首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme GDP mannose:dolichyl-phosphate O-beta-D-mannosyltransferase (GDP-Man:DolP mannosyltransferase) catalyzing the reaction: GDP-man + DolP in equilibrium DolP-Man + GDP has been purified from Saccharomyces cerevisiae to homogeneity. The purification was achieved using a combination of column chromatographic methods with preparative gel electrophoresis. The enzyme has an apparent molecular mass of 30 kDa on SDS/polyacrylamide gels. Enzymatic activity could be correlated directly with this band. Antibodies against the transferase were raised in rabbits. The immune serum obtained removed enzymatic activity from a detergent extract of yeast membranes and reacted specifically with the 30-kDa band on immunoblots. Experiments addressing the orientation of this enzyme in the endoplasmic reticulum membrane are presented by using selective trypsin and N-ethylmaleimide treatment.  相似文献   

2.
The activity of hepatic protein N-glycosylation was compared in rats of different ages by incubating UDP-[14C]glucose with liver microsomes. Dolichyl-phosphate [14C]glucose, [14C]glucosyl-oligosaccharide-lipid and [14C]glycoproteins formed were increased after birth to maximal levels at 2 weeks; thereafter dolichylphosphate [14C]glucose remained constant, while [14C]glucosyl-oligosaccharide-lipid and [14C]glycoproteins were decreased to constant levels at 4 weeks. The postnatal change in the formation of [14C]glycoproteins was similar to the change in the hexosamine content of N-glycans in liver microsomes and plasma, suggesting that the N-glycosylation of proteins in rat liver increases after birth to a maximum at 2 weeks, and thereafter decreases to a constant level at 4 weeks. The possibility of a regulatory role for dolichyl phosphate in glycoprotein synthesis in rat liver during postnatal development was eliminated by demonstrating the inefficiency of exogenous dolichyl phosphate on the postnatal changes in [14C]glycoprotein formation. The transfer of [14C]glucose from UDP-[14C]glucose to denatured alpha-lactalbumin in liver microsomes increased to a maximum at 2 weeks and then decreased to a constant level, as with transfer to endogenous proteins (i.e. the formation of [14C]glycoproteins). On the other hand, the transfer of oligosaccharide from exogenous [14C]glucosyl-oligosaccharide-lipid to denatured alpha-lactalbumin reached a maximum at 2 weeks and then remained constant. These results strongly suggest that oligosaccharide-lipid available for N-glycosylation is limiting in rat liver after 2 weeks post partum. The activities of dolichyl-phosphate glucose, dolichyl-phosphate mannose and dolichyl-pyrophosphate N-acetylglucosamine synthases increased until 2 weeks post partum. Thereafter, the activity of dolichyl-pyrophosphate N-acetylglucosamine synthase decreased to a constant level at 4 weeks, while the activities of dolichyl-phosphate glucose and dolichyl-phosphate mannose synthases remained constant. These results suggest that N-glycosylation of proteins in rat liver increases until 2 weeks post partum, and that this depends on the activities of dolichol-pathway enzymes as a whole rather than on the activity of specific enzymes. N-Glycosylation then decreases to a constant level at 4 weeks due to decreases in the activities of enzymes responsible for oligosaccharide assembly on lipids, including dolichyl-pyrophosphate N-acetylglucosamine synthase.  相似文献   

3.
Dolichol-phosphate mannose (Dol-P-Man) is a key mannosyl donor for the biosynthesis of N-linked oligosaccharides as well as for O-linked oligosaccharides on yeast glycoproteins, and for the synthesis of the glycosyl-phosphatidylinositol anchor found on many cell surface glycoproteins. It is synthesized by Dol-P-Man synthase which is the only glycosyltransferase in the dolichol pathway that has been expressed as an active protein, solubilized and purified in large enough quantities for structural investigations. Earlier studies showed that the enzyme is closely associated with membranes of endoplasmic reticulum with unique lipid requirements for its maximal activity. This potential target of antibiotic therapy is now being investigated at the molecular level to establish information about the structure of the enzyme as well as determine the nature and properties of the enzyme-phospholipid interactions. In this paper, we have determined the activities of the fluorescent labeled dolichyl-phosphate derivatives as well as the intramolecular distances between amino acid residues near the active site and/or the fluorophores of the substrate derivatives using fluorescence energy resonance transfer. These results also show that the conserved consensus sequence is not required by Dol-P-Man synthase neither for the recognition of Dol-P nor for the catalytic activity.  相似文献   

