首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Clinical use of aromatase inhibitors in human breast carcinoma.   总被引:1,自引:1,他引:0  
The biological importance of aromatase rests in the concept that this is the rate-limiting enzyme involved in estrogen biosynthesis. Approx. one-third of human breast carcinomas depend upon estrogen for growth. Blockade of estrogen biosynthesis, then, provides an effective means of causing tumor regression in selected patients. The side effects and lack of specificity of the aromatase inhibitor, aminoglutethimide, provided the impetus toward development of nonsteroidal inhibitors of aromatase. Several compounds are currently being evaluated. Pyridoglutethimide is a derivative of aminoglutethimide which does not inhibit cholesterol side-chain cleavage and possesses no CNS sedative properties; the Ki for aromatase is 1100 nM, somewhat higher than for aminoglutethimide, 600 nM. CGS 16949A is a highly potent inhibitor of aromatase which is an imidazole derivative. This compound inhibits aromatase with a Ki of 0.19 nM whereas inhibition of C11-hydroxylase activity occurs at 10(-6) M. In clinical trials, this compound lowers plasma estrogen levels, blocks peripheral aromatization as documented by isotopic kinetic studies, and causes tumor regression. Phase III trials with this drug are now ongoing. Another agent, R76713, represents another highly potent and specific aromatase inhibitor with little toxicity in animal studies. The Ki for placental aromatase is 0.8 nM and this compound is approx. 500-fold more potent than aminoglutethimide. Phase I clinical studies in patients reveal a marked reduction in estrogen production. These compounds represent the most promising of a wide variety of agents currently being tested for their aromatase inhibitory properties.  相似文献   

2.
The pharmacologic inhibition of aromatase activity has been the focus of clinical trials in patients with advanced stage breast cancer. Recent developments with imidazole compounds that inhibit aromatase activity suggest their clinical use as potent inhibitors of estrogen biosynthesis in postmenopausal breast cancer patients. In this Phase I, open-label, dose-range finding study, we examined the inhibitory potency of CGS 20267 on blood and urine levels of estradiol, estrone and estrone sulfate in 8 patients with metastatic breast cancer. Studies included evaluation of adrenal and thyroid function to look for evidence of general hydroxylase inhibition at dose levels effective for aromatase blockade. Patients were administered CGS 20267 at doses of 0.1 and 0.25 mg, once a day in ascending doses over a 12-week period. Preliminary data reveal that CGS 20267 elicits a striking suppression in plasma estradiol, estrone and estrone sulphate which was observed in some patients as quickly as within 24 h of the first dose. Estrogen suppression of over 90% was achieved within 2 weeks of therapy. No alterations in either baseline or ACTH (cortrosyn) stimulated cortisol and aldosterone levels were observed through the 12 weeks of therapy. In addition, 24 h urine sodium and potassium values were not appreciably altered during therapy. We conclude that CGS 20267 is a potent, specific inhibitor of estrogen biosynthesis in postmenopausal patients with metastatic breast cancer and effectively reduces blood and urine estrogens to undetectable levels.  相似文献   

3.
Inhibition of postmenopausal estrogen production by aromatase inhibitors is an established drug treatment modality for postmenopausal breast cancer. In this article postmenopausal estrogen disposition and the alterations caused by treatment with aromatase inhibitors are reviewed. Recent investigations have challenged the hypothesis that aromatization of androstenedione into estrone is the sole production pathway for estrogens in postmenopausal women. The finding that estrogens persist in the plasma of patients receiving aminoglutethimide treatment despite a near total inhibition of the aromatase enzyme suggests that alternative pathways for estrogen synthesis exist. While nonspecific actions of aromatase inhibitors may be disadvantageous, certain effects may also be beneficial. Recent findings that aminoglutethimide may induce estrone sulfate metabolism questions whether this "prototype" aromatase inhibitor might have a dual mechanism of action. The importance of investigating the possible influence of different aromatase inhibitors on all components of estrogen disposition is considered.  相似文献   

