首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is an autosomal-dominant type of amyloidosis restricted to the small vasculature of the brain and clinically characterized by recurrent strokes. Amyloid fibrils from the leptomeninges of two patients were isolated and the primary structure determined. The complete sequence of the amyloid protein shows homology to the vascular (beta-protein) and plaque amyloid (A4-protein) obtained from Alzheimer's Disease. However, it is three residues shorter (39 instead of 42) than that reported for the plaque amyloid. The difference at the carboxy terminal may reflect specific degradation that occurs in the vessel wall and not in the brain parenchyma.  相似文献   

2.
pH-dependent structural transitions of Alzheimer amyloid peptides.   总被引:15,自引:5,他引:10       下载免费PDF全文
To understand the molecular interactions leading to the assembly of beta/44 protein into the hallmark fibrils of Alzheimer's disease (AD), we have examined the ability of synthetic peptides that correspond to the beta/A4 extracellular sequence to form fibrils over the range of pH 3-10. Peptides included the sequences 1-28, 19-28, 17-28, 15-28, 13-28, 11-28, and 9-28 of beta/A4. The model fibrils were compared with isolated amyloid with respect to morphology, conformation, tinctorial properties, and stability under denaturing conditions. Electron microscopy, Fourier-transform infrared (FT-IR) spectroscopy, and x-ray diffraction revealed that the ionization states of the amino acid sidechains appeared to be a crucial feature in fibril formation. This was reflected by the ability of several peptides to undergo fibril assembly and disassembly as a function of pH. Comparisons between different beta/A4 sequences demonstrated that the fibrillar structure representative of AD amyloid was dependent upon electrostatic interactions, likely involving His-13 and Asp-23, and hydrophobic interactions between uncharged sidechains contained within residues 17-21. The results also indicated an exclusively beta-sheet conformation for the synthetic (and possibly AD fibrils) in contrast to certain other (e.g., systemic) amyloids.  相似文献   

3.
The amyloid beta-protein (1-42) is a major constituent of the abnormal extracellular amyloid plaque that characterizes the brains of victims of Alzheimer's disease. Two peptides, with sequences derived from the previously unexplored C-terminal region of the beta-protein, beta 26-33 (H2N-SNKGAIIG-CO2H) and beta 34-42 (H2N-LMVGGVVIA-CO2H), were synthesized and purified, and their solubility and conformational properties were analyzed. Peptide beta 26-33 was found to be freely soluble in water; however, peptide beta 34-42 was virtually insoluble in aqueous media, including 6 M guanidinium thiocyanate. The peptides formed assemblies having distinct fibrillar morphologies and different dimensions as observed by electron microscopy of negatively stained samples. X-ray diffraction revealed that the peptide conformation in the fibrils was cross-beta. A correlation between solubility and beta-structure formation was inferred from FTIR studies: beta 26-33, when dissolved in water, existed as a random coil, whereas the water-insoluble peptide beta 34-42 possessed antiparallel beta-sheet structure in the solid state. Solubilization of beta 34-42 in organic media resulted in the disappearance of beta-structure. These data suggest that the sequence 34-42, by virtue of its ability to form unusually stable beta-structure, is a major contributor to the insolubility of the beta-protein and may nucleate the formation of the fibrils that constitute amyloid plaque.  相似文献   

4.
Amyloid fibrils deposited in cerebral vessel walls in Dutch patients with hereditary cerebral hemorrhage with amyloidosis (HCHWA-D) are formed by polymerization of a 39-residue peptide similar to the beta-protein of Alzheimer's disease, Down syndrome, sporadic cerebral amyloid angiopathy and normal aging. Sequence analysis of genomic DNA in HCHWA-D patients demonstrated a point mutation, cytosine for guanine at position 1852 of the precursor beta-protein gene, which causes a single amino acid substitution (glutamine for glutamic acid) corresponding to position 22 of the amyloid protein. The normal allele was also present in these patients. To examine the expression of normal and variant beta-protein alleles in HCHWA-D we analyzed all the tryptic peptides obtained from several amyloid fractions from leptomeningeal vascular walls. Amino acid sequence of two peptides (T3a and T3b) with identical amino acid composition revealed that T3a had glutamine and T3b had glutamic acid at position 22. Thus both the normal and variant Alzheimer's beta-protein alleles are expressed in vascular amyloid in HCHWA-D and may be detected by tryptic peptide mapping. Moreover, we have developed a diagnostic assay for high risk populations and prenatal evaluation that is based on the existence of the mutation.  相似文献   

