首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Characterization of a potent catenation activity of HeLa cell nuclei   总被引:1,自引:0,他引:1  
Using an assay which measures catenation of a supercoiled DNA template, we have characterized and quantitated a potent activity identified in crude fractions of HeLa cell nuclei. Catenation requires Mg-ATP and a DNA-condensing agent, polyvinyl alcohol. A filter-binding or agarose gel assay can be used to quantitate activity. In this reaction, DNA topoisomerase I relaxes the input supercoiled DNA to provide DNA topoisomerase II, a strongly favored template for catenation. DNA topoisomerase II preferentially catenates relaxed DNA over supercoiled DNA by a factor of 100. One molecule of DNA topoisomerase II is able to catenate about 20 circles of relaxed DNA/min at 30 degrees C but only 0.16 circle of supercoiled DNA/min at 30 degrees C. The purified HeLa topoisomerase I can also catenate DNA under these assay conditions, yet in an ATP-independent fashion. It is much less efficient than topoisomerase II; one molecule of topoisomerase I catenates only about 3.8 X 10(-3) molecules of supercoiled DNA/min at 30 degrees C with a DNA template containing 5% nicked circles. This remarkable difference between the two enzymes allows quantitation of DNA topoisomerase II activity seen in the presence of excess topoisomerase I. Unlike Escherichia coli topoisomerase I (omega), catenation by the HeLa topoisomerase I is not stimulated by gapped circles.  相似文献   

2.
A key step in the DNA transport by type II DNA topoisomerase is the formation of a double-strand break with the enzyme being covalently linked to the broken DNA ends (referred to as the cleavage complex). In the present study, we have analyzed the formation and structure of the cleavage complex catalyzed by Sufolobus shibatae DNA topoisomerase VI (topoVI), a member of the recently described type IIB DNA topoisomerase family. A purification procedure of a fully soluble recombinant topoVI was developed by expressing both subunits simultaneously in Escherichia coli. Using this recombinant enzyme, we observed that the formation of the double-strand breaks on supercoiled or linear DNA is strictly dependent on the presence of ATP or AMP-PNP. This result suggests that ATP binding is required to stabilize an enzyme conformation able to cleave the DNA backbone. The structure of cleavage complexes on a linear DNA fragment have been analyzed at the nucleotide level. Similarly to other type II DNA topoisomerases, topoVI is covalently attached to the 5'-ends of the broken DNA. However, sequence analysis of the double-strand breaks revealed that they are all characterized by staggered two-nucleotide long 5' overhangs, contrasting with the four-base staggered double-strand breaks catalyzed by type IIA DNA topoisomerases. While no clear consensus sequences surrounding the cleavage sites could be described, interestingly A and T nucleotides are highly represented on the 5' extensions, giving a first insight on the preferred sequences recognized by this type II DNA topoisomerase.  相似文献   

3.
Camptothecin, a cytotoxic antitumor compound, has been shown to produce protein-linked DNA breaks mediated by mammalian topoisomerase I. We have investigated the mechanism by which camptothecin disrupts DNA processing by topoisomerase I and have examined the effect of certain structurally related compounds on the formation of a DNA-topoisomerase I covalent complex. Enzyme-mediated cleavage of supercoiled plasmid DNA in the presence of camptothecin was completely reversed upon the addition of exogenous linear DNA or upon dilution of the reaction mixture. Camptothecin and topoisomerase I produced the same amount of cleavage from supercoiled DNA or relaxed DNA. In addition, the alkaloid decreased the initial velocity of supercoiled DNA relaxation mediated by catalytic quantities of topoisomerase I. Inhibition occurred under conditions favoring processive catalysis as well as under conditions favoring distributive catalysis. By use of [3H]camptothecin and an equilibrium dialysis assay, the alkaloid was shown to bind reversibly to a DNA-topoisomerase I complex, but not to isolated enzyme or isolated DNA. These results are consistent with a model in which camptothecin reversibly traps an intermediate involved in DNA unwinding by topoisomerase I and thereby perturbs a set of equilibria, resulting in increased DNA cleavage. By examining certain compounds that are structurally related to camptothecin, it was found that the 20-hydroxy group, which has been shown to be essential for antitumor activity, was also necessary for stabilization of the covalent complex between DNA and topoisomerase I. In contrast, no such correlation existed for UV-light-induced cleavage of DNA by Cu(II)-camptothecin derivatives.  相似文献   

