首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The medial preoptic area (MPOA) is an important integrative site for male sexual behavior. We have reported an increase in dopamine (DA) release in the MPOA of male rats shortly before and during copulation. Postcastration loss of copulatory ability mirrored the loss of the precopulatory DA response to an estrous female. The present study investigated the time courses of restoration, rather than loss, of the MPOA DA response to a receptive female and of copulation in long-term castrates. Male rats were castrated and tested for loss of copulatory ability 21 days later. They then received 2, 5, or 10 daily subcutaneous injections of testosterone propionate (TP, 500 microg) or oil. Microdialysate samples were collected from the MPOA during baseline, exposure to a female behind a barrier, and copulation. Extracellular DA was measured using HPLC-EC. None of the six 2-day-TP-treated animals copulated, nor did they show elevated DA release in the MPOA in the presence of a receptive female. Five of the nine 5-day-TP-treated animals ejaculated; three intromitted without ejaculating; and one failed to copulate, with all but the noncopulating animal showing elevated DA release. All of the six 10-day-TP-treated animals copulated and also demonstrated an increase in MPOA DA. None of the oil controls copulated or showed an increase in DA release. Therefore, a consistent relationship between MPOA DA release during exposure to a receptive female and the subsequent ability of the male to copulate was observed.  相似文献   

2.
The medial preoptic area (MPOA) is an important integrative site for male sexual behavior. Dopamine (DA) is released in the MPOA of male rats shortly before and during copulation. In a previous study, we identified 17beta-estradiol (E(2)) as the metabolite of testosterone (T) that maintains MPOA basal extracellular DA levels. However, the presence of dihydrotestosterone (DHT), an androgenic metabolite of T, is required for the female-induced increase in MPOA DA observed during copulation. Recently, we reported that assays of MPOA tissue DA content showed that castrates actually had more stored DA than did gonadally intact males. Therefore, the reduction in extracellular levels in castrates was not due to decreased availability of DA; most likely it was due to decreased release. Furthermore, T upregulates neuronal nitric oxide synthase (nNOS) in the MPOA. NO has been implicated in the regulation of DA release in the MPOA. It is not known, however, which metabolite(s) of T regulate(s) tissue stores of DA and/or nNOS in the MPOA of male rats. The present experiments were designed to test the following: (1) whether E(2), DHT, or the combination of the two influences MPOA DA tissue levels, an indication of stored DA, in male rat castrates; and (2) whether E(2), DHT, or the combination of the two influences NOS-ir in the MPOA of castrated male rats. The results indicate that E(2) up-regulates nNOS-ir in the MPOA and maintains tissue content of DA at levels similar to those in T-treated rats. DHT did not influence nNOS-ir, while attenuating the effect of castration on tissue DA content.  相似文献   

3.
Dopamine (DA) in the medial preoptic area (MPOA) provides important facilitative influence on male rat copulation. We have shown that the nitric oxide-cGMP (NO-cGMP) pathway modulates MPOA DA levels and copulation. We have also shown that systemic estradiol (E(2)) maintains neuronal NO synthase (nNOS) immunoreactivity in the MPOA of castrates, as well as relatively normal DA levels. This effect of E(2) on nNOS probably accounts for at least some of the previously demonstrated behavioral facilitation by intra-MPOA E(2) administration in castrates. Therefore, we hypothesized that stimulation of the MPOA NO-cGMP pathway in dihydrotestosterone (DHT)-treated castrates should restore DA levels and copulatory behaviors. Reverse-dialysis of a NO donor, sodium nitroprusside (SNP), increased extracellular DA in the MPOA of DHT-treated castrates and restored the ability to copulate to ejaculation in half of the animals. A cGMP analog, 8-Br-cGMP, also increased extracellular DA, though not as robustly, but did not restore copulatory ability. The effectiveness of the NO donor in restoring copulation and MPOA DA levels is consistent with our hypothesis. However, the lack of behavioral effects of 8-Br-cGMP, despite its increase in MPOA DA, suggests that NO may have additional mediators in the MPOA in the regulation of copulation. Furthermore, the suboptimal copulation seen in the NO donor-treated animals suggests the importance of extra-MPOA systems in the regulation of copulation.  相似文献   