5.
Differences Between Vascular and Plaque Core Amyloid in Alzheimer's Disease   总被引:20,自引:5,他引:15  
Abstract: The predominant protein of cerebrovascular and plaque core amyloid in Alzheimer's disease, Down's syndrome, hereditary hemorrhage with amyloidosis—Dutch type, sporadic cerebral amyloid angiopathy, and age-related amyloidosis is a unique polypeptide, called β protein. The length of the plaque amyloid protein was reported to be 42–43 residues, but the complete length of the cerebral vascular amyloid is not known. To clarify this issue, amyloid fibrils from the leptomeninges of an Alzheimer's disease patient were isolated and the primary structure determined. The complete sequence of cerebrovascular β-amyloid protein, although homologous to the plaque core amyloid protein previously reported, has 39 residues instead of 42. Amino terminal heterogeneity is present but minimal, and it is three residues shorter at the carboxy terminus. These differences are similar to those found in two cases of hereditary hemorrhage with amyloidosis—Dutch type. The differences between vascular and plaque β-amyloid may reflect diverse processing of the β protein precursor in the vessel wall and brain parenchyma due to tissue-specific endopeptidases.  相似文献   

6.
J T Jarrett  P T Lansbury 《Biochemistry》1992,31(49):12345-12352
The sequence of the Escherichia coli OsmB protein was found to resemble that of the C-terminal region of the beta amyloid protein of Alzheimer's disease, which seems to be the major determinant of its unusual structural and solubility properties. A peptide corresponding to residues 28-44 of the OsmB protein was synthesized, and its conformational properties and aggregation behavior were analyzed. The peptide OsmB(28-44) was shown to form amyloid fibrils, as did two sequence analogs designed to test the sequence specificity of fibril formation. These fibrils bound Congo red, and two of the peptides showed birefringence. The peptide fibrils were analyzed by electron microscopy and Fourier transform infrared spectroscopy. Subtle differences were observed which were not interpretable at the molecular level. The rate of fibril formation by each peptide was followed by monitoring the turbidity of supersaturated aqueous solutions. The kinetics of aggregation were characterized by a delay period during which the solution remained clear, followed by a nucleation event which led to a growth phase, during which the solution became viscous and turbid due to the presence of insoluble fibrils. The observation of a kinetic barrier to aggregation is typical of a crystallization event. The delay period could be eliminated by seeding the supersaturated solution with previously formed fibrils. Each peptide could be nucleated by fibrils formed from that same peptide, but not by fibrils from closely related sequences, suggesting that fibril growth requires specific hydrophobic interactions. It appears likely that this repeated sequence motif, which comprises most of the OsmB protein sequence, dictates the structure and possibly the function of that protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid beta-protein (Abeta) in fibrillar form on neuronal cells. However, the role of Abeta fibrils in neuronal dysfunction is highly controversial. This study demonstrates that monosialoganglioside GM1 (GM1) released from damaged neurons catalyzes the formation of Abeta fibrils, the toxicity and the cell affinity of which are much stronger than those of Abeta fibrils formed in phosphate-buffered saline. Abeta-(1-40) was incubated with equimolar GM1 at 37 degrees C. After a lag period of 6-12 h, amyloid fibrils were formed, as confirmed by circular dichroism, thioflavin-T fluorescence, size-exclusion chromatography, and transmission electron microscopy. The fibrils showed significant cytotoxicity against PC12 cells differentiated with nerve growth factor. Trisialoganglioside GT1b also facilitated the fibrillization, although the effect was weaker than that of GM1. Our study suggests an exacerbation mechanism of AD and an importance of polymorphisms in Abeta fibrils during the pathogenesis of the disease.  相似文献   

8.
Several kinds of senile plaque found in 6 brains (4 from patients with Alzheimer's disease and 2 from patients with senile dementia) were examined in serial sections by light electron microscopy. The results obtained were as follows. All the senile plaques contained at least some amyloid fibrils, and these seemed to be produced at the basement membranes of capillary endothelial cells and projected into the surrounding parenchyma. Even when the senile plaques themselves appeared to lack amyloid fibrils by light microscopy, at least one degenerable capillary containing amyloid fibrils was demonstrable when serial sections were examined ultrastructurally. The findings described above suggest that the amyloid fibrils which form the cores of the several kinds of senile plaque, seem to be produced at the basement membrane of the endothelial cell. It is speculated that the capillary degeneration with the formation of amyloid fibrils may be primary change in the genesis of senile plaques.  相似文献   