4.
Y Pommier  D Kerrigan  K Kohn 《Biochemistry》1989,28(3):995-1002
The polyamines spermine and spermidine were found to enhance the formation of a stable noncovalent complex between mammalian topoisomerase II and DNA. This complex is not associated with DNA strand breaks and forms to a greater extent with supercoiled than with relaxed circular or with linear DNA. Polyamine-induced complex formation is associated with a stimulation of the enzymatic relaxation of DNA supercoils. In these respects, the polyamine-enhanced complex differs from the covalent cleavable complexes stabilized by DNA intercalators such as amsacrine (m-AMSA) or epipodophylotoxins such as teniposide (VM-26). In the polyamine-enhanced complex, the topoisomerase II may be a donutlike structure topologically bound to the DNA and able to migrate and dissociate from the ends of linear DNA molecules. At relatively high concentrations, spermine (1 mM) enhances topoisomerase II induced cleavage at certain sites on the SV40 genome that could have regulatory significance.  相似文献   

5.
Escherichia coli DNA topoisomerase I catalyzes relaxation of negatively supercoiled DNA. The reaction proceeds through a covalent intermediate, the cleavable complex, in which the DNA is cleaved and the enzyme is linked to the DNA via a phosphotyrosine linkage. Each molecule of E. coli DNA topoisomerase I has been shown to have three tightly bound zinc(II) ions required for relaxation activity (Tse-Dinh, Y.-C., and Beran-Steed, R.K. (1988) J. Biol. Chem. 263, 15857-15859). It is shown here that Cd(II) could replace Zn(II) in reconstitution of active enzyme from apoprotein. The role of metal was analyzed by studying the partial reactions. The apoenzyme was deficient in sodium dodecyl sulfate-induced cleavage of supercoiled PM2 phage DNA. Formation of covalent complex with linear single-stranded DNA was also reduced in the absence of metal. However, the cleavage of small oligonucleotide was not affected, and the apoenzyme could religate the covalently bound oligonucleotide to another DNA molecule. Assay of noncovalent complex formation by retention of 5'-labeled DNA on filters showed that the apoenzyme was not inhibited in noncovalent binding to DNA. It is proposed that zinc(II) coordination in E. coli DNA topoisomerase I is required for the transition of the noncovalent complex with DNA to the cleavable state.  相似文献   

6.
We have used gel retardation analysis to show that human DNA topoisomerase IIbeta can bind a 40 bp linear duplex containing a single DNA topoisomerase IIbeta cleavage site. Furthermore, we demonstrate for the first time that human DNA topoisomerase IIbeta binds to four-way junction DNA. This supports previous suggestions that topoisomerase II may be targeted to supercoiled DNA through the recognition of DNA cruciforms, helix-helix crossovers and hairpins. DNA topoisomerase IIbeta had a 4-fold higher affinity for the four-way junction than for the linear duplex, as demonstrated by protein titration and competition analysis. Furthermore, the DNA topoisomerase IIbeta:four-way junction complex was significantly more salt stable than the complex with linear DNA. The four-way junction contained potential topoisomerase IIbeta cleavage sites straddling the points of strand exchange, and indeed, topoisomerase IIbeta was able to cleave three of these four predicted sites. This indicates that topoiso-merase IIbeta can bind to the centre of the junction. Topoisomerase II has to bind both the transported and the gated DNA helices prior to strand passage, and it is possible that both helices are provided by the four-way junction in this case. The stable complex of DNA topoisomerase IIbeta with four-way junction DNA may provide an ideal substrate for further studies into the mechanism of substrate recognition and binding by DNA topoisomerase II.  相似文献   

7.
McClendon AK  Osheroff N 《Biochemistry》2006,45(9):3040-3050
Collisions with DNA tracking systems are critical for the conversion of transient topoisomerase-DNA cleavage complexes to permanent strand breaks. Since DNA is overwound ahead of tracking systems, cleavage complexes most likely to produce permanent strand breaks should be formed between topoisomerases and positively supercoiled molecules. Therefore, the ability of human topoisomerase IIalpha and IIbeta and topoisomerase I to cleave positively supercoiled DNA was assessed in the absence or presence of anticancer drugs. Topoisomerase IIalpha and IIbeta maintained approximately 4-fold lower levels of cleavage complexes with positively rather than negatively supercoiled DNA. Topoisomerase IIalpha also displayed lower levels of cleavage with overwound substrates in the presence of nonintercalative drugs. Decreased drug efficacy was due primarily to a drop in baseline (i.e., nondrug) cleavage, rather than an altered interaction with the enzyme-DNA complex. Similar results were seen for topoisomerase IIbeta, but the effects of DNA geometry on drug-induced scission were somewhat less pronounced. With both topoisomerase IIalpha and IIbeta, intercalative drugs displayed greater relative cleavage enhancement with positively supercoiled DNA. This appeared to result from negative effects of high concentrations of intercalative agents on underwound DNA. In contrast to the type II enzymes, topoisomerase I maintained approximately 3-fold higher levels of cleavage complexes with positively supercoiled substrates and displayed an even more dramatic increase in the presence of camptothecin. These findings suggest that the geometry of DNA supercoils has a profound influence on topoisomerase-mediated DNA scission and that topoisomerase I may be an intrinsically more lethal target for anticancer drugs than either topoisomerase IIalpha or IIbeta.  相似文献   