4.
Successful reproduction in vertebrates depends critically upon a suite of precopulatory behaviors that occur prior to mating. In Syrian hamsters (Mesocricetus auratus), these behaviors include vaginal scent marking and preferential investigation of male odors. The neural regulation of vaginal marking and opposite-sex odor preference likely involves an interconnected set of steroid-sensitive nuclei that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). For example, lesions of MA eliminate opposite-sex odor preference and reduce overall levels of vaginal marking, whereas lesions of MPOA decrease vaginal marking in response to male odors. Although BNST is densely interconnected with both MA and MPOA, little is known about the role of BNST in female precopulatory behaviors. To address this question, females received either bilateral, excitotoxic lesions of BNST (BNST-X) or sham lesions (SHAM), and were tested for scent marking and for investigatory responses to male and female odors. Whereas SHAM females vaginal marked more to male odors than female odors on two days of the estrous cycle, BNST-X females marked at equivalent levels to both odors. This deficit is not due to alterations in social odor investigation, as both BNST-X and SHAM females investigated male odors more than female odors. Finally, BNST lesions did not generally disrupt the cyclic changes in reproductive behaviors that occur across the estrous cycle. Taken together, these results demonstrate that BNST is critical for the normal expression of solicitational behaviors by females in response to male odor stimuli.  相似文献   

5.
《Hormones and behavior》2012,61(5):651-659
Successful reproduction in vertebrates depends critically upon a suite of precopulatory behaviors that occur prior to mating. In Syrian hamsters (Mesocricetus auratus), these behaviors include vaginal scent marking and preferential investigation of male odors. The neural regulation of vaginal marking and opposite-sex odor preference likely involves an interconnected set of steroid-sensitive nuclei that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). For example, lesions of MA eliminate opposite-sex odor preference and reduce overall levels of vaginal marking, whereas lesions of MPOA decrease vaginal marking in response to male odors. Although BNST is densely interconnected with both MA and MPOA, little is known about the role of BNST in female precopulatory behaviors. To address this question, females received either bilateral, excitotoxic lesions of BNST (BNST-X) or sham lesions (SHAM), and were tested for scent marking and for investigatory responses to male and female odors. Whereas SHAM females vaginal marked more to male odors than female odors on two days of the estrous cycle, BNST-X females marked at equivalent levels to both odors. This deficit is not due to alterations in social odor investigation, as both BNST-X and SHAM females investigated male odors more than female odors. Finally, BNST lesions did not generally disrupt the cyclic changes in reproductive behaviors that occur across the estrous cycle. Taken together, these results demonstrate that BNST is critical for the normal expression of solicitational behaviors by females in response to male odor stimuli.  相似文献   

6.
The hormonal regulation of precopulatory behavior in the female Mongolian gerbil was studied using two groups (N = 6) of sexually experienced females. A novel testing procedure was used which involved females living continuously with test males for several days. The test males showed either full sexual behavior (copulating males, C) or only precopulatory behavior (noncopulating males, NC). Experiment 1 investigated changes during the estrous cycle and following ovariectomy in females. Experiment 2 studied the effects of hormonal treatment of these ovariectomized females with 6 micrograms estradiol benzoate (EB) followed by 0.4 mg progesterone (P) or by 0.04 ml arachis oil. When tested with NC males, females displayed a greater range of precopulatory behavior. The patterns could be classified into three groups according to the manner of response to ovariectomy and hormone treatment. Group I patterns (approach, leave, and olfactory investigation of the male's head) were affected by neither ovariectomy nor EB treatment relative to Day 3 levels (Day 3, day preceding estrus; Day 4, estrus), but they were increased to estrous levels by EB and P. Group II patterns (darting, foot-stomping, and the present and piloerection postures) appeared only during estrus, did not appear after ovariectomy, and reappeared only after sequential EB and P treatment. Group III patterns (investigation of the male's anogenital area, allogrooming, ventral gland marking, and sand-rolling) were reduced relative to both estrus and Day 3 levels by ovariectomy and increased above Day 3 levels by EB alone; EB and P treatment further increased Group III patterns to the level of estrus. It is suggested that female precopulatory behavior patterns differ in their responsiveness to ovarian hormones. Estrogen appears to affect those patterns associated with the earliest stages of estrus (Group III).  相似文献   