4.
Triton X-100 and exogenous dolichol monophosphate have been used to investigate the nature of enzymes responsible for the transfer of mannose, glucose and N-acetylglucosamine phosphate from nucleotide donors to dolichol monophosphate in vesicles derived from rough and smooth endoplasmic reticulum and mitochondria. Mitochondria were shown to contain the highest specific activities of these enzymes. The responses of the glycosyltransferases to increasing concentrations of Triton X-100 and the effect on these responses of exogenous dolichol monophosphate suggest that the enzymes for mannose and glucose transfer are less hydrophobic, and therefore less intrinsic, in the membrane than the enzyme for N-acetylglucosamine phosphate transfer. In smooth vesicles the results are consistent with mannosyl- and glucosyl-transferases being located at both inner and outer faces of the membrane. In rough vesicles and in mitochondria mannosyl- and glucosyl-transferases were confirmed at the outer face. There is, however, only one site of N-acetylglucosamine phosphate transfer, this being more hydrophobically located in the membrane than the other sites of glycosyl transfer. Mitochondrial enzyme activity closely resembled that of rough endoplasmic reticulum in response to Triton X-100 and exogenous dolichol monophosphate, and is probably associated with the outer membrane.  相似文献   

5.
Dolichyl-phosphate-mannose (Dol-P-Man) synthase catalyzes the reversible formation of a key intermediate that is involved as a mannosyl donor in at least three different pathways for the synthesis of glycoconjugates important for eukaryotic development and viability. The enzyme is found associated with membranes of the endoplasmic reticulum (ER), where it transfers mannose from the water soluble cytoplasmic donor, guanosine 5'-diphosphate (GDP)-Man, to the membrane-bound, extremely hydrophobic, and long-chain polyisoprenoid acceptor, dolichyl-phosphate (Dol-P). The enzyme from Saccharomyces cerevisiae has been utilized to investigate the structure and activity of the protein and interactions of the enzyme with Dol-P and synthetic Dol-P analogs containing fluorescent probes. These interactions have been explored utilizing fluorescence resonance energy transfer (FRET) to establish intramolecular distances within the protein molecule as well as intermolecular distances to determine the localization of the active site and the hydrophobic substrate on the enzyme's surface. A three-dimensional (3D) model of the enzyme was produced with bound substrates, Dol-P, GDP-Man, and divalent cations to delineate the binding sites for these substrates as well as the catalytic site. The FRET analysis was used to characterize the functional properties of the enzyme and to evaluate its modeled structure. The data allowed for proposing a molecular mechanism of catalysis as an inverting mechanism of mannosyl residue transfer.  相似文献   

6.
The enzyme UDP-glucose dolichyl-phosphate glucosyltransferase has been purified to near homogeneity from human liver microsomes. A 1100-fold enrichment over starting microsomal membranes was achieved by selective solubilization followed by anion- and cation-exchange chromatography, 5-HgUDP-thiopropyl-Sepharose affinity chromatography, butylagarose chromatography and hydroxyapatite chromatography. The glucosyltransferase was shown to be separated from other dolichyl-phosphate-dependent glycosyltransferases catalyzing the formation of dolichyl diphospho-N-acetylglucosamine and dolichyl phosphomannose. Sodium dodecyl sulfate/polyacrylamide gradient gel electrophoresis of the purified enzyme under reducing conditions revealed a protein band of Mr 36,000. Protection of the solubilized enzyme against rapid inactivation was achieved by its competitive inhibitor uridine. The purified glucosyltransferase activity exhibited a specific requirement for the presence of phospholipids. Phosphatidylethanolamine was the most effective activator of enzyme activity.  相似文献   

