首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reddy BV  Li WW  Bourne PE 《Biopolymers》2002,64(3):139-145
By using three-dimensional (3D) structure alignments and a previously published method to determine Conserved Key Amino Acid Positions (CKAAPs) we propose a theoretical method to design mutations that can be used to morph the protein folds. The original Paracelsus challenge, met by several groups, called for the engineering of a stable but different structure by modifying less than 50% of the amino acid residues. We have used the sequences from the Protein Data Bank (PDB) identifiers 1ROP, and 2CRO, which were previously used in the Paracelsus challenge by those groups, and suggest mutation to CKAAPs to morph the protein fold. The total number of mutations suggested is less than 40% of the starting sequence theoretically improving the challenge results. From secondary structure prediction experiments of the proposed mutant sequence structures, we observe that each of the suggested mutant protein sequences likely folds to a different, non-native potentially stable target structure. These results are an early indicator that analyses using structure alignments leading to CKAAPs of a given structure are of value in protein engineering experiments.  相似文献   

2.
MOTIVATION: Data on both single nucleotide polymorphisms and disease-related mutations are being collected at ever-increasing rates. To understand the structural effects of missense mutations, we consider both classes under the term single amino acid polymorphisms (SAAPs) and we wish to map these to protein structure where their effects can be analyzed. Our initial aim therefore is to create a completely automatically maintained database of SAAPs mapped to individual residues in the Protein Data Bank (PDB) updated as new mutations or structures become available. RESULTS: We present an integrated pipeline for the automated mapping of SAAP data from HGVbase to individual PDB residues. Achieving this in a completely automated and reliable manner is a complex task. Data extracted from HGVbase are mapped to EMBL entries to confirm whether the mutation occurs in an exon and, if so, where in the sequence it occurs. From there we map to Swiss-Prot entries and thence to the PDB. AVAILABILITY: The resulting database may be accessed over the web at http://www.bioinf.org.uk/saap/ or http://acrmwww.biochem.ucl.ac.uk/saap/ CONTACT: a.martin@biochem.ucl.ac.uk.  相似文献   

3.
HSSP (http: //www.sander.embl-ebi.ac.uk/hssp/) is a derived database merging structure (3-D) and sequence (1-D) information. For each protein of known 3D structure from the Protein Data Bank (PDB), we provide a multiple sequence alignment of putative homologues and a sequence profile characteristic of the protein family, centered on the known structure. The list of homologues is the result of an iterative database search in SWISS-PROT using a position-weighted dynamic programming method for sequence profile alignment (MaxHom). The database is updated frequently. The listed putative homologues are very likely to have the same 3D structure as the PDB protein to which they have been aligned. As a result, the database not only provides aligned sequence families, but also implies secondary and tertiary structures covering 33% of all sequences in SWISS-PROT.  相似文献   

4.
RNABase is a unified database of all three-dimensional structures containing RNA deposited in either the Protein Data Bank (PDB) or Nucleic Acid Data Base (NDB). For each structure, RNABase contains a brief summary as well as annotation of conformational parameters, identification of possible model errors, Ramachandran-style conformational maps and classification of ribonucleotides into conformers. These same analyses can also be performed on structures submitted by users. To facilitate access, structures are automatically placed into a variety of functional and structural categories, including: ribozymes, pseudoknots, etc. RNABase can be freely accessed on the web at http://www.rnabase.org. We are committed to maintaining this database indefinitely.  相似文献   

5.
Cheng J  Randall A  Baldi P 《Proteins》2006,62(4):1125-1132
Accurate prediction of protein stability changes resulting from single amino acid mutations is important for understanding protein structures and designing new proteins. We use support vector machines to predict protein stability changes for single amino acid mutations leveraging both sequence and structural information. We evaluate our approach using cross-validation methods on a large dataset of single amino acid mutations. When only the sign of the stability changes is considered, the predictive method achieves 84% accuracy-a significant improvement over previously published results. Moreover, the experimental results show that the prediction accuracy obtained using sequence alone is close to the accuracy obtained using tertiary structure information. Because our method can accurately predict protein stability changes using primary sequence information only, it is applicable to many situations where the tertiary structure is unknown, overcoming a major limitation of previous methods which require tertiary information. The web server for predictions of protein stability changes upon mutations (MUpro), software, and datasets are available at http://www.igb.uci.edu/servers/servers.html.  相似文献   