9.
A region near the C-terminus of human acetylcholinesterase (AChE) is weakly homologous with the N-terminus of the Alzheimer's disease amyloid-beta peptide. We report that a 14-amino acid synthetic polypeptide whose sequence corresponds to residues 586-599 of the human synaptic or T form of AChE assembles into amyloid fibrils under physiological conditions. The fibrils have all the classical characteristics of amyloid: they have a diameter of 6-7 nm and bind both Congo red and thioflavin-T. Furthermore, the kinetics of assembly indicate that fibril formation proceeds via a two-step nucleation-dependent polymerization pathway, and a transition in the peptide conformation from random coil to beta-sheet is observed during fibril formation using far-UV circular dichroism spectroscopy. We also show that the peptide in aggregated fibrillar form has a toxic effect upon PC-12 cells in vitro. AChE normally resides mainly on cholinergic neuronal membranes, but is abnormally localized to senile plaques in Alzheimer's disease. Recently, an in vitro interaction between AChE and A beta, the principal constituent of the amyloid fibrils in senile plaques, has been documented. The presence of a fibrillogenic region within AChE may be relevant to the interaction of AChE with amyloid fibrils formed by Abeta.  相似文献   

10.
A beta oligomers - a decade of discovery   总被引:1,自引:0,他引:1  
Converging lines of evidence suggest that progressive accumulation of the amyloid beta-protein (A beta) plays a central role in the genesis of Alzheimer's disease, but it was long assumed that A beta had to be assembled into extracellular amyloid fibrils to exert its cytotoxic effects. Over the past decade, data have emerged from the use of synthetic A beta peptides, cell culture models, beta-amyloid precursor protein transgenic mice and human brain to suggest that pre-fibrillar, diffusible assemblies of A beta are also deleterious. Although the precise molecular identity of these soluble toxins remains unsettled, accumulating evidence suggests that soluble forms of A beta are indeed the proximate effectors of synapse loss and neuronal injury. Here we review recent progress in understanding the role of soluble oligomers in Alzheimer's disease.  相似文献   

11.
Nilsson MR  Dobson CM 《Biochemistry》2003,42(2):375-382
Lactoferrin has previously been identified in amyloid deposits in the cornea, seminal vesicles, and brain. We report in this paper a highly amyloidogenic region of lactoferrin (sequence of NAGDVAFV). This region was initially identified by sequence comparison with medin, a 5.5 kDa amyloidogenic fragment derived from lactadherin. Subsequent characterization revealed that this peptide forms amyloid fibrils at pH 7.4 when incubated at 37 degrees C. Furthermore, although full-length lactoferrin does not by itself form amyloid fibrils, the protein does bind to the peptide fibrils as revealed by an increase in thioflavin T fluorescence and the presence of enlarged fibrils by transmission electron microscopy and polarized light microscopy. The binding of lactoferrin is a selective interaction with the NAGDVAFV fibrils. Lactoferrin does not bind to insulin or lysozyme fibrils, and the NAGDVAFV fibrils do not bind to soluble insulin or lysozyme. The lactoferrin appears to coat the peptide fibril surface to form mixed peptide/protein fibrils, but again there is no evidence for the formation of lactoferrin-only fibrils. This interaction, therefore, seems to involve selective binding rather than conventional seeding of fibril formation. We suggest that such a process could be generally important in the formation of amyloid fibrils in vivo since the identification of both full-length protein and protein fragments is common in ex vivo amyloid deposits.  相似文献   

12.
Amyloid fibrils in brains of patients with Alzheimer's disease and Down's syndrome were examined by light and electron microscopy. In addition, replicas of amyloid fibrils produced by a quick freezing method from the brain of a patient with Down's syndrome were examined by electron microscopy. The amyloid fibrils were shown to consist of hollow rods. These were composed of filaments arranged as a tightly coiled helix, each turn of which consisted of five globular subunits. This structure appears to be similar to the prion filament observed in Creutzfeldt-Jakob disease (CJD). The possibility therefore arises that amyloid fibrils in Alzheimer's disease and Down's syndrome may be related to the transmissible agents responsible for diseases such as CJD, kuru and Gerstmann-Str?ussler Syndrome (GSS).  相似文献   

13.
The molecular basis of fibril formation in Alzheimers disease was explored by electron micrographic and x-ray diffraction analysis of a series of synthetic peptides corresponding to portions of the amino acid sequence of beta protein and that of its putative precursor. A minimum 14 residue peptide was identified that formed typical amyloid fibrils under physiological conditions. Of these 14 residues, 10 were sufficient to give an identical 4.76 A and 10.6 A diffraction pattern as that recently described for isolated neurofibrillary tangles, amyloid plaque cores and leptomeningeal amyloid fibrils.  相似文献   