8.
F Pognan  C Paoletti 《Biochimie》1992,74(11):1019-1023
Topoisomerase II displays higher affinity for supercoiled DNA compared to the same relaxed DNA. Moreover, cruciform structures are formed in topologically constrained DNA. Here we report that, using S1 nuclease experiments on supercoiled DNA, hairpin structures are located close to numerous topoisomerase II cleavage sites on the BPV I genome. Therefore, DNA secondary structure may play a role in the recognition mechanism of DNA by topoisomerase II.  相似文献   

9.
Two categories of trypanosomal type II topoisomerases have been isolated from trypanosomes: one is unique since it is able to realize DNA topoisomerization reactions in the absence of ATP, in contrast to the other enzyme and mammalian topoisomerase II. The biochemical properties of ATP-independent topoisomerase II from Trypanosoma cruzi are described in this report. The enzyme can decatenate trypanosome kinetoplast DNA networks, catenate supercoiled DNA molecules, unknot P4 phage DNA, and cleave double-stranded DNA. The enzyme is inhibited by various classes of drugs and is more sensitive than mammalian topoisomerase II. Therefore, trypanosome ATP-independent topoisomerase II provides a potential target for chemotherapy.  相似文献   

10.
We have characterized the topoisomerase I and II activities in nuclear extracts from immature embryos of Zea mays and the effect of the treatment with 2,4-dichlorophenoxyacetic acid (2,4-D) and abscisic acid (ABA). These extracts were shown to be essentially devoid of protease and nuclease activities and they were tested for their ability to relax supercoiled DNA, unknotting P4 DNA and catenate circular duplex DNA under catalytic conditions. Unknotting and catenation reactions are strictly magnesium- and ATP-dependent, but not the relaxation of circular supercoiled DNA allowing the detection of both topoisomerase I and II activities. Two cytotoxic drugs, camptothecin, a plant alkaloid that inhibits cukaryotic topoisomerase I, and epipodophyllotoxin VM-26 (teniposide) that inhibits topoisomerase II, have been assayed in our extracts showing similar inhibitory effects on topoisomerase enzymes. Alkaline phosphatase treatment of nuclear extracts abolishes both topoisomerase activities. Nuclear extracts from embryos treated with 2,4-D showed 200% increase on topoisomerase II activity as compared with untreated ones, but only residual activity was detected in ABA-treated embryos. Nuclear extracts from hormone-treated and untreated embryos showed similar topoisomerase I activity with deviations of less than 25%. These differences are discussed in terms of possible post-translational modifications of the enzymes associated with the increase in proliferation activity of calli.  相似文献   

11.
Topoisomerases are essential ubiquitous enzymes, falling into two distinct classes. A number of eubacteria including Escherichia coli, typically contain four topoisomerases, two type I topoisomerases and two type II topoisomerases viz. DNA gyrase and topoisomerase IV. In contrast several other bacterial genomes including mycobacteria, encode for one type I topoisomerase and a DNA gyrase. Here we describe a new type II topoisomerase from Mycobacterium smegmatis which is different from DNA gyrase or topoisomerase IV in its characteristics and origin. The topoisomerase is distinct with respect to domain organization, properties and drug sensitivity. The enzyme catalyses relaxation of negatively supercoiled DNA in an ATP-dependent manner and also introduces positive supercoils to both relaxed and negatively supercoiled substrates. The genes for this additional topoisomerase are not found in other sequenced mycobacterial genomes and may represent a distant lineage.  相似文献   