6.
The web application oriented on identification and visualization of protein regions encoded by exons is presented. The Exon Visualiser can be used for visualisation on different levels of protein structure: at the primary (sequence) level and secondary structures level, as well as at the level of tertiary protein structure. The programme is suitable for processing data for all genes which have protein expressions deposited in the PDB database. The procedure steps implemented in the application: I) loading exons sequences and theirs coordinates from GenBank file as well as protein sequences: CDS from GenBank and aminoacid sequence from PDB II) consensus sequence creation (comparing amino acid sequences form PDB file with the CDS sequence from GenBank file) III) matching exon coordinates IV) visualisation in 2D and 3D protein structures. Presented web-tool among others provides the color-coded graphical display of protein sequences and chains in three dimensional protein structures which are correlated with the corresponding exons.

Availability

http://149.156.12.53/ExonVisualiser/  相似文献   

7.
The functional evolution of proteins advances through gene duplication followed by functional drift, whereas molecular evolution occurs through random mutational events. Over time, protein active-site structures or functional epitopes remain highly conserved, which enables relationships to be inferred between distant orthologs or paralogs. In this study, we present the first functional clustering and evolutionary analysis of the RCSB Protein Data Bank (RCSB PDB) based on similarities between active-site structures. All of the ligand-bound proteins within the RCSB PDB were scored using our Comparison of Protein Active-site Structures (CPASS) software and database ( http://cpass.unl.edu/ ). Principal component analysis was then used to identify 4431 representative structures to construct a phylogenetic tree based on the CPASS comparative scores ( http://itol.embl.de/shared/jcatazaro ). The resulting phylogenetic tree identified a sequential, step-wise evolution of protein active-sites and provides novel insights into the emergence of protein function or changes in substrate specificity based on subtle changes in geometry and amino acid composition.  相似文献   

8.
We present the development of a web server, a protein short motif search tool that allows users to simultaneously search for a protein sequence motif and its secondary structure assignments. The web server is able to query very short motifs searches against PDB structural data from the RCSB Protein Databank, with the users defining the type of secondary structures of the amino acids in the sequence motif. The output utilises 3D visualisation ability that highlights the position of the motif in the structure and on the corresponding sequence. Researchers can easily observe the locations and conformation of multiple motifs among the results. Protein short motif search also has an application programming interface (API) for interfacing with other bioinformatics tools. AVAILABILITY: The database is available for free at http://birg3.fbb.utm.my/proteinsms.  相似文献   

9.
PSST-2.0     
PSST-2.0 (Protein Data Bank [PDB] Sequence Search Tool) is an updated version of the earlier PSST (Protein Sequence Search Tool), and the philosophy behind the search engine has remained unchanged. PSST-2.0 is a Web-based, interactive search engine developed to retrieve required protein or nucleic acid sequence information and some of its related details, primarily from sequences derived from the structures deposited in the PDB (the database of 3-dimensional [3-D] protein and nucleic acid structures). Additionally, the search engine works for a selected subset of 25% or 90% non-homologous protein chains. For some of the selected options, the search engine produces a detailed output for the user-uploaded, 3-D atomic coordinates of the protein structure (PDB file format) from the client machine through the Web browser. The search engine works on a locally maintained PDB, which is updated every week from the parent server at the Research Collaboratory for Structural Bioinformatics, and hence the search results are up to date at any given time. AVAILABILITY: PSST-2.0 is freely accessible via http://pranag.physics.iisc.ernet.in/psst/ or http://144.16.71.10/psst/.  相似文献   

10.
SUMMARY: With the continuous growth of the RCSB Protein Data Bank (PDB), providing an up-to-date systematic structure comparison of all protein structures poses an ever growing challenge. Here, we present a comparison tool for calculating both 1D protein sequence and 3D protein structure alignments. This tool supports various applications at the RCSB PDB website. First, a structure alignment web service calculates pairwise alignments. Second, a stand-alone application runs alignments locally and visualizes the results. Third, pre-calculated 3D structure comparisons for the whole PDB are provided and updated on a weekly basis. These three applications allow users to discover novel relationships between proteins available either at the RCSB PDB or provided by the user. Availability and Implementation: A web user interface is available at http://www.rcsb.org/pdb/workbench/workbench.do. The source code is available under the LGPL license from http://www.biojava.org. A source bundle, prepared for local execution, is available from http://source.rcsb.org CONTACT: andreas@sdsc.edu; pbourne@ucsd.edu.  相似文献   