4.
Aromatase and its inhibitors--an overview   总被引:2,自引:0,他引:2  
Estrogen synthesis by aromatase occurs in a number of tissues throughout the body. Strategies which reduce production of estrogen offer useful means of treating hormone-dependent breast cancer. Initially, several steroidal compounds were determined to be selective inhibitors of aromatase. The most potent of these, 4-hydroxyandrostenedione (4-OHA) inhibits aromatase competitively but also causes inactivation of the enzyme. A number of other steroidal inhibitors appear to act by this mechanism also. In contrast, the newer imidazole compounds are reversible, competitive inhibitors. In vivo studies demonstrated that 4-OHA inhibited aromatase activity in ovarian and peripheral tissues and reduced plasma estrogen levels in rat and non-human primate species. In rats with mammary tumors, reduction in ovarian estrogen production was correlated with tumor regression. 4-OHA was also found to inhibit gonadotropin levels in animals in a dose-dependent manner. The mechanism of this effect appears to be associated with the weak androgenic activity of the compound. Together with aromatase inhibition, this action may contribute to reducing the growth stimulating effects of estrogen. A series of studies have now been completed in postmenopausal breast cancer patients treated with 4-OHA either 500 mg/2 weeks or weekly, or 250 mg/2 weeks. These doses did not affect gonadotropin levels. Plasma estrogen concentrations were significantly reduced. Complete or partial tumor regression occurred in 26% of the patients and the disease was stabilized in 25% of the patients. The results suggest that 4-OHA is of benefit to postmenopausal patients who have relapsed from prior hormonal therapies. Several of the steroidal inhibitors are now entering clinical trials as well as non-steroidal compounds which are more potent and selective than aminoglutethimide. Aromatase inhibitors should provide several useful additions to the treatment of breast cancer.  相似文献   

5.
Estrogens have an important role in the growth of breast and other hormone-sensitive cancers. We have shown that 4-hydroxyandrostenedione (4-OHA) selectively blocks estrogen synthesis by inhibiting aromatase activity in ovarian and peripheral tissues and reduces plasma estrogen levels in rat and non-human primate species. In postmenopausal men and women, estrogens are mainly of peripheral origin. When postmenopausal breast cancer patients were administered either by daily oral or parenteral weekly treatment with 4-OHA, plasma estrogen concentrations were significantly reduced. Complete or partial response to treatment occurred in 34% of 100 patients with advanced breast cancer, while the disease was stabilized in 12%. We recently studied the effects of 4-OHA and other aromatase inhibitors, 10-propargylestr-4-ene-3,17-dione (PED) and imidazo[1,5-]3,4,5,6-tetrahydropyrin-6-yl-(4-benzonitrile) (CGS 16949A) as well as 5-reductase inhibitors, N,N-diethyl-4-methyl-3-oxo-4-aza-5-androstane-17β-carboxyamide (4-MA) and 17β-hydroxy-4-aza-4-methyl-19norandrost-5-en-3-one (L651190) in prostatic tissue from 11 patients with prostatic cancer and six patients with benign prostatic hypertrophy (BPH), and from normal men at autopsy. We attempted to measure aromatase activity in tissue incubation by quantitating 3H2O released during aromatization of androstenedione or testosterone labeled at the C-1 position. The amount of 3H2O released from all samples was at least twice that of the heat inactivated tissue samples. The 3H2O release was significantly inhibited by 4-OHA and 4-MA, but not by the other aromatase inhibitors. However, when HPLC and TLC were used to isolate steroid products, no estrone or estradiol was detected in the incubates. Furthermore, no aromatase mRNA was detected following amplification by PCR. The 4-OHA was found to inhibit 5-reductase in both BPH and cancer tissue, although to a lesser extent than 4-MA. The other aromatase inhibitors were without effect. Although a mechanism involving intraprostatic aromatase is not likely, inhibitors may act to reduce peripherally-formed estrogens. In postmenopausal breast cancer, the results indicate that 4-OHA is of significant benefit.  相似文献   