7.
《Hormones and behavior》2009,55(5):676-683
Chinning consists of rubbing the chin against an object, thereby depositing secretions from the submandibular glands. As mating, chinning is stimulated in male and female rabbits by testosterone and estradiol, respectively. To investigate the brain sites where steroids act to stimulate chinning and mating we implanted into the ventromedial hypothalamus (VMH) or the medial preoptic area (MPOA) of gonadectomized male and female rabbits testosterone propionate (TP; males) or estradiol benzoate (EB; females) and quantified chinning and sexual behavior. EB implants into the VMH or MPOA reliably stimulated chinning in females. Most of those implanted into the VMH and around half of the ones receiving EB into MPOA or diagonal band of Broca (DBB) showed lordosis. Chinning, but not sexual behavior, was stimulated in males by TP implants into the MPOA or DBB. Neither chinning nor mounting were reliably displayed by males following TP implants into the VMH. Results indicate that, in females, the VMH is an estrogen-sensitive brain area that stimulates both chinning and lordosis while the MPOA seems to contain subpopulations of neurons involved in either behavior. In males, androgen-sensitive neurons of the MPOA, but not the VMH, are involved in chinning stimulation but it is unclear if these areas also participate in the regulation of copulatory behavior.  相似文献   

8.
Chinning consists of rubbing the chin against an object, thereby depositing secretions from the submandibular glands. As mating, chinning is stimulated in male and female rabbits by testosterone and estradiol, respectively. To investigate the brain sites where steroids act to stimulate chinning and mating we implanted into the ventromedial hypothalamus (VMH) or the medial preoptic area (MPOA) of gonadectomized male and female rabbits testosterone propionate (TP; males) or estradiol benzoate (EB; females) and quantified chinning and sexual behavior. EB implants into the VMH or MPOA reliably stimulated chinning in females. Most of those implanted into the VMH and around half of the ones receiving EB into MPOA or diagonal band of Broca (DBB) showed lordosis. Chinning, but not sexual behavior, was stimulated in males by TP implants into the MPOA or DBB. Neither chinning nor mounting were reliably displayed by males following TP implants into the VMH. Results indicate that, in females, the VMH is an estrogen-sensitive brain area that stimulates both chinning and lordosis while the MPOA seems to contain subpopulations of neurons involved in either behavior. In males, androgen-sensitive neurons of the MPOA, but not the VMH, are involved in chinning stimulation but it is unclear if these areas also participate in the regulation of copulatory behavior.  相似文献   

9.
Male rats exhibit erections in the presence of inaccessible estrous females, and we investigated which gonadal steroids regulate these noncontact erections (NCEs). Sexually experienced Wistar males (n >/= 8/group) were tested for NCE four times (every 3 days) before castration, after castration, and after receiving subcutaneous implants of 10-mm Silastic capsules that were empty or filled with crystalline testosterone propionate (TP), dihydrotestosterone (DHT), estradiol benzoate (EB), or DHT + EB (10 mm each). Before castration, males responded with NCE in approximately 50% of tests. No males had NCEs after castration, beginning 3 days after surgery. Also, no males responded after treatment with EB or empty capsules. After receiving implants of TP, DHT, or DHT + EB, 50% of males had NCEs, beginning with the first test 3 days after treatment. On every measure of NCE, males treated with DHT or DHT + EB were indistinguishable from each other and from TP-treated males. Among the sexual responses of male rats, NCE appears to be more sensitive than other behaviors to changes in gonadal condition. In its profile of response to gonadal steroids (testosterone+, dihydrotestosterone+, estradiol-), NCE is similar to reflexive erection, for which spinal systems are sufficient, and unlike copulation (T+, DHT-, E+), which depends on discrete areas of the brain. We nonetheless conclude that NCE depends on androgen-sensitive systems in the brain, but androgen-sensitive neurons in the lumbosacral spinal cord may also play a role.  相似文献   