11.
Visualization of residue positions in protein alignments and mapping onto suitable structural models is an important first step in the interpretation of mutations or polymorphisms in terms of protein function, interaction, and thermodynamic stability. Selecting and highlighting large numbers of residue positions in a protein structure can be time-consuming and tedious with currently available software. Previously, a series of tasks and analyses had to be performed one-by-one to map mutations onto 3D protein structures; STRAP-NT is an extension of STRAP that automates these tasks so that users can quickly and conveniently map mutations onto 3D protein structures. When the structure of the protein of interest is not yet available, a related protein can frequently be found in the structure databases. In this case the alignment of both proteins becomes the crucial part of the analysis. Therefore we embedded these program modules into the Java-based multiple sequence alignment program STRAP-NT. STRAP-NT can simultaneously map an arbitrary number of mutations denoted using either the nucleotide or amino acid sequence. When the designations of the mutations refer to genomic sites, STRAP-NT translates them into the corresponding amino acid positions, taking intron-exon boundaries into account. STRAP-NT tightly integrates a number of current protein structure viewers (currently PYMOL, RASMOL, JMOL, and VMD) with which mutations and polymorphisms can be directly displayed on the 3D protein structure model. STRAP-NT is available at the PDB site and at http://www.charite.de/bioinf/strap/ or http://strapjava.de.  相似文献   

12.
PDB-REPRDB is a database of representative protein chains from the Protein Data Bank (PDB). Started at the Real World Computing Partnership (RWCP) in August 1997, it developed to the present system of PDB-REPRDB. In April 2001, the system was moved to the Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) (http://www.cbrc.jp/); it is available at http://www.cbrc.jp/pdbreprdb/. The current database includes 33 368 protein chains from 16 682 PDB entries (1 September, 2002), from which are excluded (a) DNA and RNA data, (b) theoretically modeled data, (c) short chains (1<40 residues), or (d) data with non-standard amino acid residues at all residues. The number of entries including membrane protein structures in the PDB has increased rapidly with determination of numbers of membrane protein structures because of improved X-ray crystallography, NMR, and electron microscopic experimental techniques. Since many protein structure studies must address globular and membrane proteins separately, this new elimination factor, which excludes membrane protein chains, is introduced in the PDB-REPRDB system. Moreover, the PDB-REPRDB system for membrane protein chains begins at the same URL. The current membrane database includes 551 protein chains, including membrane domains in the SCOP database of release 1.59 (15 May, 2002).  相似文献   

13.
Circular dichroism (CD) is a spectroscopic technique commonly used to investigate the structure of proteins. Major secondary structure types, alpha‐helices and beta‐strands, produce distinctive CD spectra. Thus, by comparing the CD spectrum of a protein of interest to a reference set consisting of CD spectra of proteins of known structure, predictive methods can estimate the secondary structure of the protein. Currently available methods, including K2D2, use such experimental CD reference sets, which are very small in size when compared to the number of tertiary structures available in the Protein Data Bank (PDB). Conversely, given a PDB structure, it is possible to predict a theoretical CD spectrum from it. The methodological framework for this calculation was established long ago but only recently a convenient implementation called DichroCalc has been developed. In this study, we set to determine whether theoretically derived spectra could be used as reference set for accurate CD based predictions of secondary structure. We used DichroCalc to calculate the theoretical CD spectra of a nonredundant set of structures representing most proteins in the PDB, and applied a straightforward approach for predicting protein secondary structure content using these theoretical CD spectra as reference set. We show that this method improves the predictions, particularly for the wavelength interval between 200 and 240 nm and for beta‐strand content. We have implemented this method, called K2D3, in a publicly accessible web server at http://www. ogic.ca/projects/k2d3 . Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
STING Millennium Suite (SMS) is a new web-based suite of programs and databases providing visualization and a complex analysis of molecular sequence and structure for the data deposited at the Protein Data Bank (PDB). SMS operates with a collection of both publicly available data (PDB, HSSP, Prosite) and its own data (contacts, interface contacts, surface accessibility). Biologists find SMS useful because it provides a variety of algorithms and validated data, wrapped-up in a user friendly web interface. Using SMS it is now possible to analyze sequence to structure relationships, the quality of the structure, nature and volume of atomic contacts of intra and inter chain type, relative conservation of amino acids at the specific sequence position based on multiple sequence alignment, indications of folding essential residue (FER) based on the relationship of the residue conservation to the intra-chain contacts and Calpha-Calpha and Cbeta-Cbeta distance geometry. Specific emphasis in SMS is given to interface forming residues (IFR)-amino acids that define the interactive portion of the protein surfaces. SMS may simultaneously display and analyze previously superimposed structures. PDB updates trigger SMS updates in a synchronized fashion. SMS is freely accessible for public data at http://www.cbi.cnptia.embrapa.br, http://mirrors.rcsb.org/SMS and http://trantor.bioc.columbia.edu/SMS.  相似文献   

