首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Hyperinsulinemia plays a major role in the pathogenesis of vascular disease. Restenosis occurs at an accelerated rate in hyperinsulinemia and is dependent on increased vascular smooth muscle cell movement from media to neointima. PDGF plays a critical role in mediating neointima formation in models of vascular injury. We have reported that PDGF increases the levels of protein tyrosine phosphatase PTP1B and that PTP1B suppresses PDGF-induced motility in cultured cells and that it attenuates neointima formation in injured carotid arteries. Others have reported that insulin enhances the mitogenic and motogenic effects of PDGF in cultured smooth muscle cells and that hyperinsulinemia promotes vascular remodeling. In the present study, we tested the hypothesis that insulin amplifies PDGF-induced cell motility by suppressing the expression and function of PTP1B. We found that chronic but not acute treatment of cells with insulin enhances PDGF-induced motility in differentiated cultured primary rat aortic smooth muscle cells and that it suppresses PDGF-induced upregulation of PTP1B protein. Moreover, insulin suppresses PDGF-induced upregulation of PTP1B mRNA levels, PTP1B enzyme activity, and binding of PTP1B to the PDGF receptor-beta, and it enhances PDGF-induced PDGF receptor phosphotyrosylation. Treatment with insulin induces time-dependent upregulation of phosphatidylinositol 3-kinase (PI3-kinase)-delta and activation of Akt, an enzyme downstream of PI3-kinase. Finally, inhibition of PI3-kinase activity, or its function, by pharmacological or genetic means rescues PTP1B activity in insulin-treated cells. These observations uncover novel mechanisms that explain how insulin amplifies the motogenic capacity of the pivotal growth factor PDGF.  相似文献   

2.
Treatment of aortic smooth muscle cells with PDGF induces the upregulation of protein tyrosine phosphatase 1B (PTP1B). PTP1B, in turn, decreases the function of several growth factor receptors, thus completing a negative feedback loop. Studies have reported that PDGF induces the downregulation of PKG as part of a repertoire of dedifferentiation of vascular smooth muscle cells. Other studies have reported that chronic nitric oxide (NO) treatment also induces the downregulation of PKG. In the present study, we tested the hypothesis that the downregulation of PKG by PDGF or NO in differentiated rat aortic smooth muscle cells can be attributed to the upregulation of PTP1B. We found that treatment with PDGF or NO induced an upregulation of PTP1B levels. Overexpression of PTP1B induced a marked downregulation of PKG mRNA and protein levels, whereas the expression of dominant negative PTP1B or short interfering RNA directed against PTP1B blocked the capacity of PDGF or NO to decrease PKG levels. We conclude that the upregulation of PTP1B by PDGF or NO is both necessary and sufficient to induce the downregulation of PKG via an effect on PKG mRNA levels.  相似文献   

3.
Nitric oxide (NO) is thought to play an important role as an inhibitor of vascular cell proliferation, motility, and neointima formation. This effect is mediated, in part, via the upregulation of protein tyrosine phosphatase (PTP)1B. Conversely, studies have reported that in presumably hyperinsulinemic mice fed a high-fat diet, NO enhances vascular remodeling, whereas a deficit of NO attenuates vascular remodeling. We have reported that in differentiated cultured smooth muscle cells treated with insulin, NO induces a motogenic effect that is dependent on Src homology-2 domain PTP 2 (SHP2) upregulation. In the present study, we describe novel mechanisms relevant to the motogenic effect of NO. Treatment of cultured cells with the selective angiontensin type 1 receptor antagonist losartan, but not with the selective angiotensin type 2 receptor antagonist PD-123319, blocked the comotogenic capacity of NO and insulin. Insulin and NO increased the secretion of ANG II into the culture media by 2- and 2.5-fold (P < 0.05), respectively, whereas treatment of cells with ANG II uncovered the motogenic effect of NO (1.4-fold above control, P < 0.05) and decreased the levels of PTP1B to 45% of control (P < 0.05). Suppression of PTP1B function was sufficient to uncover the motogenic effect of NO. The capacity of insulin to suppress PTP1B activity was blocked by losartan, implicating ANG II function in mediating this effect. Both insulin and ANG II induced the upregulation of phosphatidyl inositol 3-kinase (PI3K)-δ by two- to threefold (P < 0.05), and this effect was both necessary and sufficient to uncover NO-induced motogenesis. Finally, suppression of PTP1B function potentiated, whereas overexpression of PTP1B inhibited, SHP2-induced motogenesis. These results support the hypothesis that the comotogenic effect of insulin and NO occurs via an ANG II-mediated effect involving the suppression of PTP1B and upregulation of PI3K-δ and SHP2.  相似文献   

