首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
4.
5.
6.
E2F factors are implicated in various cellular processes including specific gene induction at the G1/S transition of the cell cycle. We present in this study a novel regulatory aspect for the tobacco large subunit of ribonucleotide reductase (R1a) and its encoding gene (RNR1a) in the UV-C response. By structural analyses, two E2F sites were identified on the promoter of this gene. Functional analysis showed that, in addition to their role in the specific G1/S induction of the RNR1a gene, both E2F sites were important for regulating specific RNR1a gene expression in response to UV-C irradiation in non-synchronized and synchronized cells. Concomitantly, western blot and cellular analyses showed an increase of a 60 kDa E2F factor and a transient translocation of a GFP-R1a protein fusion from cytoplasm to nucleus in response to UV irradiation.  相似文献   

7.
Ribonucleotide reductase synthesizes dNDPs, a specific and limiting step in DNA synthesis, and can participate in neoplastic transformation when overexpressed. The small subunit (ribonucleotide reductase 2 (RNR2)) was cloned as a major product in a subtraction library from eukaryotic initiation factor 4E (eIF4E)-transformed cells (Chinese hamster ovary-4E (CHO-4E)). CHO-4E cells have 20-40-fold elevated RNR2 protein, reflecting an increased distribution of RNR2 mRNA to the heavy polysomes. CHO-4E cells display an altered cell cycle with shortened S phase, similar to cells selected for RNR2 overexpression with hydroxyurea. The function of ribonucleotide reductase as a checkpoint component of S progression was studied in yeast in which elevated eIF4E rescued S-arrested rnr2-68(ts) cells, by increasing recruitment of its mRNA to polysomes. Crosses between rnr2-68(ts) and mutant eIF4E (cdc33-1(ts)) engendered conditional synthetic lethality, with extreme sensitivity to hydroxyurea and the microtubule depolymerizing agent, benomyl. The double mutant (cdc33-1 rnr2-68) also identified a unique terminal phenotype, arrested with small bud and a randomly distributed single nucleus, which is distinct from those of both parental single mutants. This phenotype defines eIF4E and RNR2 as determinants in an important cell cycle checkpoint, in early/mid-S phase. These results also provide a link between protein and DNA synthesis and provide an explanation for cell cycle alterations induced by elevated eIF4E.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
We determined the expression and subcellular localization of nuclear protein NP95 during the cell cycle in mouse 3T3 cells. The levels of NP95 mRNA and protein were extremely low in quiescent cells; however, stimulation with 10% serum increased their expressions in a time course similar to that of the late growth-regulated gene proliferating cell nuclear antigen (PCNA). Subnuclear location of NP95 dynamically changed during the cell cycle. Double immunostaining for NP95 and chromatin-bound PCNA, a marker of DNA replication sites, revealed that NP95 was almost exclusively colocalized with chromatin-bound PCNA throughout the nucleus in early S phase and partly in mid-S phase. Distinct localization of the two proteins, however, became evident in mid-S phase, and thereafter, many chromatin-bound PCNA foci not carrying NP95 foci could be detected. In G2 phase, nodular NP95 foci were still identified without any chromatin-bound PCNA foci. Chromatin-bound PCNA was observed as a pre-DNA replication complex at the G1/S boundary synchronized by hydroxyurea treatment, while NP95 was detected in nucleolar regions as unique large foci. There was no significant redistribution of NP95 foci shortly after DNA damage by gamma-irradiation. Nodular NP95 foci characteristically seen in G2 phase were also detected in G2-arrested cells following gamma-irradiation. Taken together, our results indicate that NP95 is assigned to a late growth-regulated gene and suggest that NP95 does not take a direct part in DNA replication as part of the DNA synthesizing machinery, like PCNA, but is presumably involved in other DNA replication-linked nuclear events.  相似文献   

17.
18.
DNA damage induction of ribonucleotide reductase.   总被引:16,自引:6,他引:10       下载免费PDF全文
  相似文献   

19.
Recently, a homologue of the small subunit of mammalian ribonucleotide reductase (RNR) was discovered, called p53R2. Unlike the well characterized S phase-specific RNR R2 protein, the new form was induced in response to DNA damage by the p53 protein. Because the R2 protein is specifically degraded in late mitosis and absent in G0/G1 cells, the induction of the p53R2 protein may explain how resting cells can obtain deoxyribonucleotides for DNA repair. However, no direct demonstration of RNR activity of the p53R2 protein was presented and furthermore, no corresponding RNR large subunit was identified. In this study we show that recombinant, highly purified human and mouse p53R2 proteins contain an iron-tyrosyl free radical center, and both proteins form an active RNR complex with the human and mouse R1 proteins. UV irradiation of serum-starved, G0/G1-enriched mouse fibroblasts, stably transformed with an R1 promoter-luciferase reporter gene construct, caused a 3-fold increase in luciferase activity 24 h after irradiation, paralleled by an increase in the levels of R1 protein. Taken together, our data indicate that the R1 protein can function as the normal partner of the p53R2 protein and that an R1-p53R2 complex can supply resting cells with deoxyribonucleotides for DNA repair.  相似文献   

20.
Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号