7.
1. Glucosyltransferase activity incorporating [14C]glucose from UDP-[14C]glucose onto endogenous lipidic acceptors was localized primarily in the plasma membrane of liver. 2. Incubation of plasma membrane by phosphatidyl-choline liposomes loaded with dolichyl-phosphate stimulated the enzymatic activity. 3. This enzyme required Mg2+ for maximal catalitic activity. Ca2+ could substitute Mg2+. 4. Mn2+ acted as a partial non-competitive inhibitor of the Mg2+-activated glucosyltransferase. 5. This enzyme can be modulated by neutral and acidic phospholipids; the most efficient were phosphatidyl-serine and phosphatidyl-inositol. 6. The enzymatic activity was not significantly changed by cholesterol alone but it is greatly enhanced by liposomes loaded with dolichyl-phosphate and cholesterol.  相似文献   

8.
Activation of dolichyl-phospho-mannose synthase by phospholipids   总被引:4,自引:0,他引:4  
Dolichyl-phospho-mannose synthase, or GDPmannose:dolichyl-phosphate mannosyltransferase (EC 2.4.1.83), was solubilized from rat liver microsomes with 1.0% Nonidet P-40 and the enzyme was further purified by column chromatography on DEAE-cellulose in the presence of 0.1% Nonidet P-40. The purified enzyme preparation (880-fold over microsomes) was unstable in the presence of detergent and had no activity in the presence of Nonidet P-40, Triton X-100, octyl beta-glucoside, or deoxycholate. Detergent-free enzyme was active in the presence of phosphatidylethanolamine (PtdEtn) and in the presence of phospholipid mixtures of PtdEtn and phosphatidylcholine (PtdCho) when the molar proportion of PtdCho was 70% or less. The enzyme was inactive in the presence of PtdCho alone. Unsaturated species of PtdEtn have a tendency to destabilize membrane bilayers [Cullis, P. R. & de Kruijff, B. (1978) Biochim. Biophys. Acta 507, 207-218] and we have shown that dolichol promotes the destabilizing effect of PtdEtn on membranes composed of PtdCho and PtdEtn [Jensen, J. W. & Schutzbach, J. S. (1984) Biochemistry 23, 115-1119]. These results suggest that dolichyl-P-mannose synthase is optimally active in a phospholipid matrix that contains some component phospholipids that prefer non-bilayer structural organization in isolation. Heat-inactivation and sedimentation experiments demonstrated that the synthase associated with PtdEtn in the presence of dolichyl-P. The PtdEtn-reconstituted enzyme catalyzed the reversible transfer of mannose from GDP-mannose to dolichyl-P. The Km for GDP-mannose was found to be 0.69 microM and the apparent Km for dolichyl-P was 0.3 microM. GMP, GDP, and GTP inhibited mannosyl transfer 50% at concentrations of 16 microM, 1.3 microM and 3 microM respectively.  相似文献   

9.
The initial rate of dolichyl phosphate mannose biosynthesis was measured in white-matter membranes from pig brain at various ages from before birth throughout the period of most rapid brain development. Dolichyl phosphate mannose synthase activity increased from prenatal values to a maximum in 3 week-old animals, and gradually decreased to adult values after 8 weeks of age. The nature of the developmental change was investigated by enzymic and biochemical comparisons of the membrane preparations from the most active age (3 weeks) and adult controls. The specific activity of dolichyl phosphate mannose synthase in preparations from actively myelinating animals was approx. 3-fold higher than adults when mannolipid formation was assayed with saturating concentrations of GDP-[14C]mannose and utilizing only endogenous acceptor lipid. No major variations were found in the apparent Km values for GDP-mannose or exogenous dolichyl monophosphate. However, the ratio of dolichyl phosphate mannose synthase activity for myelinating animals/adult animals decreased significantly when large amounts of exogenous dolichyl monophosphate were added to the incubation mixtures. Dolichyl phosphate mannose synthase activity was also compared in white-matter membranes depleted of endogenous dolichyl monophosphate by enzymic mannosylation or treatment with butanol. When these preparations were assayed with identical amounts of exogenous dolichyl monophosphate, the dolichyl monophosphate-depleted membranes from actively myelinating animals contained only 20–30% more dolichyl phosphate mannose synthase activity. Overall, these studies strongly suggest that the developmental change in dolichyl phosphate mannose synthase activity is due primarily to the presence of a relatively lower amount of endogenous dolichyl monophosphate being accessible to the mannosyltransferase in the white-matter membranes from adult animals.  相似文献   