4.
Protein tyrosine phosphatases (PTPs) are regulators of growth factor signalling in vascular remodelling. The aim of this study was to evaluate PTP expression in the context of PDGF-signalling in the adventitia after angioplasty. Utilising a rat carotid artery model, the adventitial layers of injured and non-injured vessels were laser microdissected. The mRNA expression of the PDGF β-receptor, the ligands PDGF-A/B/C/D and the receptor-antagonising PTPs (DEP-1, TC-PTP, SHP-2, PTP1B) were determined and correlated to vascular morphometrics, proliferation markers and PDGF β-receptor phosphorylation. The levels of the PDGF β-receptor, PDGF-C and PDGF-D were upregulated concurrently with the antagonising PTPs DEP-1 and TC-PTP at day 8, and normalised at day 14 after vessel injury. Although the proliferation parameters were time-dependently altered in the adventitial layer, the phosphorylation of the PDGF β-receptor remained unchanged. The expression dynamics of specific PTPs indicate a regulatory role of PDGF-signalling also in the adventitia during vascular remodelling.  相似文献   

5.
The heptahelical AT(1) G-protein-coupled receptor lacks inherent tyrosine kinase activity. Angiotensin II binding to AT(1) nevertheless activates several tyrosine kinases and stimulates both tyrosine phosphorylation and phosphatase activity of the SHP-2 tyrosine phosphatase in vascular smooth muscle cells. Since a balance between tyrosine kinase and tyrosine phosphatase activities is essential in angiotensin II signaling, we investigated the role of SHP-2 in modulating tyrosine kinase signaling pathways by stably transfecting vascular smooth muscle cells with expression vectors encoding wild-type SHP-2 protein or a catalytically inactive SHP-2 mutant. Our data indicate that SHP-2 is an efficient negative regulator of angiotensin II signaling. SHP-2 inhibited c-Src catalytic activity by dephosphorylating a positive regulatory tyrosine 418 within the Src kinase domain. Importantly, SHP-2 expression also abrogated angiotensin II-induced activation of ERK, whereas expression of catalytically inactive SHP-2 caused sustained ERK activation. Thus, SHP-2 likely regulates angiotensin II-induced MAP kinase signaling by inactivating c-Src. These SHP-2 effects were specific for a subset of angiotensin II signaling pathways, since SHP-2 overexpression failed to influence Jak2 tyrosine phosphorylation or Fyn catalytic activity. These data show SHP-2 represents a critical negative regulator of angiotensin II signaling, and further demonstrate a new function for this phosphatase in vascular smooth muscle cells.  相似文献   

6.
The protein tyrosine phosphatase Src homology 2 (SH2) domain-containing phosphatase 2 (SHP-2) is an important signalling component of growth factors, cytokines and oncogenic bacteria. Studies have identified that gain-of-function SHP-2 mutations were associated with the Noonan syndrome, various kinds of leukaemias and solid tumours. However, it is complicated to find the specific inhibitors for SHP-2 over the closely related tyrosine phosphatase SHP-1 and protein tyrosine phosphatase 1B (PTP1B). The aim of this study was to develop potent and specific SHP-2 inhibitors as anticancer and antileukaemia agents. So the ZINC fragment database was searched for finding the optimal compound with the core hopping technique. As a result, the 15 compounds were obtained. It was observed by molecular dynamics simulations that those compounds interact with the active site of SHP-2 more strongly than with the corresponding sites of the closely related protein tyrosine phosphatases, SHP-1 and PTP1B. The ‘absorption, distribution, metabolism and excretion’ prediction shows that the 15 compounds may become candidates for developing powerful and novel drugs for treating Noonan syndrome, juvenile myelomonocytic leukaemia and possibly other SHP-2-associated cancers.  相似文献   

7.
Previous studies have shown that an increased intake of dietary flavonoids is associated with a decreased risk of cardiovascular diseases (CVDs). PDGF is a major mitogen for vascular smooth muscle cell (VSMC) and participates in the pathogenesis of many CVDs. The study investigated whether the flavone chrysin affected PDGF functions in VSMCs and neointma formation in rat artery. We found that chrysin concentration-dependently inhibited PDGF-induced proliferation and chemotaxis and reduced PDGF signaling in VSMCs. Chrysin attenuated H(2)O(2) signaling and PDGF-induced reactive oxygen species production and NADPH oxidase activation but did not interfere with PDGF binding to VSMCs. The further analyses revealed that chrysin relieved PDGF-induced inhibition on activity of protein tyrosine phosphatase (PTP) and reduced PDGF-induced oxidation of PTP cysteinyl active site. Moreover, it inhibited PDGF receptor autophosphorylation induced by low-dose vanadate (an inhibitor for PTP). The effect of chrysin, but not of the flavonoid (-)-epigallocatechin-3-gallate and antioxidant N-acetylcysteine, on PDGF signaling and PTP activity was reversed by depletion of intracellular glutathione (GSH), suggesting an involvement of chrysin on GSH/glutaredoxin system for PTP reactivation. Finally, to demonstrate the effectiveness of chrysin in vivo, we showed that oral administration of chrysin before and after angioplasty could reduce neointima formation in balloon-injured carotid artery in rats. In conclusion, we provide here evidence that chrysin can regulate intracellular PTP activity during PDGF signaling, inhibits PDGF-induced VSMC proliferation and chemotaxis, and reduces arterial intima hyperplasia in vivo.  相似文献   