6.
The use of aromatase inhibitors is an established therapy for oestrogen-dependent breast cancer in postmenopausal women. However, the sole commercially available aromatase inhibitor, aminoglutethimide, is not very selective. We have therefore developed fadrozole hydrochloride and CGS 20 267, which are both currently under clinical evaluation. This report will present an analysis of structure-activity relationships in the azole series of inhibitors and give an account of the further optimization of our development compounds, starting from CGS 20 267 over CGP 45 688 and leading to CGP 47 645, the most potent aromatase inhibitors in vivo reported to date. In addition, on the basis of comparisons of these azole-type inhibitors with the most potent steroidal inhibitors published in the literature, we propose a CAMM-generated model describing the relative binding modes of these two classes of compounds at the active site of the enzyme.  相似文献   

7.
8.
A summary of second-line randomized studies of aromatase inhibitors   总被引:4,自引:0,他引:4  
The new generation of selective aromatase inhibitors (anastrozole, letrozole and exemestane) offer a significant efficacy and safety advantage over both older agents in this class (aminoglutethimide) and the progestins (megestrol acetate (MA)), as second-line treatment for postmenopausal women with advanced hormone-dependent breast cancer who have failed on tamoxifen therapy. Exemestane, a steroidal aromatase inhibitor, has been shown to have activity after failure with the non-steroidal aromatase inhibitors, anastrozole and letrozole, and could be used as third-line treatment. Although the newer aromatase inhibitors belong to the same class and appear, from indirect comparisons, to have similar efficacy compared with the older therapies, they have different pharmacokinetic and pharmacodynamic profiles, suggesting the potential for clinical differences. Compared with exemestane and letrozole, anastrozole shows greater selectivity for aromatase, as it lacks any evidence of an effect on adrenal steroidogenesis and has no androgenic effects. Therefore, it is clear that these agents should not be considered to be similar in all respects. In summary, the introduction of the aromatase inhibitors represents a significant step forward in the treatment of advanced breast cancer in postmenopausal women. Studies in the adjuvant setting will ultimately determine whether the differences in pharmacokinetics and phamacodynamics will be of clinical relevance.  相似文献   

9.
Selective inhibition of estrogen production with aromatase inhibitors has been found to be an effective strategy for breast cancer treatment. Most studies have focused on inhibitor screening and in vitro kinetic analysis of aromatase inhibition using placental microsomes. In order to determine the effects of different inhibitors on aromatase in the whole cell, we have utilized the human choriocarcinoma cell line, JEG-3 in culture to compare and study three classes of aromatase inhibitors, 4-hydroxyandrostenedione, fadrozole (CGS 16949A), and aminoglutethimide. Fadrozole is the most potent competitive inhibitor and aminoglutethimide is the least potent among the three. However, stimulation of aromatase activity was found to occur when JEG-3 cells were preincubated with aminoglutethimide. In contrast, 4-OHA and fadrozole caused sustained inhibition of aromatase activity in both JEG-3 cells and placental microsomes, which was not reversed even after the removal of the inhibitors. 4-OHA bound irreversibly to the active site of aromatase and caused inactivation of the enzyme which followed pseudo-first order kinetics. However, 4-OHA appears to be metabolized rapidly in JEG-3 cells. Sustained inhibition of aromatase induced by fadrozole occurs by a different mechanism. Although fadrozole bound tightly to aromatase at a site distinct from the steroid binding site, the inhibition of aromatase activity by fadrozole does not involve a reactive process. None of the inhibitors stimulated aromatase mRNA synthesis in JEG-3 cells during 8 h treatment. The stimulation of aromatase activity by AG appeared to be due to stabilization of aromatase protein. According to these results, 4-OHA and fadrozole would be expected to be more beneficial in the treatment of breast cancer patients than AG. The increase in aromatase activity by AG may counteract its therapeutic effect and might be partially responsible for relapse of breast cancer patients from this treatment.  相似文献   