10.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

11.
Nitric oxide (NO) synthase (EC 1.14.23) has been purified to apparent homogeneity from rat macrophages. The purification procedure involves affinity chromatography with adenosine 2',5'-diphosphate-agarose and gel filtration chromatography on a Superose 12 HR 10/30 column. The apparent molecular weight is 300,000 by gel filtration. On polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the enzyme migrates as a single protein band with Mr = 150,000. The purified enzyme is colorless, and an absorption maximum is observed at 280 nm. The half-life of the enzyme activity is 6 h at pH 7.4 and 4 degrees C. The enzyme activity required the presence of NADPH, (6R)-5,6,7,8-tetrahydro-L-biopterin, and dithiothreitol. Although the cerebellar and endothelial enzyme require Ca2+ and calmodulin, these are not required by the macrophage enzyme. The macrophage nitric oxide synthase (an inducible enzyme) seems to be different from the cerebellar and endothelial enzyme (a constitutive enzyme).  相似文献   

12.
Recently, the purification of nitric oxide synthase (EC 1.14.23) from rat cerebellum has been reported, and the enzyme is a calmodulin-requiring enzyme (Bredt, D. S., and Snyder, S. H. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 682-685). In this paper, nitric oxide synthase has been purified to near homogeneity from the cytosol fraction of rat polymorphonuclear neutrophils. The purification procedure involves affinity chromatography with adenosine 2',5'-diphosphate-agarose and an anion exchange column, DEAE-Bio-Gel A. On polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the enzyme migrated as a single protein band with Mr = 150,000. The molecular weight was estimated to be 150,000 by gel filtration on a Superose 12 HR 10/30. The purified enzyme was unstable with a half-life of 3 h at pH 7.4 and 4 degrees C. The enzyme activity required the presence of Ca2+, NADPH, FAD, and (6R)-5,6,7,8-tetrahydro-L-biopterin. Calmodulin antagonists (W5, W7, W13, and trifluoperazine dihydrochloride) did not inhibit the enzyme activity, and the addition of calmodulin was also ineffective for the increase in the enzyme activity. The neutrophil enzyme appears to be a calmodulin-independent type of nitric oxide synthase.  相似文献   

13.
The Escherichia coli B glycogen synthase has been purified to apparent homogeneity with the use of a 4-aminobutyl-Sepharose column. Two fractions of the enzyme were obtained: glycogen synthase I with a specific activity of 380 mumol mg-1 and devoid of branching enzyme activity and glycogen synthase II having a specific activity of 505 mumol mg-1 and containing branching enzyme activity which was 0.1% of the activity observed for the glycogen synthase. Only one protein band was found in disc gel electrophoresis for each glycogen synthase fraction and they were coincident with glycogen synthase activity. One major protein band and one very faint protein band which hardly moved into the gel were observed in sodium dodecyl sulfate gel electrophoresis of the glycogen synthase fractions. The subunit molecular weight of the major protein band in sodium dodecyl sulfate gel electrophoresis of both glycogen synthase fractions was determined to be 49 000 +/- 2 000. The molecular weights of the native enzymes were determined by sucrose density gradient ultracentrifugation. Glycogen synthase I had a molecular weight of 93 000 while glycogen synthase II had a molecular weight of 200 000. On standing at 4 degrees C or at -85 degrees C both enzymes transform into species having molecular weights of 98 000, 135 000, and 185 000. Thus active forms of the E. coli B glycogen synthase can exist as dimers, trimers, and tetramers of the subunit. The enzyme was shown to catalyze transfer of glucose from ADPglucose to maltose and to higher oligosaccharides of the maltodextrin series but not to glucose. 1,5-Gluconolactone was shown to be a potent inhibitor of the glycogen synthase reaction. The glycogen synthase reaction was shown to be reversible. Formation of labeled ADPglucose occurred from either [14C]ADP or [14C]glycogen. The ratio of ADP to ADPglucose at equilibrium at 37 degrees C was determined and was found to vary threefold in the pH range of 5.27-6.82. From these data the ratio of ADP2- to ADPglucose at equilibrium was determined to be 45.8 +/- 4.5. Assuming that deltaF degrees of the hydrolysis of the alpha-1,4-glucosidic linkage is -4.0 kcal the deltaF degrees of hydrolysis of the glucosidic linkage in ADPglucose is -6.3 kcal.  相似文献   