10.
Levels of testosterone (T) and LH in the peripheral serum of male and female rabbits were measured and compared following coitus. Blood was collected by heart puncture from restrained, unanesthetized animals of both sexes. In male rabbits, basal serum T levels were highly variable, ranging from 131 to 12,149 pg/ml, and if low preceding coitus they tended to rise; whereas, if high, they usually dropped as they did in nonmated males subjected to repeated heart punctures. In contrast, basal serum LH levels in males were quite constant (mean +/- SE, 1993 +/- 152 pg/ml) and were not significantly altered after coitus unless blood T levels had been drastically lowered by two priming doses of estradiol benzoate. In intact does, on the other hand, copulation which resulted in ovulation induced an approximately 20-fold increase in serum LH concentration which was sustained for about 4 hr. Postcoital elevations in serum LH also occurred in estrogen-primed intact and estrogen-primed ovariectomized does. Under the conditions of our experiments, the parallel elevations in serum LH and T observed postcoitally in the female rabbit could not be demonstrated in the male.  相似文献   

11.
The acute administration of estradiol benzoate (EB) to the ovariectomized (OVX) rat induces low levels of lordosis while sexually appetitive behaviors (e.g., hops, darts, solicitations) are absent, yet the repeated administration of EB results in a behavioral sensitization in which lordosis is potentiated and sexually appetitive behaviors are induced. We have shown that repeated copulation attenuates the sensitization of appetitive sexual behaviors. Here, we assessed which component of male stimulation during copulation is involved in the attenuation. On 8 occasions, sexually experienced OVX Long–Evans rats were treated with 10 μg EB and 48 h later assigned to one of six groups that differed in their experience on intermediates tests (2–7). One was given repeated access to a male (EB/Male), and another was placed in the copulation chamber alone (EB/Alone) on intermediate tests. Three groups were given one of three somatosensory stimuli by the experimenter: manual flank stimulation (FLS), clitoral stimulation (CLS), or vaginocervical stimulation (VCS). Finally, the control group was left undisturbed in the animal care facility (ACF). Sexual behaviors were measured on Tests 1 and 8. VCS received from the experimenter (VCS) or from the male during copulation (EB/Male) attenuated the magnitude of the sensitization of appetitive sexual behaviors compared with those that were not brought to the testing rooms (ACF), and the effect was most pronounced on sexual solicitations. These results suggest that VCS received during penile intromission inhibits the sensitization of sexually appetitive behaviors by repeated administration of EB. As such, repeated administration of EB may oppose those mechanisms that induce estrous termination, perhaps by sensitizing inhibitory processes within the ventromedial hypothalamus that typically prevent the display of sexual behaviors (i.e., by facilitating disinhibition).  相似文献   

