected by the Trp --> Gly replacements. The conductance variations appear to be caused by sequential removal of the Trp dipoles, which alter the ion-dipole interactions that modulate ion movement. The lifetime variations did not appear to follow a clear pattern.  相似文献   

12.
The thallium-205 chemical shift was determined as a function of temperature for the thallium(I) complexes of gramicidin A and gramicidin B in 2,2,2-trifluoroethanol. From the difference in magnitude of the induced chemical shift it was determined that gramicidin B does not bind the Tl(I) ion as well as does gramicidin A. This result may explain the lower single-channel conductance of gramicidin B relative to gramicidin A. Cabon-13 NMR studies strongly indicate that the binding site for gramicidin A and B is at teh tryptophan end of the molecule and that replacement of tryptophan residue at position 11 in gramicidin A with a phenylalanine to form gramicidin B produces a significant structural change at the tryptophan end of the molecule, but has little effect on the N-terminus.  相似文献   

13.
The gramicidin ion channel: a model membrane protein   总被引:3,自引:0,他引:3  
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics and function of membrane-spanning channels. In recent times, the availability of crystal structures of complex ion channels has challenged the role of gramicidin as a model membrane protein and ion channel. This review focuses on the suitability of gramicidin as a model membrane protein in general, and the information gained from gramicidin to understand lipid-protein interactions in particular. Special emphasis is given to the role and orientation of tryptophan residues in channel structure and function and recent spectroscopic approaches that have highlighted the organization and dynamics of the channel in membrane and membrane-mimetic media.  相似文献   

14.
In order to resolve whether gramicidin A channels are formed by right- or left-handed beta-helices, we synthesized an optically reversed (or mirror image) analogue of gramicidin A, called gramicidin A-, to test whether it forms channels that have the same handedness as channels formed by gramicidin M- (F. Heitz et al., Biophys. J. 40:87-89, 1982). In gramicidin M- the four tryptophan residues have been replaced with phenylalanine, and the circular dichroism (CD) spectrum therefore reflects almost exclusively contributions from the polypeptide backbone. The CD spectrum of gramicidin M- in dimyristoylphosphatidylcholine vesicles is consistent with a left-handed helical backbone folding motif (F. Heitz et al., Biophys. Chem. 24:149-160, 1986), and the CD spectra of gramicidins A and A- are essentially mirror images of each other. Based on hybrid channel experiments, gramicidin A- and M- channels are structurally equivalent, while gramicidin A and A- channels are nonequivalent, being of opposite helix sense. Gramicidin A- channels are therefore left-handed, and natural gramicidin A channels in phospholipid bilayers are right-handed beta 6.3-helical dimers.  相似文献   

15.
The importance of the tryptophan residues of gramicidin for the lipid structure modulating activity of this pentadecapeptide was investigated by studying the interaction of gramicidin analogs A, B, C (which have a tryptophan, phenylalanine and tyrosine in position 11, respectively) and tryptophan-N-formylated gramicidin (in which the four tryptophan residues have been formylated) with several phospholipid systems. In addition in α-helical model pentadecapeptide (P15) was studied to further test the specificity of the gramicidin-lipid interaction. DSC experiments showed that all the gramicidin analogs produced a significant decrease in the gel to liquid-crystalline transition enthalpy of dipalmitoylphosphatidylcholine. The P15 peptide was much less effective in this respect. In dielaidoylphosphatidylethanolamine the gel → liquid-crystalline transition enthalpy was much less affected by the incorporation of these molecules. In this lipid system tryptophan-N-formylated gramicidin was found to be the most ineffective. 31P-NMR and small angle X-ray diffraction experiments showed that the ability of the peptides to induce bilayer structures in palmitoyllysophosphatidylcholine and HII phase promotion in dielaidoylphosphatidylethanolamine systems follows the order: gramicidin A′ (natural mixture) ≈gramicidin A > gramicidin B ≈ gramicidin C > tryptophan-N-formylated gramicidin > P15. These results support the hypothesis that the shape of gramicidin and its aggregational behaviour, in which the tryptophan residues play an essential role, are major determinants in the unique lipid structure modulating activity of gramicidin.  相似文献   

16.
A shortened analog of gramicidin A has been shown by Urry et al. (Biochim. Biophys. Acta 775, 115-119) to have lower conductance than native gramicidin A. They argue this suggests that the major current carrier is the doubly occupied channel. A different perspective is presented here. Channel formation does not alter bilayer width. In a shortened channel an ion approaching the binding site moves further toward the center of the lipid-pore system. The electrostatic contribution to the energy barrier near the constriction mouth is greater for the shorter channel. As long as entry to the channel is rate limiting singly occupied short channels should exhibit lower conductance. The data are not inconsistent with singly occupied channels being the major current carriers. Experiments on other gramicidin analogs are suggested to more clearly distinguish between singly and doubly occupied channels as the dominant conducting species.  相似文献   