12.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

13.
Movement of the DNA replication machinery through the double helix induces acute positive supercoiling ahead of the fork and precatenanes behind it. Because topoisomerase I and II create transient single- and double-stranded DNA breaks, respectively, it has been assumed that type I enzymes relax the positive supercoils that precede the replication fork. Conversely, type II enzymes primarily resolve the precatenanes and untangle catenated daughter chromosomes. However, studies on yeast and bacteria suggest that type II topoisomerases may also function ahead of the replication machinery. If this is the case, then positive DNA supercoils should be the preferred relaxation substrate for topoisomerase IIalpha, the enzyme isoform involved in replicative processes in humans. Results indicate that human topoisomerase IIalpha relaxes positively supercoiled plasmids >10-fold faster than negatively supercoiled molecules. In contrast, topoisomerase IIbeta, which is not required for DNA replication, displays no such preference. In addition to its high rates of relaxation, topoisomerase IIalpha maintains lower levels of DNA cleavage complexes with positively supercoiled molecules. These properties suggest that human topoisomerase IIalpha has the potential to alleviate torsional stress ahead of replication forks in an efficient and safe manner.  相似文献   

14.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

15.
Nuclear extracts of 3T6 mouse cells were able to assemble in vitro minichromosomes which displayed a 150-bp periodicity. Activities of both DNA topoisomerases I and II were detected in these extracts. When a supercoiled pUC DNA was added, it was first relaxed in less than 3 min, then slowly supercoiled again in 1-4 h. Both reactions occurred either in the absence or the presence of added Mg2+ and/or ATP, they were not blocked by DNA topoisomerase II inhibitors and they were inhibited by an antiserum against DNA topoisomerase I and by camptothecin. These findings led us to propose that, under our in vitro assay conditions, chromatin assembly is mainly carried out by a DNA topoisomerase I.  相似文献   

16.
N Osheroff 《Biochemistry》1989,28(15):6157-6160
Beyond its essential physiological functions, topoisomerase II is the primary cellular target for a number of clinically relevant antineoplastic drugs. Although the chemotherapeutic efficacies of these drugs correlate with their abilities to stabilize the covalent topoisomerase II-DNA cleavage complex, their molecular mechanism of action has yet to be described. In order to characterize the drug-induced stabilization of this enzyme-DNA complex, the effect of etoposide on the DNA cleavage/religation reaction of Drosophila melanogaster topoisomerase II was studied. Under the conditions employed, etoposide increased levels of enzyme-mediated double-stranded DNA cleavage 5-6-fold and single-stranded cleavage approximately 4-fold. Maximal stimulation was observed at 80-100 microM etoposide with 50% of the maximal effect at approximately 15 microM drug. By employing a topoisomerase II mediated DNA religation assay [Osheroff, N. & Zechiedrich, E.L. (1987) Biochemistry 26, 4303-4309], etoposide was found to stabilize the enzyme-DNA cleavage complex (at least in part) by inhibiting the enzyme's ability to religate cleaved DNA. Moreover, in order for the drug to affect religation, it has to be present at the time of DNA cleavage.  相似文献   

17.
DNA topoisomerases have been shown to be important therapeutic targets in cancer chemotherapy. We found that KT6006 and KT6528, synthetic antitumor derivatives of indolocarbazole antibiotic K252a, were potent inducers of a cleavable complex with topoisomerase I. In DNA cleavage assay using purified calf thymus DNA topoisomerase I and supercoiled pBR322 DNA, KT6006 induced topoisomerase I mediated DNA cleavage in a dose-dependent manner at drug concentrations up to 50 microM, while DNA cleavage induced by KT6528 was saturated at 5 microM. The maximal amount of nicked DNA produced by KT6006 was more than 50% of substrate DNA, which was comparable to that of camptothecin. Heat treatment (65 degrees C) of the reaction mixture containing these compounds and topoisomerase I resulted in a substantial reduction in DNA cleavage, suggesting that topoisomerase I mediated DNA cleavage induced by KT6006 and KT6528 is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex". Both KT6006 and KT6528 did not induce topoisomerase II mediated DNA cleavage in vitro. KT6006 and KT6528 were found to induce nearly identical topoisomerase I mediated DNA cleavage patterns, which was distinctly different from that with camptothecin. In contrast to the similarity between KT6006 and KT6528 in their structures and the nature of their cleavable complex with topoisomerase I, these drugs have different properties with respect to their interaction with DNA: KT6006 is a very weak intercalator whereas KT6528 is a strong intercalator with potentials comparable to that of adriamycin. These results indicate that KT6006 and KT6528 represent a new distinct class of mammalian DNA topoisomerase I active antitumor drugs.  相似文献   