10.
Estrogens and their metabolites have been implicated in both the initiation and the prevention of breast cancer. The reduction in breast cancer incidence seen in the tamoxifen arms of the four prospective trials to date has established the proof of principle that antagonizing estrogen is a potential means of reducing breast cancer risk. However, the areas to improve on these results include: (a) enhanced efficacy, (b) reduction in the incidence of receptor-negative tumors, (c) improved overall and endocrinological side effects, and (d) improved function on end-organs other than the breast. The aromatase inhibitors offer the potential to achieve these goals in part in the following ways: (a) greater reduction in risk of disease as evidenced by superior efficacy in advanced breast cancer and by inhibition of both initiation and promotion of breast cancer, (b) reduction in receptor-negative tumors by synergy with COX-2 inhibitors resulting in growth factor inhibition, anti-angiogenesis and inhibition of tumor-associated aromatase expression, (c) fewer vasomotor and urogenital abnormalities, and (d) reduced thromboembolism and cardiovascular complications and satisfactory effects on bone metabolism. Important differences may exist between non-steroidal reversible inhibitors and steroidal irreversible inactivators in particular related to the androgenic/anabolic effects of the steroidal inactivators. Pilot studies of aromatase inhibitors described elsewhere in this session have begun in healthy women with dense mammography, or a high-risk genetic and/or histocytopathologic profile, to determine potential efficacy, as well as effects on end-organ function. A number of phase three trials with aromatase inhibitors are also underway or in planning. Among these are the BRCA 1 and 2 study of exemestane versus placebo in unaffected postmenopausal carriers, the International Breast Intervention Study 2 (IBIS 2) of anastrozole versus placebo in women with a high-risk profile, and the National Cancer Institute of Canada’s Clinical Trial Group (NCIC CTG) study of exemestane with or without celecoxib versus placebo in women at risk of the disease. For premenopausal women, combination strategies of gonadotrophin agonists and aromatase inhibitors are being investigated. The potential of using low doses of aromatase inhibitors to lower “in breast” estrogen levels without unduly perturbing plasma concentrations is also being explored. The potential of the aromatase gene functioning as an oncogene within the breast may be tied to breast density which in turn may represent both a selection tool for elevated risk and an intermediate marker of prevention. The strong link between postmenopausal estrogen levels and breast cancer risk suggests the possibility that plasma estrogen levels may be a useful intermediate marker of prevention. The aromatase inhibitors offer us the first ever tool to render women virtually free of estrogen and are potentially an exciting tool for the prevention of breast cancer.  相似文献   

11.
Aromatase and its inhibitors   总被引:8,自引:0,他引:8  
Inhibitors of aromatase (estrogen synthetase) have been developed as treatment for postmenopausal breast cancer. Both steroidal substrate analogs, type I inhibitors, which inactivate the enzyme and non-steroidal competitive reversible, type II inhibitors, are now available. 4-hydroxyandrostenedione (4-OHA), the first selective aromatase inhibitor, has been shown to reduce serum estrogen concentrations and cause complete and partial responses in approximately 25% of patients with hormone responsive disease who have relapsed from previous endocrine treatment. Letrozole (CGS 20, 269) and anastrozole (ZN 1033) have been recently approved for treatment. Both suppress serum estrogen levels to the limit of assay detection. Letrozole has been shown to be significantly superior to megace in overall response rates and time to treatment failure, whereas anastrozole was found to improve survival in comparison to megace. Both were better tolerated than the latter. The potential of aromatase within the breast as a significant source of estrogen mediating tumor proliferation and which might determine the outcome of inhibitor treatment was explored. Using immunocytochemistry and in situ hybridization, aromatase and mRNAarom was detected mainly in the epithelial cells of the terminal ductal lobular units (TDLU) of the normal breast and also in breast tumor epithelial cells as well as some stromal cells. Increase in proliferation, measured by increased thymidine incorporation into DNA and by PCNA immunostaining in response to testosterone was observed in histocultures of breast cancer samples. This effect could be inhibited by 4-OHA and implies that intratumoral aromatase has functional significance. An intratumoral aromatase model in the ovariectomized nude mouse was developed which simulated the hormone responsive postmenopausal breast cancer patient. This model also allows evaluation of the efficacy of aromatase inhibitors and antiestrogens in tumors of estrogen receptor positive, human breast carcinoma cells transfected with the human aromatase gene. Thus, the cells synthesized estrogen which stimulated tumor formation. Both aromatase inhibitors and antiestrogens were effective in suppressing tumor growth in this model. However, letrozole was more effective than tamoxifen. When the aromatase inhibitors were combined with tamoxifen, tumor growth was suppressed to about the same extent as with the aromatase inhibitors alone. Thus, there was no additive or synergistic effects of combining tamoxifen with aromatase inhibitors. This suggests that sequential treatment with these agents is likely to be more beneficial to the patient in terms of longer response to treatment.  相似文献   

