首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Weanling (23-day-old) rats were fed on either a low-protein diet (6% casein) or a diet containing an adequate amount of protein (18% casein) for 28 days. Hepatic cells from animals fed on the deficient diet were characterized by markedly lower concentrations of protein and RNA in all cellular fractions as compared with cells from control rats. The bound rRNA fraction was decreased to the greatest degree, whereas the free ribosomal concentrations were only slightly less than in control animals. A good correlation was observed between the rate of hepatic protein synthesis in vivo and the cellular protein content of the liver. Rates of protein synthesis both in vivo and in vitro were directly correlated with the hepatic concentration of individual free amino acids that are essential for protein synthesis. The decreased protein-synthetic ability of the ribosomes from the liver of protein-deprived rats was related to a decrease in the number of active ribosomes and heavy polyribosomes. The lower ribosomal content of the hepatocytes was correlated with the decreased concentration of essential free amino acids. In the protein-deprived rats, the rate of accumulation of newly synthesized cytoplasmic rRNA was markedly decreased compared with control animals. From these results it was concluded that amino acids regulate protein synthesis (1) by affecting the number of ribosomes that actively synthesize protein and (2) by inhibiting the rate of synthesis of new ribosomes. Both of these processes may involve the synthesis of proteins with a rapid rate of turnover.  相似文献   

3.
4.
5.
6.
We have investigated the regulation of protein synthesis in animal cells by serum factors. Withdrawal of serum from the medium of actively dividing Vero cells resulted in an immediate decline in the rate of peptide chain elongation (Hassell and Engelhardt, 1973). Assay of elongation factor I (EFI) activity in the post-ribosomal supernatant as well as that associated with the ribosomes revealed that serum deprivation resulted also in reduction in the activity of this factor. The decline in the activity of EFI after serum deprivation occurred to the same extent and at the same time as the decline in the in vivo rate of protein synthesis and the in vitro peptide synthetic capacity of cell-free extracts. A temporal correlation therefore exists among the in vivo rate of protein synthesis, the peptide synthetic activity of cell-free extracts, and the activity of EFI. The activity of peptidyl transferase was not altered by serum deprivation. The loss of extract peptide synthetic activity resulting from serum deprivation was reversible since serum addition to previously serum-starved cultures resulted in full restoration of activity for polyphenylalanine (polyPhe) synthesis within 3 h. Moreover, RNA synthesis was not required for this turn-on of polyPhe synthesis. Vased on these data we conclude that a translational control mechanism is operative in Vero cells deprived of serum.  相似文献   

7.
8.
9.
The effect of increasing the perfusate concentration of amino acids on the incorporation of labelled valine into protein was followed in perfusions of rat livers lasting for 2h. A fixed amount of labelled and unlabelled valine was added to the perfusate as the other amino acids were increased in multiples of the concentrations normally found in rat plasma. Under these conditions no increase in valine incorporation was observed, which appeared to be in conflict with results published by other workers, However, a different method of labelling from that used here was used in the earlier studies. An increasing amount of a labelled amino acid was added as the concentrations of the unlabelled amino acids were increased in the perfusate. An experiment directly comparing to the two labelling methods produced results that indicated that the apparent increase in liver protein synthesis observed by the other workers could have been due to the method of radioisotope addition. It is therefore concluded that increasing the perfusate concentration of amino acids does not increase amino acid incorporation into liver protein.  相似文献   

10.
11.
12.
The effect of diabetes (streptozotocin, 65 mg/kg ip), dietary protein intake (15-60%), and plasma amino acid concentrations on brain large neutral amino acid levels in rats was examined. After 20 days, the plasma concentrations of methionine and the branched chain amino acids (BCAA), valine, isoleucine, and leucine were increased in diabetic rats. In brain tissue, methionine and valine levels were increased but threonine, tyrosine, and tryptophan concentrations were depressed. Increased protein consumption promoted a diabetic-like plasma amino acid pattern in normal rats while enhancing that of diabetic animals. However, with the exception of threonine, glycine, valine, and tyrosine, there was little effect on brain amino acid levels. A good association was found between the calculated brain influx rate and the actual brain concentration of threonine, methionine, tyrosine, and tryptophan in diabetic animals. There was no correlation, however, between brain influx rate and brain BCAA levels. Thus, the brain amino acid pattern in diabetes represents the combined effects of insulin insufficiency and composition of the diet ingested on plasma amino acid levels as well as metabolic adaptation within the brain itself.  相似文献   