14.
Tissue deposition of normally soluble proteins, or their fragments, as insoluble amyloid fibrils causes the usually fatal, acquired and hereditary systemic amyloidoses and is associated with the pathology of Alzheimer's disease, type 2 diabetes and the transmissible spongiform encephalopathies. Although each type of amyloidosis is characterised by a specific amyloid fibril protein, the deposits share pathognomonic histochemical properties and the structural morphology of all amyloid fibrils is very similar. We have previously demonstrated that transthyretin amyloid fibrils contain four constituent protofilaments packed in a square array. Here, we have used cross-correlation techniques to average electron microscopy images of multiple cross-sections in order to reconstruct the sub-structure of ex vivo amyloid fibrils composed of amyloid A protein, monoclonal immunoglobulin lambda light chain, Leu60Arg variant apolipoprotein AI, and Asp67His variant lysozyme, as well as synthetic fibrils derived from a ten-residue peptide corresponding to the A-strand of transthyretin. All the fibrils had an electron-lucent core but the packing arrangement comprised five or six protofilaments rather than four. The structural similarity that defines amyloid fibres thus exists principally at the level of beta-sheet folding of the polypeptides within the protofilament, while the different types vary in the supramolecular assembly of their protofilaments.  相似文献   

15.
Abstract: The serine protease inhibitor α1-antichymotrypsin (ACT) consistently colocalizes with amyloid deposits of Alzheimer's disease (AD) and may contribute to the generation of amyloid proteins and/or physically affect fibril assembly. AD amyloid fibrils are composed primarily of Aβ, which is a proteolytic fragment of the larger β-amyloid precursor protein. Using negative-stain and immunochemical electron microscopy, we have investigated the binding of ACT to the fibrils formed by four synthetic Aβ analogues corresponding to the wild-type human 1–40 sequence [HWt(1–40)], a 1–40 peptide [HDu(1–40)] containing the Glu22→ Gln mutation found in hereditary cerebral hemorrhage with amyloidosis of the Dutch type, the N-terminal 1–28 residues [β(1–28)], and an internal fragment of Aβ containing residues 11–28 [β(11–28)]. Each of these peptide analogues assembled into 70–90-Å-diameter fibrils resembling native amyloid and, except for β(11–28), bound ACT, as indicated by the appearance of 80–100-Å globular particles that adhered to preformed fibrils and that could be decorated with anti-ACT antibodies. Under the conditions used, ACT binding destabilized the in vitro fibrils and produced a gradual dissolution of the macromolecular assemblies into constituent filaments and shorter fragments. The internal fragment (11–28) did not exhibit ACT binding or any structural changes. These results suggest that a specific sequence likely contained within the N-terminal 10 residues of Aβ is responsible for the formation of the ACT-amyloid complex. Although the observed fibril disassembly is surprising in view of the notion that ACT contributes directly to the physical process involved in amyloid fibril formation, the induced structural changes may expose new domains in Aβ for additional proteolysis or for interactions with cell-surface receptors.  相似文献   

16.
Amyloid fibrils are a major pathological feature of Alzheimer's disease as well as other amyloidoses including the prion diseases. They are an unusual phenomenon, being made up of different, normally soluble proteins which undergo a profound conformational change and assemble to form very stable, insoluble fibrils which accumulate in the extracellular spaces. In Alzheimer's disease the amyloid fibrils are composed of the A beta protein. Knowledge of the structure of amyloid is essential for understanding the abnormal assembly and deposition of these fibrils and could lead to the rational design of therapeutic agents for their prevention or disaggregation. Here we reveal the core structure of an Alzheimer's amyloid fibril by direct visualisation using cryo-electron microscopy. Synthetic amyloid fibrils composed of A beta residues 11 to 25 and 1 to 42 were examined. The A beta (11-25) fibrils are clearly composed of beta-sheet structure that is observable as striations across the fibres. The beta-strands run perpendicular to the fibre axis and the projections show that the fibres are composed of beta-sheets with the strands in direct register. This observation has implications not only for the further understanding of amyloid, but also for the development of cryo-electron microscopy for direct visualisation of secondary structure.  相似文献   