12.
A number of inhibitors of estrogen synthesis are now becoming available which could be of value in the treatment of breast cancer. 4-Hydroxyandrostenedione (4-OHA), the first of these compounds to enter the clinic has been found to be effective in postmenopausal patients who have relapsed from tamoxifen. Thus, in studies of 240 patients, 26% patients experienced partial or complete response to treatment. An additional 25% patients had disease stabilization. 4-OHA is a potent selective, steroidal inhibitor which causes inactivation of aromatase in vitro. It is effective in reducing concentrations of ovarian estrogens in rats and of ovarian and peripheral estrogens in non-human primate species. The compound has been shown to lower serum estrogen levels in postmenopausal breast cancer patients. However, not all of these patients experienced disease remission, suggesting that their tumors were hormone insensitive rather than that the dose of 4-OHA was suboptimal. In trials of patients who had not received prior tamoxifen treatment, 4-OHA (250 mg i.m. every 2 weeks) was found to induce complete or partial tumor regression in 33% of patients. The response of patients was not significantly different from that observed in patients treated with tamoxifen (30 mg o.d) of 37%. No significant difference between treatments was observed for disease stabilization, the duration of response or median survival. Several other steroidal aromatase inhibitors have been studied, such as 7-substituted androstenedione derivatives. MDL 18962 [10-(2-propynyl)estr-4-ene-3,17-dione] and FCE 24304 (6-methylen-androsta-1,4-diene-3,17-dione) are currently in clinical trials. Non-steroidal inhibitors of cytochrome P-450 enzymes, such as imidazole and triazole derivatives have been developed which are highly selective for aromatase. Three triazoles which are very potent and selective inhibitors are vorazole (6-[(4-chlorophenyl)(1H-1,2,4-triazol-1-yl)-methyl]1-methyl-1H-benzotriazole R 76713, arimidex 2,2′[5-( -1,2,4-triazol-1-yl methyl)-1,3-phenylene]bis(2-methylpropiononitrile) (ZD1033) and letrozole 4-[1-(cyanophenyl)-1-(1,2,4-triazolyl)methyl]benzonitril (CGS 20267). These compounds reduce serum estradiol concentration to undetectable levels in breast cancer patients. These highly potent inhibitors provide the opportunity to determine whether a further degree of estrogen suppression will be important in producing greater clinical response. With the recent approval of 4-OHA in several countries and the introduction of the potent new compounds, aromatase inhibitors either alone or in combination with the antiestrogen are likely to improve the treatment of breast cancer.  相似文献   

13.
Aromatase inhibitors in ovarian stimulation   总被引:1,自引:0,他引:1  
The selective estrogen receptor modulator, clomiphene citrate (CC), has been the principal drug used for induction of ovulation in women with polycystic ovarian syndrome (PCOS). CC is associated with adverse side effects and low pregnancy rates attributed to long-lasting estrogen receptor depletion. Anastrozole and letrozole are potent, non-steroidal, reversible aromatase inhibitors, developed for postmenopausal breast cancer therapy. We hypothesized that aromatase inhibitors could mimic the action of CC in reducing estrogen negative feedback on follicle stimulating hormone (FSH) secretion, without depleting estrogen receptors. In a series of preliminary studies, we reported the success of aromatase inhibition in inducing ovulation in anovulatory women with PCOS. Moreover, we showed that concomitant use of aromatase inhibitors resulted in a significant reduction of the FSH dose needed for controlled ovarian hyperstimulation. We suggest that aromatase inhibitors act through an increase in endogenous gonadotropin secretion as well as through increased intraovarian androgen levels that may increase ovarian FSH receptors. Recently, we demonstrated the safety of aromatase inhibitors in pregnancy outcome studies examining spontaneous pregnancy loss, multiple pregnancy rates and congenital anomalies compared to a control group of infertility patients treated with CC.  相似文献   