12.
Male-typical behavior is dependent on testosterone. Castrated males gradually stop mating and engaging in sexual behaviors. Castrates treated with testosterone regain motivation and sex behaviors over time. Although this effect is well characterized, the specific mechanisms by which testosterone treatment recovers sexual behaviors remain unknown. The medial preoptic area (MPOA) is a likely site for testosterone's action on copulation. The integrity of the area is essential for the expression of male sex behavior; and the MPOA is densely populated with receptors for gonadal steroids. Moreover testosterone appears to regulate synaptic efficacy in the MPOA. Exposure to sexually relevant stimuli stimulates the MPOA but only in the presence of circulating testosterone. Sites afferent to the area respond to similar exposure independent of the hormonal milieu suggesting that testosterone mediates communication between the MPOA and its afferents. The protracted time course suggests that the effects of steroidal manipulation are mediated by structural changes. The present experiment evaluated this hypothesis by comparing dendritic spine density among Syrian hamsters that were castrated, castrated and treated with testosterone, or were left gonadally intact. Brains were sectioned and stained using the rapid Golgi stain protocol (FD Neurotechnologies, Baltimore), and the spine density, dendrite length, and the number of branches were compared among groups. Intact and testosterone replaced animals had more spines and greater spine density but did not differ in dendrite length and branching from castrated animals. These results suggest that existing dendrites increase the number of spines available for synapse formation but do not extend their dendrites in response to testosterone treatment.  相似文献   

13.
Sexual receptivity was evaluated in female and male pigs that had experienced varying periods of exposure to testosterone pre- and postnatally. For prenatal exposure, pregnant sows were treated with testosterone propionate (TP) from Day 29-35 or Day 39-45 of gestation at a dosage that caused virilization of the external genitalia of their female offspring. Eighty-three percent of the females that received TP prenatally had regular estrous cycles, but reached puberty later than control females. Only 26% of the females that received TP both pre- and postnatally (4-6 mo of age) were observed in estrus by 10 mo of age. After ovariectomy and acute treatment with estradiol benzoate (EB), the proportion of females that showed the immobilization response (receptivity) was similar for all groups of females independent of pre- or postnatal TP treatment. Females treated prenatally from Day 39-45 showed the immobilization response for fewer days after treatment with a high dosage of EB than did controls. On the basis of these observations, we conclude that receptivity in female pigs is not affected greatly by testosterone treatment at the stages of development that were investigated. Males castrated at birth and treated with a single injection of EB after 9.5 mo showed the immobilization response. In contrast, few males castrated at 8 mo or castrated at birth and treated with TP from 3 to 6 mo showed the immobilization response after EB treatment. These observations provide direct evidence for a postnatal component of testosterone-dependent defeminization of receptivity in male pigs.  相似文献   

14.
Male rats castrated neonatally and treated with a combination of 0.5 μg estradiol benzoate (EB) plus 50μg dihydrotestosterone propionate (DHTP) for the next 14 days displayed normal sexual behavior when injected with testosterone propionate (TP) in adulthood. Neither EB nor DHTP alone had this developmental effect inasmuch as only 20–25% of the neonatal castrates treated with just 0.1, 0.5, or 10 μg EB, or 50 μg DHTP, displayed ejaculatory responses. The periodic application of mildly painful electric shock, which has been previously shown to markedly facilitate ejaculatory responding in normal male rats, failed to improve sexual performance in these latter subjects. This was true even of the castrates treated neonatally with DHTP which frequently intromitted. Castrates treated with EB or DHTP alone neonatally were subjected to spinal transection (after testing of sexual behavior) for examination of penile reflexes. Those treated with DHTP showed normal reflexes, characterized by numerous erections and flips, indicating the presumably nonaromatizable DHTP has developmental effects on penile reflexes similar to those of testosterone. Subjects treated with EB, including four animals that had ejaculated at least once, displayed very few, if any, erections on reflex tests and no flips. These results show that sometimes intromissive and ejaculatory patterns can occur even though the animal appears to have little or no capacity for penile reflexes.  相似文献   