17.
A subset of Alzheimer disease cases is caused by autosomal dominant mutations in genes encoding the amyloid beta-protein precursor or presenilins. Whereas some amyloid beta-protein precursor mutations alter its metabolism through effects on Abeta production, the pathogenic effects of those that alter amino acid residues within the Abeta sequence are not fully understood. Here we examined the biophysical effects of two recently described intra-Abeta mutations linked to early-onset familial Alzheimer disease, the D7N Tottori-Japanese and H6R English mutations. Although these mutations do not affect Abeta production, synthetic Abeta(1-42) peptides carrying D7N or H6R substitutions show enhanced fibril formation. In vitro analysis using Abeta(1-40)-based mutant peptides reveal that D7N or H6R mutations do not accelerate the nucleation phase but selectively promote the elongation phase of amyloid fibril formation. Notably, the levels of protofibrils generated from D7N or H6R Abeta were markedly inhibited despite enhanced fibril formation. These N-terminal Abeta mutations may accelerate amyloid fibril formation by a unique mechanism causing structural changes of Abeta peptides, specifically promoting the elongation process of amyloid fibrils without increasing metastable intermediates.  相似文献   

18.
Shivaprasad S  Wetzel R 《Biochemistry》2004,43(49):15310-15317
Most models for the central cross-beta folding unit in amyloid fibrils of the Alzheimer's plaque protein Abeta align the peptides in register in H-bonded, parallel beta-sheet structure. Some models require the Abeta peptide to undergo a chain reversal when folding into the amyloid core, while other models feature very long extended chains, or zigzag chains, traversing the protofilament. In this paper we introduce the use of disulfide bond cross-linking to probe the fold within the core and the packing interactions between beta-sheets. In one approach, amyloid fibrils grown under reducing conditions from each of three double cysteine mutants (17/34, 17/35, and 17/36) of the Abeta(1-40) sequence were subjected to oxidizing conditions. Of these three mutants, only the Leu17Cys/Leu34Cys peptide could be cross-linked efficiently while resident in fibrils. In another approach, double Cys mutants were cross-linked as monomers before aggregation, and the resulting fibrils were assessed for stability, antibody binding, dye binding, and cross-seeding efficiency. Here too, fibrils from the 17/34 double Cys mutant most closely resemble wild-type Abeta(1-40) fibrils. These data support models of the Abeta fibril in which the Leu17 and Leu34 side chains of the same peptide pack against each other at the beta-sheet interface within the amyloid core. Related cross-linking strategies may reveal longer range spatial relationships. The ability of the cross-linked 17/35 double Cys mutant Abeta to also make amyloid fibrils illustrates a remarkable plasticity of the amyloid structure and suggests a structural mechanism for the generation of conformational variants of amyloid.  相似文献   

19.
Induction of an immune response to amyloid beta-protein (Abeta) is effective in treating animal models of Alzheimer's disease. Human clinical trials of vaccination with synthetic Abeta (AN1792), however, were halted due to brain inflammation, presumably induced by T cell-mediated immune responses. We have developed an adenovirus vector as a "possibly safer" vaccine. Here, we show that an adenovirus vector encoding 11 tandem repeats of Abeta1-6 can induce an immune response against amyloid beta-protein. Much higher titers against amyloid beta-protein were observed when an adenovirus vector encoding GM-CSF was co-administered. Immunoglobulin isotyping revealed a predominant IgG1 response, indicating anti-inflammatory Th2 type. Immunohistochemical analysis revealed no inflammation-related pathology in the brain of mice immunized with the adenovirus vector. Induced antibodies strongly reacted with amyloid plaques in the brain, demonstrating functional activity of the antibodies. Thus, the adenovirus vector encoding 11 tandem repeats of Abeta1-6 may be a safer alterative to peptide-based vaccines.  相似文献   

20.
Kallijärvi J  Haltia M  Baumann MH 《Biochemistry》2001,40(34):10032-10037
Many of the proteins associated with amyloidoses have been found to share structural and sequence similarities, which are believed to be responsible for their capability to form amyloid fibrils. Interestingly, some proteins seem to be able to form amyloid-like fibrils although they are not associated with amyloidoses. This indicates that the ability to form amyloid fibrils may be a general property of a greater number of proteins not associated with these diseases. In the present work, we have searched for amyloidogenic consensus sequences in two current protein/peptide databases and show that many proteins share structures which can be predicted to form amyloid. One of these potentially amyloidogenic proteins is amphoterin (also known as HMG-1), involved in neuronal development and a ligand for the receptor for advanced glycation end products (RAGE). It contains an amyloidogenic peptide fragment which is highly homologous to the Alzheimer's amyloid beta-peptide. If enzymatically released from the native protein, it forms amyloid-like fibrils which are visible in electron microscopy, exhibit apple green birefringence under polarized light after Congo red staining, and increases thioflavin T fluorescence. This fragment also shows high affinity to Abeta as a free peptide or while part of the native protein. Our results support the hypothesis that the potential to form amyloid is a common characteristic of a number of proteins, independent of their relation to amyloidoses, and that this potential can be predicted based on the physicochemical properties of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号