14.
Plasma insulin-like growth factor-I (IGF-I) was measured in breast cancer patients before and during treatment with tamoxifen, goserelin or aminoglutethimide. 24 out of 27 postmenopausal women treated with tamoxifen 20 or 30 mg daily experienced a decrease in plasma IGF-I levels (mean levels before treatment 14.8 nM, during treatment 10.2 nM, P < 0.001). In 8 out of 12 premenopausal breast cancer patients there was a reduction in plasma IGF-I during treatment with goserelin (mean levels before treatment 23.3 nM, during treatment 19.4 nM, P = 0.052). Contrary, 15 out of 17 postmenopausal women treated with the aromatase inhibitor aminoglutethimide had an increase in plasma IGF-I level (mean level before treatment 17.0 nM, during treatment 21.1 nM, P < 0.01). These preliminary results indicate that different forms of endocrine treatment of breast cancer may influence plasma IGF-I levels in different directions.  相似文献   

15.
Aromatase inhibitors have been available for a number of years and their ability to reduce circulating estradiol levels has been shown to produce clinical benefit in women with advanced breast cancer. Until recently, the only commercially available aromatase inhibitor was aminoglutethimide. Although aminoglutethimide has been shown to be efficacious in the treatment of advanced breast cancer, it does cause significant toxicity and requires the use of concomitant hydrocortisone therapy. Anastrozole is one of a new class of potent aromatase inhibitors able to suppress estradiol to the limit of detection of sensitive assays without suppressing adrenal steroidal synthesis. Two large clinical trials (n = 764) conducted in the U.S.A. and in Europe evaluated two doses of anastrozole, 1 and 10 mg a day, compared to megesterol acetate, 40 mg four times a day, in postmenopausal women who had progressed while on tamoxifen. Response rates and time to progression with anastrozole were similar to those of megesterol acetate. Objective responses (CR + PR) were 10.3%, 8.9% and 7.9% in the 1 and 10 mg of anastrozole and megesterol acetate treatment groups, respectively. Another 25.2%, 22.6% and 26.1% had stable disease for over 24 weeks on 1, 10 mg anastrozole and megesterol acetate, respectively. Anastrozole and megesterol acetate were well tolerated; however, more patients had significant weight gain on megesterol acetate than with anastrozole treatment. The weight gain seen with megesterol acetate continued to increase over time. Anastrozole has a better therapeutic index (fewer side-effects) and has recently been approved by the FDA and a number of other regulatory agencies around the world for the treatment of advanced breast cancer.  相似文献   

16.
Ingle JN 《Steroids》2011,76(8):765-767
The third-generation aromatase inhibitors are an important class of drugs for use in adjuvant therapy for postmenopausal women with resected estrogen receptor positive breast cancer. Multiple large prospective randomized trials have established their value in this setting and provided guidance for their use in clinical management. This review will outline the trials that have provided evidence on the value of the aromatase inhibitors in the adjuvant setting as well as the ongoing trials that will expand our knowledge of how to use them most effectively.  相似文献   

17.
Aromatase inhibition in postmenopausal women causes a marked fall in the plasma levels of oestrogens and is an effective treatment for breast cancer, however, trials with aminoglutethimide found that this aromatase inhibitor was ineffective in suppressing plasma oestrogen levels in premenopausal breast cancer patients. We found that the more potent inhibitor, 4-hydroxyandrostenedione (4-OHA), which can suppress oestrogen synthesis in rodents and non-human primates with intact ovarian function, was also unsuccessful as an oestrogen suppressant in premenopausal women at its maximum tolerated dose (500 mg/week i.m.). GnRH agonists are effective suppressants of ovarian oestrogen synthesis but oestrogen production from peripheral sites is unaffected. Our studies of a combination of the GnRH agonist goserelin and 4-OHA demonstrated that the combination caused greater oestrogen suppression than goserelin alone and led to objective clinical response in 4/6 breast cancer patients after their relapse from treatment with goserelin as a single agent. The combination of a GnRH agonist and an aromatase inhibitor should be subjected to clinical trials.  相似文献   