15.
STING and Java Protein Dossier provide a collection of physical-chemical parameters, describing protein structure, stability, function, and interaction, considered one of the most comprehensive among the available protein databases of similar type. Particular attention in STING is paid to the electrostatic potential. It makes use of DelPhi, a well-known tool that calculates this physical-chemical quantity for biomolecules by solving the Poisson Boltzmann equation. In this paper, we describe a modification to the DelPhi program aimed at integrating it within the STING environment. We also outline how the "amino acid electrostatic potential" and the "surface amino acid electrostatic potential" are calculated (over all Protein Data Bank (PDB) content) and how the corresponding values are made searchable in STING_DB. In addition, we show that the STING and Java Protein Dossier are also capable of providing these particular parameter values for the analysis of protein structures modeled in computers or being experimentally solved, but not yet deposited in the PDB. Furthermore, we compare the calculated electrostatic potential values obtained by using the earlier version of DelPhi and those by STING, for the biologically relevant case of lysozyme-antibody interaction. Finally, we describe the STING capacity to make queries (at both residue and atomic levels) across the whole PDB, by looking at a specific case where the electrostatic potential parameter plays a crucial role in terms of a particular protein function, such as ligand binding. BlueStar STING is available at http://www.cbi.cnptia.embrapa.br.  相似文献   

16.
SUMMARY: We provide the scientific community with a web server which gives access to SuMo, a bioinformatic system for finding similarities in arbitrary 3D structures or substructures of proteins. SuMo is based on a unique representation of macromolecules using selected triplets of chemical groups having their own geometry and symmetry, regardless of the restrictive notions of main chain and lateral chains of amino acids. The heuristic for extracting similar sites was used to drive two major large-scale approaches. First, searching for ligand binding sites onto a query structure has been made possible by comparing the structure against each of the ligand binding sites found in the Protein Data Bank (PDB). Second, the reciprocal process, i.e. searching for a given 3D site of interest among the structures of the PDB is also possible and helps detect cross-reacting targets in drug design projects. AVAILABILITY: The web server is freely accessible to academia through http://sumo-pbil.ibcp.fr and full support is available from MEDIT (http://www.medit.fr). CONTACT: mjambon@burnham.org.  相似文献   

17.
The genomes of more than 100 species have been sequenced, and the biological functions of encoded proteins are now actively being researched. Protein function is based on interactions between proteins and other molecules. One approach to assuming protein function based on genomic sequence is to predict interactions between an encoded protein and other molecules. As a data source for such predictions, knowledge regarding known protein-small molecule interactions needs to be compiled. We have, therefore, surveyed interactions between proteins and other molecules in Protein Data Bank (PDB), the protein three-dimensional (3D) structure database. Among 20,685 entries in PDB (April, 2003), 4,189 types of small molecules were found to interact with proteins. Biologically relevant small molecules most often found in PDB were metal ions, such as calcium, zinc, and magnesium. Sugars and nucleotides were the next most common. These molecules are known to act as cofactors for enzymes and/or stabilizers of proteins. In each case of interactions between a protein and small molecule, we found preferred amino acid residues at the interaction sites. These preferences can be the basis for predicting protein function from genomic sequence and protein 3D structures. The data pertaining to these small molecules were collected in a database named Het-PDB Navi., which is freely available at http://daisy.nagahama-i-bio.ac.jp/golab/hetpdbnavi.html and linked to the official PDB home page.  相似文献   