14.
Rickettsia prowazeki were disrupted in a French pressure cell and fractionated into soluble (cytoplasm) and envelope fractions. The envelope contained 25% of the cell protein, with the cytoplasm containing 75%. Upon density gradient centrifugation, the envelope fraction separated into a heavy band (1.23 g/cm3) and a lighter band (1.19 g/cm3). The heavy band had a high content of 2-keto-3-deoxyoctulosonic acid, a marker for bacterial lipopolysaccharide, but had no succinic dehydrogenase, a marker for cytoplasmic membrane activity, and therefore represented outer membrane. The lighter band exhibited a high succinate dehydrogenase activity, and thus contained inner (cytoplasmic) membrane. Outer membrane purified by this method was less than 5% contaiminated by cytoplasmic membrane; however, inner membrane from the gradient was as much as 30% contaminated by outer membrane. The protein composition of each cellular fraction was characterized by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. The outer membrane contained four major proteins, which were also major proteins of the whole cell. The cytoplasmic membrane and soluble cytoplasm exhibited a more complex pattern on gels.  相似文献   

15.
A simple, specific, and sensitive assay procedure for cardiolipin synthase of Escherichia coli has been developed. This measures the radioactivity of glycerol formed from phosphatidyl [2-3H]glycerol and is mainly based on the findings that 400 mM phosphate and 0.015% Triton X-100 markedly activate the enzyme. Cardiolipin synthase was amplified 760-fold upon induction with isopropyl beta-D-thiogalactoside in cells harboring a pBR322 derivative in which the cls gene encoding this enzyme was preceded by the tac promoter. Under these conditions, cardiolipin content increased, membrane potential decreased, spheroplasts became fragile, cells lost viability, and inducer-resistant mutants appeared at a high frequency. The amplification enabled the isolation of an enzyme preparation with a specific activity approximately 10,000-times higher than that of wild-type whole cell lysate. This purification was simply achieved by extraction of the crude membrane fraction with Triton X-100 and a single phosphocellulose column chromatography. This preparation, together with the crude envelope fraction, was used to characterize the basic properties of E. coli cardiolipin synthase, some of which were utilized in setting up the assay conditions.  相似文献   

16.
Cardiolipin is a specific and functionally important phospholipid of mitochondria, and its biosynthesis is considered to be crucial for the assembly of this organelle. However, little information is available about the enzyme cardiolipin synthase, largely because it has not yet been isolated. We solubilized cardiolipin synthase from rat liver mitochondrial membranes with Zwittergent 3-14 and purified it by Mono Q anion exchange chromatography, Superose 12 gel filtration, and Mono P chromatofocusing. Cardiolipin synthase is one of the most acidic mitochondrial proteins (isoelectric point, pH 4-5) and appears as a 50-kilodalton band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme requires CO2+ for activity, has an alkaline pH optimum (pH 8-9), and exhibits Km values of 45 and 1.6 microM for phosphatidylglycerol and CDP-diacylglycerol, respectively. Cardiolipin synthase loses activity during purification, and the activity can be partially reconstituted by the addition of phospholipids. The most effective phospholipid is phosphatidylethanolamine which reactivates in a cooperative manner. Cardiolipin reactivates hyperbolically at low concentrations but inhibits the enzyme at higher concentrations. In addition, cardiolipin shifts the sigmoidal reactivation curve of phosphatidylethanolamine toward lower concentrations. It is suggested that cardiolipin synthase requires interaction with several molecules of phosphatidylethanolamine and at least one molecule of cardiolipin for full enzymatic activity.  相似文献   