13.
14.
The identities of the protein phosphatases involved in the regulation of hepatic glycolysis, gluconeogenesis and aromatic amino acid breakdown were investigated using 6-phosphofructo-1-kinase, fructose-1,6-bisphosphatase, L-pyruvate kinase, phenylalanine hydroxylase and the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as substrates. Purified preparations of protein phosphatases-1, 2A, 2B and 2C exhibited activity towards all five substrates in vitro, although phosphatases-1 and 2B were only weakly active. Studies in liver extracts using inhibitor-2 and trifluoperazine, which inhibit protein phosphatase-1 and 2B, respectively, confirmed that these phosphatases are unlikely to be important in dephosphorylating these substrates in vivo. Sequential fractionation of rat liver extracts by anion-exchange chromatography and gel-filtration failed to resolve any protein phosphatases acting on each substrate, apart from protein phosphatases-2A and 2C. The present results, together with those described in the following paper (in this journal) indicate that under the assay conditions used, protein phosphatase-2A is the most powerful phosphatase acting on each substrate, although protein phosphatase-2C contributes a significant percentage of the activity towards 6-phosphofructo-1-kinase. No clear evidence was obtained for a role of metabolites in the regulation of dephosphorylation of the five substrates. This study reinforces our contention that only a few serine-specific and threonine-specific protein phosphatase catalytic subunits participate in cellular regulation.  相似文献   

15.
Concentrations of oleate (0.2-1 mM) within the physiological range of plasma free fatty acids induced a dose dependent statistically significant inhibition of protein labelling in isolated liver cells. The inhibitory effect was as high as 50% and it was not impeded when long chain fatty acid oxidation was prevented. Experiments carried out with hepatocytes from 48 h fasted rats, incubated in the absence of any exogenous energy source, show that the inhibition of endogenous long chain fatty acid oxidation induced a decreased rate of protein synthesis apparently related to changes in the cellular energy state. It is concluded that fatty acids play a dual role in the regulation of protein synthesis in liver cells: 1. endogenous fatty acids appear to be the main energy fuel for protein synthesis when no other exogenous substrate is present and the carbohydrate stores are low; 2. exogenous fatty acids seem to control protein synthesis by interacting with some key regulatory step.  相似文献   

16.
The branched-chain amino acids (BCAAs) are essential amino acids and therefore must be continuously available for protein synthesis. However, BCAAs are toxic at high concentrations as evidenced by maple syrup urine disease (MSUD), which explains why animals have such an efficient oxidative mechanism for their disposal. Nevertheless, it is clear that leucine is special among the BCAAs. Leucine promotes global protein synthesis by signaling an increase in translation, promotes insulin release, and inhibits autophagic protein degradation. However, leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway, thereby terminating its positive effects on body protein accretion. A strong case can therefore be made that the proper leucine concentration in the various compartments of the body is critically important for maintaining body protein levels beyond simply the need of this essential amino acid for protein synthesis. The goal of the work of this laboratory is to establish the importance of regulation of the branched chain alpha-ketoacid dehydrogenase complex (BCKDC) to growth and maintenance of body protein. We hypothesize that proper regulation of the activity state of BCKDC by way of its kinase (BDK) and its phosphatase (BDP) is critically important for body growth, tissue repair, and maintenance of body protein. We believe that growth and protection of body protein during illness and stress will be improved by therapeutic control of BCKDC activity. We also believe that it is possible that the negative effects of some drugs (PPAR alpha ligands) and dietary supplements (medium chain fatty acids) on growth and body protein maintenance can be countered by therapeutic control of BCDKC activity.  相似文献   