18.
The function of a protein molecule is greatly influenced by its three-dimensional (3D) structure and therefore structure prediction will help identify its biological function. We have updated Sequence, Motif and Structure (SMS), the database of structurally rigid peptide fragments, by combining amino acid sequences and the corre-sponding 3D atomic coordinates of non-redundant (25%) and redundant (90%) protein chains available in the Protein Data Bank (PDB). SMS 2.0 provides information pertaining to the peptide fragments of length 5-14 resi-dues. The entire dataset is divided into three categories, namely, same sequence motifs having similar, intermedi-ate or dissimilar 3D structures. Further, options are provided to facilitate structural superposition using the pro-gram structural alignment of multiple proteins (STAMP) and the popular JAVA plug-in (Jmol) is deployed for visualization. In addition, functionalities are provided to search for the occurrences of the sequence motifs in other structural and sequence databases like PDB, Genome Database (GDB), Protein Information Resource (PIR) and Swiss-Prot. The updated database along with the search engine is available over the World Wide Web through the following URL http://cluster.physics.iisc.ernet.in/sms/.  相似文献   

19.
MOTIVATION: Modeling of protein interactions is often possible from known structures of related complexes. It is often time-consuming to find the most appropriate template. Hypothesized biological units (BUs) often differ from the asymmetric units and it is usually preferable to model from the BUs. RESULTS: ProtBuD is a database of BUs for all structures in the Protein Data Bank (PDB). We use both the PDBs BUs and those from the Protein Quaternary Server. ProtBuD is searchable by PDB entry, the Structural Classification of Proteins (SCOP) designation or pairs of SCOP designations. The database provides the asymmetric and BU contents of related proteins in the PDB as identified in SCOP and Position-Specific Iterated BLAST (PSI-BLAST). The asymmetric unit is different from PDB and/or Protein Quaternary Server (PQS) BUs for 52% of X-ray structures, and the PDB and PQS BUs disagree on 18% of entries. AVAILABILITY: The database is provided as a standalone program and a web server from http://dunbrack.fccc.edu/ProtBuD.php.  相似文献   

20.
Protein docking procedures carry out the task of predicting the structure of a protein–protein complex starting from the known structures of the individual protein components. More often than not, however, the structure of one or both components is not known, but can be derived by homology modeling on the basis of known structures of related proteins deposited in the Protein Data Bank (PDB). Thus, the problem is to develop methods that optimally integrate homology modeling and docking with the goal of predicting the structure of a complex directly from the amino acid sequences of its component proteins. One possibility is to use the best available homology modeling and docking methods. However, the models built for the individual subunits often differ to a significant degree from the bound conformation in the complex, often much more so than the differences observed between free and bound structures of the same protein, and therefore additional conformational adjustments, both at the backbone and side chain levels need to be modeled to achieve an accurate docking prediction. In particular, even homology models of overall good accuracy frequently include localized errors that unfavorably impact docking results. The predicted reliability of the different regions in the model can also serve as a useful input for the docking calculations. Here we present a benchmark dataset that should help to explore and solve combined modeling and docking problems. This dataset comprises a subset of the experimentally solved ‘target’ complexes from the widely used Docking Benchmark from the Weng Lab (excluding antibody–antigen complexes). This subset is extended to include the structures from the PDB related to those of the individual components of each complex, and hence represent potential templates for investigating and benchmarking integrated homology modeling and docking approaches. Template sets can be dynamically customized by specifying ranges in sequence similarity and in PDB release dates, or using other filtering options, such as excluding sets of specific structures from the template list. Multiple sequence alignments, as well as structural alignments of the templates to their corresponding subunits in the target are also provided. The resource is accessible online or can be downloaded at http://cluspro.org/benchmark , and is updated on a weekly basis in synchrony with new PDB releases. Proteins 2016; 85:10–16. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号