首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genes for a Class II restriction-modification system (HhaII) from Haemophilus haemolyticus have been cloned in Escherichia coli. The vector used for cloning was plasmid pBR322 which confers resistance to tetracycline and ampicillin and contains a single endonuclease R·PstI site, (5′)C-T-G-C-A-G (3′), in the ampicillin gene. The procedure developed by Bolivar et al. (1977) was used to form DNA recombinants. H. haemolyticus DNA was cleaved with PstI endonuclease and poly(dC) extensions were added to the 3′-OH termini using terminal deoxynucleotidyl transferase. Circular pBR322 DNA was cleaved to linear molecules with PstI endonuclease and poly(dG) extensions were added to the 3′-OH termini, thus regenating the PstI cleavage site sequence. Recombinant molecules, formed by annealing the two DNAs, were used to transfect a restriction and modification-deficient strain of E. coli (HB101 r?m?recA). Tetracycline-resistant clones were tested for acquisition of restriction phenotype (as measured by growth on plates seeded with phage λcI·O). A single phage-resistant clone was found. The recombinant plasmid, pDI10, isolated from this clone, had acquired 3 kilobases of additional DNA which could be excised with PstI endonuclease. In addition to the restriction function, cells carrying the plasmid expressed the HhaII modification function. Both activities have been partially purified by single-stranded DNA-agarose chromatography. The cloned HhaII restriction activity yields cleavage patterns identical to HinfI. A restriction map of the cloned DNA segment is presented.  相似文献   

2.
3.
4.
Besnier CE  Kong H 《EMBO reports》2001,2(9):782-786
N.BstNBI is a nicking endonuclease that recognizes the sequence GAGTC and nicks one DNA strand specifically. The Type IIs endonuclease, MlyI, also recognizes GAGTC, but cleaves both DNA strands. Sequence comparisons revealed significant similarities between N.BstNBI and MlyI. Previous studies showed that MlyI dimerizes in the presence of a cognate DNA, whereas N.BstNBI remains a monomer. This suggests that dimerization may be required for double-stranded cleavage. To test this hypothesis, we used a multiple alignment to design mutations to disrupt the dimerization function of MlyI. When Tyr491 and Lys494 were both changed to alanine, the mutated endonuclease, N.MlyI, no longer formed a dimer and cleaved only one DNA strand specifically. Thus, we have shown that changing the oligomerization state of an enzyme changes its enzymatic function. This experiment also established a protocol that could be applied to other Type IIs endonucleases in order to generate more novel nicking endonucleases.  相似文献   

5.
N.BstNBI is a nicking endonuclease that recognizes the sequence GAGTC and nicks the top strand preferentially. The Type IIs restriction endonucleases PleI and MlyI also recognize GAGTC, but cleave both DNA strands. Cloning and sequencing the genes encoding each of these three endonucleases discloses significant sequence similarities. Mutagenesis studies reveal a conserved set of catalytic residues among the three endonucleases, suggesting that they are closely related to each other. Furthermore, PleI and MlyI contain a single active site for DNA cleavage. The results from cleavage assays show that the reactions catalyzed by PleI and MlyI are sequential two step processes. The double-stranded DNA is first nicked on one DNA strand and then further cleaved on the second strand to form linear DNA. Gel filtration analysis shows that MlyI dimerizes in the presence of a cognate DNA and Ca2+ whereas N.BstNBI remains a monomer, implicating dimerization as a requisite for the second strand cleavage. We suggest that N.BstNBI, MlyI and PleI diverged from a common ancestor and propose that N.BstNBI differs from MlyI and PleI in having an extremely limited second strand cleavage activity, resulting in a site-specific nicking endonuclease.  相似文献   

6.
One of the products of bacteriophage G4 DNA replication late in the infectious process is an open-circular, duplex replicative form DNA, RFII. These molecules contain a single discontinuity located at a specific site in the viral strand. Limited enzymatic repair of such RFII molecules with 32P-labeled deoxyribonucleoside triphosphates specifically labels restriction fragments HpaII A, HaeIII Z2, Hind(II and III) A and Hind(II and III) D2 and places the 3′OH terminus of the viral strand at a point approximately half-way round the genome from the single EcoRI site.These results taken together with the in vitro localization of the origin of the complementary strand at a point close to the EcoRI site (Zechel et al., 1975) suggest that G4 replicates by a mechanism involving distinct and widely separated origins of the individual strands (e.g., a displacement-loop mechanism).  相似文献   