15.
Castrated male Japanese quail were injected for 15 days with 1 mg/day of testosterone propionate (TP), testosterone (T), androstenedione (AE), androsterone (AO), 5α-dihydrotestosterone benzoate (5α-DHTB), or 5β-dihydrotestosterone (5β-DHT), or with oil. Copulation was activated to a significant extent only by TP and T. Strutting was activated only by TP, T, and AE. Proctodeal (foam) glands were well-developed in birds injected with TP, T, AE, or 5α-DHTB. Additional data were obtained following implantation of pellets of crystalline T, AE, AO, or 5α-DHT. T pellets activated copulation, but AO and 5α-DHT pellets did not. Effects of AE require further study. These results suggest that conversion of androgen to estrogen is necessary for the activation of copulation in the male quail.  相似文献   

16.
The purpose of the present investigation was to determine if estrogen, aromatizable androgen or nonaromatizable androgen is capable of (1) inducing copulatory behavior and (2) inhibiting the postcastration rise in plasma LH. Castrate male rats were injected daily with either 1 mg testosterone (T), androstenedione (A), dihydrotestosterone (DHT), or 25 μg estradiol benzoate (EB) or oil and tested weekly for masculine behavior and for lordosis behavior after 38 days of steroid treatment. On day 40 blood was collected for radioimmunoassay of plasma LH. At least 89% of the males treated with T, A, or EB and 55% of those treated with DHT displayed ejaculatory behavior whereas none of the oil-treated males showed male copulatory behavior. Only estrogen-treated males displayed lordosis behavior. T and to a lesser extent A treatment reduced high levels of plasma LH; however, DHT and EB further reduced plasma LH to undectable levels. The relative potency of the steroid effect in stimulating accessory sex tissues followed the order: DHT > T > A > EB = oil. Significant dissociation was observed between the effects of these steroids on peripheral morphology, negative feedback, and mating behavior. These results indicate that masculine behavior is facilitated to the greatest extent, although not exclusively, by centrally acting aromatizable androgen or estrogen, whereas under the present conditions only estrogen stimulates feminine behavior.  相似文献   

17.
Oxytocin (OT) is a versatile neuropeptide that is involved in a variety of mammalian behaviors, and its role in reproductive function and behavior has been well established. The majority of pharmacological studies of the effects of OT on male sexual behavior have focused on the paraventricular nucleus (PVN), ventral tegmental area (VTA), hippocampus, and amygdala. Less attention has been given to the medial preoptic area (MPOA), a major integrative site for male sexual behavior. The present study investigated the effects of intra-MPOA administration of OT and (d(CH2)51, Tyr(Me)2, Thr4, Orn8, Tyr-NH29)-vasotocin, an OT antagonist (OTA), on copulation in the male rat. The relationship between OT receptor (OTR) binding levels in the MPOA and sexual efficiency was also explored. Microinjection of OT into the MPOA facilitated copulation in sexually experienced male rats, whereas similar injections of an OTA inhibited certain aspects of copulation but had no significant effect on locomotor activity in an open field. Contrary to expectation, sexually efficient males had lower levels of OTR binding in the rostral MPOA compared to inefficient animals. The present data suggest that OT activity in the MPOA is not necessary for the expression of male sexual behavior but is sufficient to facilitate copulatory behaviors and improve sexual efficiency in sexually experienced male rats. These data also suggest that OTR activity in the MPOA stimulates anogenital investigation, facilitates the initiation of copulation, and plays a role in the sensitization effect of the first ejaculation on subsequent ejaculations.  相似文献   

18.
The physiological responses of luteinizing hormone, testosterone and cortisol in sexually experienced Ile de France rams to the introduction of estrous females were studied during the nonbreeding season. Blood sampling were collected from males for 7 h at 20-min intervals, starting 3 h before stimulation by estrous females. The differences in hormonal secretions were tested by comparisons between pretreatment and treatment Periods in 45 stimulated rams. Comparisons were conducted between rams that had increased LH pulse frequency and those that did not, between rams that ejaculated and those that did not, and between rams that were in direct physical contact and those that were kept at a distance of 30 cm from estrous females. Twenty-five rams (55% of the total) showed significant increases in LH pulse frequency (range, 0.80 to 4.00 peaks/ram/6 h, P<0.05), in basal and mean LH levels (1.5- and 2.5-fold, respectively), and in mean testosterone levels (3.5-fold). More frequent LH pulses had been found during the pretreatment period in 20 rams without increased LH pulse frequency. Eight ejaculating rams showed higher cortisol and mean, basal, and peak LH amplitude levels. Deprivation of physical contact with estrous females was associated with an absence of endocrine response. These results suggest that olfactory and/or tactile cues may be involved in the female effect on hormone levels.  相似文献   