17.
In order to examine whether calcium-dependent binding of annexin to acidic phospholipids could change the lipid bilayer environment sufficiently to perturb channel-mediated transmembrane ion-transport, gramicidin A channel activity in planar lipid bilayers was investigated in the presence of calcium and annexins II, III or V. The experiments were performed with membranes consisting of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine in 300 mM KCl solution buffered to pH 7.4 and with either 0.1 or 1 mM calcium added to the solution. Annexin (1 microM) was subsequently applied to the cis side of the membrane. All three annexins (II, III and V) when tested at 1 mM calcium decreased the gramicidin single-channel conductance. Annexins II and III increased the mean lifetime of the channels whereas annexin V seemed to have no influence on the mean lifetime. Since the lifetime of gramicidin A channels is a function of the rate constant for dissociation of the gramicidin dimer, which is dependent on the physical properties of the lipid phase, binding of annexins II and III seems to stabilize the gramicidin channel owing to a change of the bilayer structure.  相似文献   

18.
To examine the structural and functional importance of backbone amide groups in ion channels for subunit folding, hydrogen bonding, ion solvation, and ion permeation, we replaced the peptide bond between Val(1) and Gly(2) in gramicidin A by an ester bond. The substitution is at the junction between the two channel subunits, where it removes an intramolecular hydrogen bond between the NH of Gly(2) and the C==O of Val(7) and perturbs an intermolecular hydrogen bond between the C==O of Val(1) in one subunit and the NH of Ala(5) in the other subunit. The substitution thus perturbs not only subunit folding but also dimer assembly, in addition to any effects on ion permeation. This backbone modification has large effects on channel function: It alters channel stability, as monitored by the channel forming ability and channel lifetime, and ion permeability, as monitored by changes in single-channel conductance and cation permeability ratios. In fact, the homodimeric channels, with two ester-containing subunits, have lifetimes so short that it becomes impossible to characterize them in any detail. The peptide --> ester substitution, however, does not affect the basic subunit fold because heterodimeric channels can form between a subunit with an ester bond and a native subunit. These heterodimeric channels, with only a single ester bond, are more easily characterized; the lone ester reduces the single-channel conductance about 4-fold and the lifetime about 200-fold as compared to the native homodimeric channels. The altered channel function results from a perturbation/disruption of the hydrogen bond network that stabilizes the backbone, as well as the membrane-spanning dimer, and that forms the lining of the ion-conducting pore. Molecular dynamics simulations show the expected destabilization of the modified heterodimeric or homodimeric channels, but the changes in backbone structure and dynamics are remarkably small. The ester bond is somewhat unstable, which precluded further structural characterization. The lability also led to a hydrolysis product that terminates with an alcohol and lacks formyl-Val. Symmetric channels formed by the hydrolyzed product again have short lifetimes, but the channels are distinctly different from those formed by the ester gramicidin A. Furthermore, well-behaved asymmetric channels form between the hydrolysis product and reference subunits that have either an L- or a D-residue at the formyl-NH-terminus.  相似文献   

19.
The channel forming properties of synthetic gramicidin A and dLeu2-gramicidin A were compared in black lipid membranes. The most probable single channel conductance was identical for both derivatives but in each case a distribution of smaller channel sizes was observed. However, the lifetime of the channel formed by dLeu2-gramicidin A was considerably shorter than for gramicidin A. The dLeu2 substitution is considered to interfere with the head to head hydrogen bonding which forms the conducting dimer, thus destabilizing the dimeric structure of the channel and reducing the lifetime. This represents the first demonstration of side-chain modulation of channel lifetime.  相似文献   

20.
The hydrophobic coupling between membrane-spanning proteins and the lipid bilayer core causes the bilayer thickness to vary locally as proteins and other "defects" are embedded in the bilayer. These bilayer deformations incur an energetic cost that, in principle, could couple membrane proteins to each other, causing them to associate in the plane of the membrane and thereby coupling them functionally. We demonstrate the existence of such bilayer-mediated coupling at the single-molecule level using single-barreled as well as double-barreled gramicidin channels in which two gramicidin subunits are covalently linked by a water-soluble, flexible linker. When a covalently attached pair of gramicidin subunits associates with a second attached pair to form a double-barreled channel, the lifetime of both channels in the assembly increases from hundreds of milliseconds to a hundred seconds--and the conductance of each channel in the side-by-side pair is almost 10% higher than the conductance of the corresponding single-barreled channels. The double-barreled channels are stabilized some 100,000-fold relative to their single-barreled counterparts. This stabilization arises from: first, the local increase in monomer concentration around a single-barreled channel formed by two covalently linked gramicidins, which increases the rate of double-barreled channel formation; and second, from the increased lifetime of the double-barreled channels. The latter result suggests that the two barrels of the construct associate laterally. The underlying cause for this lateral association most likely is the bilayer deformation energy associated with channel formation. More generally, the results suggest that the mechanical properties of the host bilayer may cause the kinetics of membrane protein conformational transitions to depend on the conformational states of the neighboring proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号