7.
Sea urchin (S. purpuratus) histone DNA of constructed plasmid chimeras cloned in E. coli was cleaved with the restriction endonucleases Eco RI, Hind III, Sal I, Bam I, and Hha I. The resulting fragments were ordered and isolated directly from agarose gels or cloned into other plasmids. Each fragment hybridized to one or another of the five histone mRNAs and elucidated the order of the histone genes in each of the cloned fragments. Some DNA did not hybridize to histone mRNAs and was identified as spacer DNA located between coding regions.Total sea urchin DNA was cleaved with restriction endonucleases, fractionated on agarose gels, and hybridized to histone mRNAs or histone DNA. The results revealed the order of the five histone genes in the histone gene repeat unit and demonstrate that the histone spacer DNAs have little sequence homology to other genes. Exonuclease III digestion of specific linear chimeric histone DNA plasmids followed by hybridization with mRNAs demonstrated the existence of all five histone genes on one strand of DNA and the 5′-3′ polarity of that strand. These results, in conjunction with the data of Wu et al. (1976), allow us to construct a map of coding and spacer sequences in the transcribed strand of the S. purpuratus histone gene repeat unit:
  相似文献   

8.
The distribution of sites hybridizing with mitochondrial 4 S RNA molecules on mitochondrial DNA of Xenopus laevis has been mapped in relation to the ribosomal RNA genes and EcoRI restriction endonuclease sites. RNA molecules linked to ferritin were employed for this purpose. We have obtained evidence for 15 4 S RNA sites on the H-strand and six sites on the L-strand of X. laevis mtDNA. An indication of the possible existence of one additional site on the H-strand and four additional sites on the L-strand has been obtained. One 4 S RNA site is located in the gap between the two rRNA genes, and one site flanks each outside end of the rRNA genes. The other 4 S RNA sites are distributed almost evenly throughout both strands of the mtDNA. A comparison with the map of 4 S RNA sites on the mtDNA of HeLa cells (Angerer et al., 1976) suggests considerable evolutionary conservation of site organization.  相似文献   

9.
Isolation of an amber mutant lig-321 (or dnaL321) if Escherichia coli K12 with a defect in DNA ligase activity was previously reported (Nagata & Horiuchi, 1974). This was the first demonstration that, in E. coli, conditionally lethal nonsense mutants can be isolated selectively. Unlike the hitherto available E. coli K12 DNA ligase-deficient (lig) mutants, the DNA of this mutant is degraded under lethal conditions. This paper describes its further characterization. The DNA degradation was found to be an energy-requiring process, in which endonuclease I did not seem to participate. Kinetic analyses of prelabeled DNA indicated that the parental strands were degraded. The sedimentation profile of prelabeled DNA in an alkaline sucrose gradient showed that the extensive degradation was preceded by a step in which the parental strands were broken into relatively large pieces. At least in the early phase of degradation, which we examined by alkaline sucrose gradient centrifugation of pulse-labeled DNA, synthesis of discontinuous daughter chains (Okazaki fragments, Okazaki et al., 1968) was confirmed. Joining of the nascent chains, however, was completely inhibited. Genetic analyses revealed that the mutant allele is recessive to the wild type. This agrees with in vitro studies in which the mutant crude extract was found not to inhibit DNA ligase activity of the wild type extract. These and other properties of the lig-321 mutant were compared with the other DNA ligase-deficient mutants of E. coli. The role of this enzyme in DNA replication, repair and recombination is discussed.  相似文献   

10.
Chloroplast ribosomal DNA from Euglena gracilis was partially purified, digested with restriction endonucleases BamHI or EcoRI and cloned into bacterial plasmids. Plasmids containing the ribosomal DNA were identified by their ability to hybridize to chloroplast ribosomal RNA and were physically mapped using restriction endonucleases BamHI, EcoRI, HindIII and HpaI. The nucleotide sequences coding for the 16S and the 23S chloroplast ribosomal RNAs were located on these plasmids by hybridizing the individual RNAs to denatured restriction endonuclease DNA fragments immobilized on nitrocellulose filters. Restriction endonuclease fragments from chloroplast DNA were analyzed in a similar fashion. These data permitted the localization on a BamHI map of the chloroplast DNA three tandemly arranged chloroplast ribosomal RNA genes. Each ribosomal RNA gene consisted of a 4.6 kilobase pair region coding for the 16S and 23S ribosomal RNAs and a 0.8 kilobase pair spacer region. The chloroplast ribosomal DNA represented 12% of the chloroplast DNA and is G + C rich.  相似文献   