17.
The in vivo rates of the reactions of the cytidine pathways of liver phosphatidylcholine and phosphatidylethanolamine synthesis were measured in rats after 1 day of feeding on a semisynthetic diet containing 1% orotic acid. The calculations were made from the specific and total radioactivity versus time curves of the precursors and products following intraportal injection of [1,2-14C]choline, [2-14C]ethanolamine, and [2-3H]glycerol. The liver CTP level was increased twofold and the rates of CDP-choline and phosphatidylcholine synthesis were stimulated 4.5-fold in the rats fed orotic acid. The rate of CDP-ethanolamine synthesis was increased but could not be accurately quantified because of its extreme rapidity. No change occurred in the rate of the ethanolaminephosphotransferase reaction and the overall rate of phosphatidylethanolamine synthesis was unchanged by orotic acid feeding. The catalytic activities of the enzymes of the cytidine pathways of phosphatidylcholine and phosphatidylethanolamine synthesis were not affected by feeding orotic acid for 1 day. Similar findings were obtained 3 h following intragastric administration of 100 mg of orotic acid. The results suggest the possibility that changes in the levels of liver CTP may play a role in regulation of the cytidine pathway of liver phosphatidylcholine synthesis but not of phosphatidylethanolamine synthesis, because the latter pathway appears to be tightly controlled at the ethanolaminephosphotransferase step.  相似文献   

18.
An early response to the administration of oestradiol-17beta to immature rats is the synthesis of uterine RNA of very high-molecular-weight. This RNA is shown to be heterogeneous nuclear RNA. Increased precursor incorporation into the heterogeneous nRNA is not confined to entities of precise molecular weight but appears to involve much of the size range of the species. These findings are discussed with respect to the mode of action of oestradiol.  相似文献   

19.
20.
Mechanisms of regulation of liver fatty acid-binding protein   总被引:2,自引:0,他引:2  
Liver fatty acid-binding protein (L-FABP) expression is modulated by developmental, hormonal, dietary, and pharmacological factors. The most pronounced induction is seen after treatment with peroxisome proliferators, which induce L-FABP coordinately with microsomal cytochrome P-450 4A1 and the enzymes of peroxisomal fatty acid -oxidation. These effects of peroxisome proliferators may be mediated by a receptor which has been shown to be activated by peroxisome proliferators in mammalian cell transfection studies. However, the peroxisome proliferators tested thus far do not bind to this receptor, known as the peroxisome proliferator-activated receptor (PPAR), and its endogenous ligand(s) also remain unknown. Peroxisome proliferators inhibit mitochondrial -oxidation, and one hypothesis is that the dicarboxylic fatty acid metabolites of accumulated LCFA, formed via the P-450 4A1 -oxidation pathway, serve as primary inducers of L-FABP and peroxisomal -oxidation. We have tested this hypothesis in primary hepatocyte cultures exposed to clofibrate (CF). Inhibition of P-450 4A1 markedly diminished, via a pre-translational mechanism, the CF induction of L-FABP and peroxisomal -oxidation. In further experiments, long-chain dicarboxylic acids, the final products of the P-450 4A1 -oxidation pathway, but not LCFA, induced L-FABP and peroxisomal -oxidation pre-translationally. These results suggest a role, in part, for long-chain dicarboxylic acids in mediating the peroxisome proliferator induction of L-FABP and peroxisomal -oxidation. We also found that LCFA, which undergo rapid hepatocellular metabolism, could become inducers of L-FABP and peroxisomal -oxidation under conditions where their metabolism was inhibited. The role of the PPAR in mediating these effects is unknown, but clearly warrants further study. The induction of L-FABP and peroxisomal -oxidation by LCFA and/or their -oxidized metabolites may provide a means for limiting the deleterious effects of increased intracellular concentrations of free LCFA, and thus act as an important hepatocellular adaptation to impairment or overload of mitochondrial LCFA oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号