19.
This series of experiments sought to determine whether conversion of androgen to estrogen is important in the activation of male sexual behavior in quail by seeing if an antiestrogen will block androgen stimulated copulation in this species. Experiment I compared the ability of two antiestrogens, MER-25 (5 mg/day) and CI-628 (2 mg/day), to block estrogen stimulated characteristics in female quail. Both treatments greatly reduced oviduct growth in “photically castrated” females given estradiol benzoate (EB, 50 μg/day), but only CI-628 reduced receptivity in these birds. In Experiment II surgically castrated males given 50 μg/day EB together with 2 mg/day CI-628 were much less receptive than castrated males given EB alone, and in addition copulated in fewer tests. In Experiments III, IV, and V, castrated males given testosterone propionate (TP) together with CI-628 were compared with males given TP alone. The ability of CI-628 to suppress TP-stimulated copulation increased with increasing CI/TP dosage ratio, and at the highest ratio (4:1), CI-628 effectively blocked copulation in five out of seven birds. Those birds that did copulate did so in fewer tests and performed fewer cloacal contact movements. CI-628 had no antiandrogenic effects in these experiments. These results suggest that estrogens may be important active metabolites of testosterone with respect to quail copulation.  相似文献   

20.
These studies determined the local acute responsiveness of the testis to intratesticular administration of human chorionic gonadotropin (hCG) under basal, stimulated (systemic hCG pre-treated), hypogonadotropic (steroid pre-treatment) and hyperprolactinemic conditions in male mice. In addition, testicular testosterone (T) levels were determined after intratesticular administration of the aromatase inhibitor, 4-hydroxyandrostenedione (4-OHA) or progesterone under basal or hCG-stimulated conditions. Intratesticular administration of 0.025, 0.25, 2.5 or 25 mIU hCG resulted in a dose-dependent (3- to 14-fold) increase in testicular T concentrations in hCG compared to vehicle-injected testes. Systemic (i.p.) pre-treatment with 5 IU hCG 24 h before prevented any further increases in the already elevated (10-fold basal) T levels after direct intratesticular hCG injection. Pretreatment with 250 micrograms testosterone propionate (TP) reduced basal testicular T concentrations, but resulted in increased responsiveness to intratesticular hCG administration. In contrast, estradiol benzoate (EB) pretreatment, which also reduced basal testicular T concentrations, did not affect the testicular responsiveness to hCG. Hyperprolactinemia reduced testicular responsiveness to intratesticular administration of 0.025, 0.25 or 2.5 mIU hCG, but basal levels of testicular T were elevated. One hour after intratesticular injections of an aromatase inhibitor, 4-OHA; (0.25 micrograms) testis, T levels were increased in males pre-treated with 5 IU hCG (i.p.) 24 h earlier. Higher doses of 4-OHA (2.5, 25 or 250 micrograms) resulted in significant, dose-related increases in basal testicular T levels which were attenuated by hCG-pre-treatment. Intratesticular administration of 20 micrograms progesterone increased testicular T concentrations 2.7-fold, but this effect was attenuated (1.5-fold) in hCG-pre-treated mice, suggesting that enzymatic lesions beyond progesterone may be involved in hCG-induced testicular desensitization. These results indicate that testicular responsiveness to hCG depends on the existing levels of gonadotropic stimulation. However, it is evident that estrogens and prolactin also influence the sensitivity of the testis to gonadotropin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号