11.
Studies with ndd mutants of phage T4, deficient in the ability to induce nuclear disruption, the movement of the host DNA from a largely central location in the cell into close association with the cell membrane, show that nuclear disruption is not essential for host DNA breakdown. Degradation of prelabeled host DNA to acid-soluble products occurs at the same rate in the absence of nuclear disruption as it does in its presence. Moreover, the absence of nuclear disruption results in an alternative pathway of slow degradation of host DNA independent of phage endonuclease II.M-band analyses of association between DNA andmembrane (Earhart et al., 1968) indicate that endonuclease II is required for the release of host DNA from the membrane when nuclear disruption occurs normally, and that the product of at least one of the genes rIIA, rIIB, D1 or D2a (probably D2a, which is necessary for the synthesis of endonuclease IV) is required for DNA release when nuclear disruption does not occur.Analyses of the sizes of host DNA single strands at various times after infection by means of alkaline sucrose density-gradients show that the presence or absence of nuclear disruption has little, if any, effect on the rate of accumulation of single-strand nicks. Neutral sucrose density-gradient analyses suggest that a limited number of double-strand breaks can accumulate in host DNA when endonuclease IV is active, but few, if any, occur when neither endonuclease II or IV is active.Gentle lysis of ndd-infected cells and subsequent sedimentation analysis of the host DNA in neutral sucrose density-gradients reveal that the host chromosomes become “unfolded” within five minutes after infection. Thin-section electron microscopy shows that the host DNA becomes widely dispersed throughout the cytoplasm of cells at late times after infection with ndd mutants. These observations make it very unlikely that nuclear disruption is a passive process which occurs whenever the forces or structures which maintain the normal state of the Escherichia coli nucleoid are altered.All of our data are consistent with a mechanism of nuclear disruption which involves multiple attachment of the host DNA to the cell membrane under the control of the D2b gene of phage T4. We propose that in ndd-infected cells this multiple attachment does not occur, with the result that a limited number of double-strand breaks release much of the host DNA from the cell membrane.  相似文献   

12.
A restriction map of the T4 transfer RNA gene cluster   总被引:4,自引:0,他引:4  
  相似文献   

13.
A specific endonuclease from Haemophilus haemolyticus.   总被引:14,自引:0,他引:14  
A restriction-like endonuclease, HhaI, has been partially purified from Haemophilus haemolyticus. This enzyme cleaves bacteriophage lambda DNA and adenovirus-2 DNA at many sites, and cleaves simian virus 40 DNA at only two sites. It recognizes the sequence 5′ -G-C-G-↓C-3′ 3′ -C-↑G-C-G-5′, and cuts at the sites indicated by the arrows.  相似文献   

14.
The map of the seven sites for the restriction endonuclease HindIII3 and the single site for endo R.HpaII on PM2 DNA was determined. This map was oriented with respect to the denaturation map of this DNA (Brack et al., 1975) by partial denaturation mapping of the fragments. A new method for localizing restriction fragments by DNA-DNA hybridization and electron microscopy is described.  相似文献   

15.
The locations of thirty restriction endonuclease cleavage sites were determined on the genome of adenovirus type 4 (Ad4), the sole member of the subgroup E adenovirions. The restriction endonucleases BglII, EcoRI, HindIII, HpaI, KpnI, SalI, and XbaI cut Ad4 DNA 10, 3, 2, 3, 5, 5 and 3 times, respectively. Orientation of the linear Ad4 map with respect to left and right molecular ends was accomplished by taking advantage of the limited sequence homology between Ad2 and Ad4. Ten non-overlapping fragments of Ad4 DNA representing 98% of the genome, map units 1.6 to 99.6, have been cloned into the plasmid vector pKC7.  相似文献   