17.
The subcellular distribution of mannosyltransferases inSaccharomyces cerevisiae was studied following the separation of the plasma membrane from other intracellular membranous systems. Most of the activity was linked to internal membranes, and the rest was located at the level of the plasma membrane. Yeast plasma membranes coated on their external face with concanavalin A when incubated with GDP-[U-14C]mannose incorporated 20% less [U-14C]mannose in glycoproteins and 110% more in glycolipids than plasma membranes alone. This suggested that part of the total mannosyltransferase activity of the plasma membrane is located on its outer surface. A significant incorporation of radioactive mannose into trichloroacetic-acid-precipitable material was detected in incubations of protoplasts with GDP-[U-14C]mannose when incorporation of free mannose did not occur. Characterization of a product synthesized by the ectotransferase(s) was achieved after treatment of the radioactive plasma membranes by Triton X-100, which preserved the concanavalin A-mannoprotein complexes and removed a large amount of other plasma membrane components. A radioactive glycoprotein band with an apparent molecular weight of 94, 000 was identified as a product of the ectomannosyltransferase(s).  相似文献   

18.
A major 38-kDa protein associated with bovine rod outer segment plasma membranes, but not disk membranes, has been identified as glyceraldehyde-3-phosphate dehydrogenase on the basis of its N-terminal sequence and specific enzyme activity. This enzyme was extracted from lysed rod outer segments or isolated rod outer segment plasma membrane with 0.15 M NaCl and purified to homogeneity by affinity chromatography on a NAD(+)-agarose column. A specific activity of 90-100 units/mg of protein is within the range of activity obtained for glyceraldehyde-3-phosphate dehydrogenase isolated from other mammalian cells. Enzyme activity measurements indicate that this enzyme makes up approximately 2% of the total rod outer segment protein and over 11% of the plasma membrane protein. Protease digestion and binding studies on purified rod outer segment plasma and disk membranes suggest that glyceraldehyde-3-phosphate dehydrogenase reversibly interacts with a protease-sensitive plasma membrane-specific protein of rod outer segments. The finding that glyceraldehyde-3-phosphate dehydrogenase is present in large quantities in rod outer segments suggests that at least some of the energy required for the synthesis of ATP and GTP for phototransduction and other processes of the outer segment is derived from glycolysis which takes place within this organelle.  相似文献   

19.
P Nyrén  B F Nore  A Strid 《Biochemistry》1991,30(11):2883-2887
A new method has been developed for the isolation of the proton-pumping N,N'-dicyclohexylcarbodiimide-sensitive PPi synthase (H(+)-PPi synthase) from chromatophores of Rhodospirillum rubrum. The H(+)-PPi synthase was purified by extraction of chromatophores with a mixture of nonanoyl-N-methylglucamide and cholate, by fractionation with poly(ethylene glycol) 4000, hydroxyapatite chromatography, and affinity chromatography. The purified enzyme is homogeneous and has a specific activity of 20.4 mumol of PPi hydrolyzed min-1 mg-1 at pH 7.5 and 20 degrees C. The hydrolytic activity of the enzyme was stimulated by addition of phospholipids and Triton X-100. Of the lipids tested, cardiolipin proved to have the maximal activating effect. Reconstitution of the H(+)-PPi synthase by the freeze-thaw technique yielded an uncoupler-stimulated and N,N'-dicyclohexylcarbodiimide-sensitive PPi hydrolytic activity. The subunit composition of the purified H(+)-PPi synthase was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One band was obtained after silver staining with an apparent molecular weight of 56,000. The oligomeric structure of the H(+)-PPi synthase is discussed.  相似文献   

20.
Following incubation with ATP and a cAMP-dependent protein kinase under optimal conditions of lipid acceptor, phospholipid and metal ion requirements, the transfer activity of partially purified dolichol phosphate mannose synthase (DPMS) increased about 60% and this activation correlated with a 50% increase in V(max) with no alteration in the apparent K(m) for GDP-Manose. Phosphorylation with [gamma-(32)P]ATP resulted in the labeling of several polypeptides, one of which exhibited the molecular weight of the enzyme (30 kDa) and was also recognized using a specific anti-DPMS monoclonal antibody. This and the fact that the phosphate label could be removed by an alkaline phosphatase indicate that Candida DPMS may be regulated by phosphorylation-dephosphorylation, a mechanism that has been proposed for the enzyme in other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号