18.
McClendon AK  Dickey JS  Osheroff N 《Biochemistry》2006,45(38):11674-11680
Previous studies with human and bacterial topoisomerases suggest that the type II enzyme utilizes two distinct mechanisms to recognize the handedness of DNA supercoils. It has been proposed that the ability of some type II enzymes, such as human topoisomerase IIalpha and Escherichia coli topoisomerase IV, to distinguish supercoil geometry during DNA relaxation is mediated by elements in the variable C-terminal domain of the protein. In contrast, the ability of human topoisomerase IIalpha and topoisomerase IIbeta to discern the handedness of supercoils during DNA cleavage suggests that residues in the conserved N-terminal or central domain of the protein are involved in this process. To test this hypothesis, the ability of Paramecium bursaria chlorella virus-1 (PBCV-1) and chlorella virus Marburg-1 (CVM-1) topoisomerase II to relax and cleave negatively and positively supercoiled plasmids was assessed. These enzymes display a high degree of sequence identity with the N-terminal and central domains of eukaryotic topoisomerase II but naturally lack the C-terminal domain. While PBCV-1 and CVM-1 topoisomerase II relaxed under- and overwound substrates at similar rates, they were able to discern the handedness of supercoils during the cleavage reaction and preferentially cut negatively supercoiled DNA. Preferential cleavage was not due to a change in site specificity, DNA binding, or religation. These findings are consistent with a bimodal recognition of DNA geometry in which topoisomerase II uses elements in the C-terminal domain to sense the handedness of supercoils during DNA relaxation and elements in the conserved N-terminal or central domain during DNA cleavage.  相似文献   

19.
Studies on DNA polymerases and topoisomerases in archaebacteria   总被引:1,自引:0,他引:1  
We have isolated DNA polymerases and topoisomerases from two thermoacidophilic archaebacteria: Sulfolobus acidocaldarius and Thermoplasma acidophilum. The DNA polymerases are composed of a single polypeptide with molecular masses of 100 and 85 kDa, respectively. Antibodies against Sulfolobus DNA polymerase did not cross react with Thermoplasma DNA polymerase. Whereas the major DNA topoisomerase activity in S. acidocaldarius is an ATP-dependent type I DNA topoisomerase with a reverse gyrase activity, the major DNA topoisomerase activity in T. acidophilum is a ATP-independent relaxing activity. Both enzymes resemble more the eubacterial than the eukaryotic type I DNA topoisomerase. We have found that small plasmids from halobacteria are negatively supercoiled and that DNA topoisomerase II inhibitors modify their topology. This suggests the existence of an archaebacterial type II DNA topoisomerase related to its eubacterial and eukaryotic counterparts. As in eubacteria, novobiocin induces positive supercoiling of halobacterial plasmids, indicating the absence of a eukaryotic-like type I DNA topoisomerase that relaxes positive superturns.  相似文献   

20.
M J Robinson  N Osheroff 《Biochemistry》1991,30(7):1807-1813
The post-strand-passage DNA cleavage/religation equilibrium of Drosophila melanogaster topoisomerase II was examined. This was accomplished by including adenyl-5'-yl imidodiphosphate, a nonhydrolyzable ATP analogue which supports strand passage but not enzyme turnover, in assays. Levels of post-strand-passage enzyme-mediated DNA breakage were 3-5 times higher than those generated by topoisomerase II prior to the strand-passage event. This finding correlated with a decrease in the apparent first-order rate of topoisomerase II mediated DNA religation in the post-strand-passage cleavage complex. Since previous studies demonstrated that antineoplastic drugs stabilize the pre-strand-passage cleavage complex of topoisomerase II by impairing the enzyme's ability to religate cleaved DNA [Osheroff, N. (1989) Biochemistry 28, 6157-6160; Robinson, M.J., & Osheroff, N. (1990) Biochemistry 29, 2511-2515], the effects of 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposide on the enzyme's post-strand-passage DNA cleavage complex were characterized. Both drugs stimulated the ability of topoisomerase II to break double-stranded DNA after strand passage. As determined by two independent assay systems, m-AMSA and etoposide stabilized the enzyme's post-strand-passage DNA cleavage complex primarily by inhibiting DNA religation. These results strongly suggest that both the pre- and post-strand-passage DNA cleavage complexes of topoisomerase II serve as physiological targets for these structurally disparate antineoplastic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号