16.
Unique fragments of adenovirus type 2 DNA generated by cleavage with endonuclease R-Eco RI or endonuclease R-Hsu I (Hin dIII) were used to map cytoplasmic viral RNAs transcribed early in productive infection. Radioactive early viral RNA was first fractionated by polyacrylamide gel electrophoresis. Eluted viral RNAs were then tested for hybrid formation with DNA fragments. The Eco RI DNA fragment (Eco RI-A) which contains the left-hand 58% of the genome hybridized 13S and 11S RNAs. More detailed mapping of these RNAs was achieved by hybridization to the seven Hsu I fragments of Eco RI-A. The early RNA annealed only to Hsu I-G and C, two fragments which comprise the extreme left-hand 17% of the genome. Viral RNA migrating as 13S and 11S annealed to Hsu I-G, and 13S RNA annealed to Hsu I-C. A 13S RNA is transcribed from Eco RI-A late in infection (18 h). Hybridization-inhibition studies with Eco RI-A DNA, early cytoplasmic RNA, and 3H-labeled 13S late RNA demonstrated that this RNA synthesized at late times is an early RNA species which continues to be synthesized in large amounts at 18 h. This 13S RNA synthesized at 18 h hybridized to Hsu I-C but not to Hsu I-G DNA. These results establish that the 13S RNAs transcribed from Hsu I-G and C at early times must be different species.  相似文献   

17.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

18.
A study of sequence homologies in four satellite DNAs of man.   总被引:4,自引:0,他引:4  
Satellites I, II, III and IV (Corneo et al., 1968,1970,1971) have been purified from human male placental DNA. The sequences present in these four DNA components have been characterized by analytical buoyant density, thermal denaturation, DNA reassociation, DNA hybridization and gel electrophoresis coupled with hybridization following either HaeIII or EcoRI restriction endonuclease digestion. Satellites III and IV were found to be virtually indistinguishable by a variety of criteria. Cross-satellite reassociation showed that 40% of the molecules present in satellite III contain sequences that are homologous to 10% of the molecules of either satellite I or satellite II. Reassociated satellite I melts as a single component, as do the hybrid duplexes between satellite I and satellite III. In contrast, reassociated satellites II, III and IV, and the hybrid duplexes formed between satellites II and III and between satellites II and IV, melt as two distinct components with different thermal stabilities.Digestion of satellite III with HaeIII gives rise to a series of fragments whose sizes are 2, 3, 4, 5, 6, 7, 8 and 11 times the size of the smallest 0.17 × 103 basepair fragment, in addition to a 3.4 × 103 base-pair male-specific fragment (Cooke, 1976) and high molecular weight material. The sequences contained in the fragments of the HaeIII ladder are diverged from each other as well as being non-homologous with those of the 3.4 × 103 base-pair and high molecular weight fragments. The latter contain EcoRI recognition sites. Satellite II has a similar pattern of fragments to satellite III following digestion with HaeIII, although it can be distinguished from satellite III on the basis of the products of EcoRI digestion. Satellite I contains neither HaeIII nor EcoRI recognition sites. The cross-satellite homologies of the sequences present in fragments of differing sizes produced by restriction enzyme digestion have also been studied.  相似文献   

19.
Replicative form DNA composed of a closed complementary strand and a discontinuous viral strand has been isolated from cells infected with bacteriophage φX174 during the period of single-strand DNA synthesis. This RFII DNA was degraded by the restriction enzyme from Hemophilus influenzae, endonuclease R, and the products analyzed by polyacrylamide gel electrophoresis. The results indicate that there are two types of discontinuity in the viral strands of these molecules: (1) 65% of the molecules contain a gap, which causes a discrete increase in mobility of a specific restriction enzyme fragment, R3. This gap can be selectively repaired with Escherichia coli DNA polymerase I and nucleoside triphosphates, but the molecules are not converted to RFI by addition of E. coli polynueleotide ligase to the reaction mixture. Approximately 30 moles of radioactive TTP are incorporated per mole of RF DNA. (2) 35% of the RF molecules contain a discontinuity, which does not result in a detectable change in mobility of any restriction enzyme fragment. These RF molecules can be converted to RFI by the action of ligase and polymerase I in the presence of nucleoside triphosphates, with incorporation of only approximately one mole of radioactive TTP, specifically into fragment R3, per mole of RF DNA.When the reaction of late RFII DNA and polymerase I is allowed to proceed beyond the repair of the discontinuity, radioactive nucleotides are incorporated into endonuclease R fragments adjacent to R3 in the 5′ → 3′ direction. This technique was utilized to determine a partial order of endonuclease R fragments in φX174.These results suggest that the synthesis of single-strand DNA is initiated from a unique point in cistron A and proceeds clockwise round the φX174 genetic map (cistron order: ABCDEFGH). A comparison of these results with other studies on φX174 suggests that DNA synthesis in all stages of φX174 replication may be initiated from a specific locus on the genome, at or near cistron A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号