18.
Aminoglutethimide and ketoconazole, although originally developed as an anticonvulsant and antifungal agent respectively, have both been used to suppress steroid biosynthesis in patients with hormone-sensitive cancer. Aminoglutethimide inhibits several enzymes involved in the synthesis of corticosteroids as well as the aromatase enzyme which converts androgens to oestrogens. About one third of patients with breast cancer show objective improvement with aminoglutethimide, and it may also be of use in the treatment of adrenal carcinoma. However, its toxicity, and the need for concomitant cortisol replacement, severely limit its usefulness. Ketoconazole also inhibits several steroidogenic enzymes, notably C17,20-lyase, and has been used to treat carcinoma of the prostate. Again however, its toxicity and limited efficacy limit its value, although it may be useful in the treatment of certain endocrine conditions such as precocious puberty. Several aromatase inhibitors similar in structure to aminoglutethimide have been developed in an attempt to create more selective and efficient inhibitors. Some of these compounds have been tested in animals but none have as yet been subjected to clinical trials. Attempts to produce imidazole inhibitors of steroidogenesis are less advanced, although one compound (CGS 16949A) has been reported to be a more selective and potent aromatase inhibitor than aminoglutethimide. Selective and effective compounds could be of great value in the treatment of hormone-sensitive carcinoma.  相似文献   

19.
Despite the dramatic fall in plasma estrogen levels at menopause, only minor differences in breast tissue estrogen levels have been reported comparing pre- and postmenopausal women. Thus, postmenopausal breast tissue has the ability to maintain concentrations of estrone (E1) and estradiol (E2) that are 2–10- and 10–20-fold higher than the corresponding plasma estrogen levels. This finding may be explained by uptake of estrogens from the circulation and/or local estrogen production. Local aromatase activity in breast tissue seems to be of crucial importance for the local estrogen production in some patients while uptake from the circulation may be more important in other patients. Beside aromatase, breast tissue expresses estrogen sulfotransferase and sulfatase as well as dehydrogenase activity, allowing estrogen storage and release in the cells as well as conversions between estrone and estradiol. The activity of the enzyme network in breast cancer tissue is modified by a variety of factors like growth factors and cytokines. Aromatase inhibitors have been used for more than two decades in the treatment of postmenopausal metastatic breast cancer and are currently investigated in the adjuvant treatment and even prevention of breast cancer. Novel aromatase inhibitors and inactivators have been shown to suppress plasma estrogen levels effectively in postmenopausal breast cancer patients. However, knowledge about the influence of these drugs on estrogen levels in breast cancer tissue is limited. Using a novel HPLC-RIA method developed for the determination of breast tissue estrogen concentrations, we measured tissue E1, E2 and estrone sulfate (E1S) levels in postmenopausal breast cancer patients before and during treatment with anastrozole. Our findings revealed high breast tumor tissue estrogen concentrations that were effectively decreased by anastrozole. While E1S was the dominating estrogen fraction in the plasma, estradiol was the estrogen fraction with the highest concentration in tumor tissue. Moreover, plasma estrogen levels did not correlate with tissue estrogen concentrations. The overall experience with aromatase inhibitors and inactivators concerning their influences on breast tissue estrogen concentrations is summarized.  相似文献   

20.
The supposed mechanism of action of aminoglutethimide (AG), medical adrenalectomy, has been challenged. AG is now considered to act as an inhibitor of the aromatization of mainly adrenal androgens to estrogens in peripheral tissues and/or breast cancer itself. To further establish the AG dose required to sufficiently reduce estrogen levels in plasma and the possible role of hydrocortisone (HC) in combination with AG or by itself, postmenopausal advanced breast cancer patients received AG low (125 mg bid) or medium (250 mg bid) dose alone or combined with HC (20 mg bid) or HC alone (20 mg bid). Preliminary hormonal data show a similar reduction of serum estrone and estrone sulphate by at least some 50% at 8 wk in all treatment groups. At 6 months these effects persist except for patients treated with HC alone. In the latter a normalization of estrone levels is observed with effective suppression of adrenal androgen precursors, suggesting increased aromatase activity with prolonged glucocorticoid treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号