8.
Angiotensin II (ANG II) is a multifunctional hormone that exerts potent vasoconstrictor and hypertrophic effects on vascular smooth muscle. Here, we demonstrate that the p38 mitogen-activated protein (MAP) kinase pathway is involved in ANG II-induced vascular contraction. Addition of ANG II to rat aortic smooth muscle cells (SMC) caused a rapid and transient increase of p38 activity through activation of the AT(1) receptor subtype. This response to ANG II was strongly attenuated by pretreating cells with antioxidants and diphenylene iodonium and was mimicked by exposure of cells to H(2)O(2). Stimulation of p38 by ANG II resulted in the enzymatic activation of MAP kinase-activated protein (MAPKAP) kinase-2 and the phosphorylation of heat shock protein 27 (HSP27) in aortic SMC. Pretreatment of cells with the specific p38 MAP kinase inhibitor SB-203580 completely blocked the ANG II-dependent activation of MAPKAP kinase-2 and phosphorylation of HSP27. ANG II also caused a robust activation of MAPKAP kinase-2 in the intact rat aorta. Incubation with SB-203580 significantly decreased the potency of ANG II to induce contraction of rat aortic rings and depressed the maximal hormone response. These results suggest that the p38 MAP kinase pathway selectively modulates the vasoconstrictor action of ANG II in vascular smooth muscle.  相似文献   

9.
Protein tyrosine phosphatase (PTP) in-gel assays were used to explore association of PTPs with the platelet-derived growth factor beta-receptor (PDGFbetaR). Five PTP activity bands of approximately 120, approximately 70, approximately 60, approximately 53, and approximately 45 kDa could be detected in PDGFbetaR immunoprecipitates and were identified by immunodepletion experiments as PTP-PEST, SHP-2, an active fragment of SHP-2, PTP-1B, and T-cell PTP, respectively. The PTP pattern that was obtained was similar in PDGFbetaR immunoprecipitates from HEK 293 cells overexpressing the human PDGFbetaR and from murine fibroblasts. Association of PTP-1B with the PDGFbetaR was stabilized by pretreatment of the cells with hydrogen peroxide. The epidermal growth factor receptor (EGFR) immunoprecipitated from fibroblasts, and c-Kit isolated from CHRF myeloid cells, were associated with partially overlapping but quantitatively different patterns of PTPs. PTP-PEST was the predominant PTP in EGFR immunoprecipitates, and SHP-1 appeared in c-Kit immunoprecipitates. We propose that the differential association of PTPs with different RTKs is related to their respective contributions to regulation of RTK signaling.  相似文献   

10.
11.
Angiotensin II (Ang II) has two major receptor isoforms, AT1 and AT2. AT1 transphosphorylates Ca(2+)-sensitive tyrosine kinase Pyk2 to activate c-Jun NH2-terminal kinase (JNK). Although AT2 inactivates extracellular signal-regulated kinase (ERK) via tyrosine phosphatases (PTP), the action of AT2 on Pyk2 and JNK remains undefined. Using AT2-overexpressing vascular smooth muscle cells (AT2-VSMC) from AT2-transgenic mice, we studied these undefined actions of AT2. AT1-mediated JNK activity was increased 2.2-fold by AT2 inhibition, which was abolished by orthovanadate. AT2 did not affect AT1-mediated Pyk2 phosphorylation, but attenuated c-Jun mRNA accumulation by 32%. The activity of src-homology 2 domain-containing PTP (SHP-1) was significantly upregulated 1 min after AT2 stimulation. Stable overexpression of SHP-1 dominant negative mutant in AT2-VSMC completely abolished AT2-mediated inhibition of JNK activation and c-Jun expression. These findings suggest that AT2 inhibits JNK activity by affecting the downstream signal of Pyk2 in a SHP-1-dependent manner, leading to a decrease in c-Jun expression.  相似文献   

12.
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tissue remodeling processes. TIMP-1 is the main native inhibitor of MMPs and it contributes to the development of tissue fibrosis. It is known that ANG II plays a fundamental role in vascular remodeling. In this study, we investigated whether ANG II modulates TIMP-1 expression in rat aortic smooth muscle cells. In vitro, ANG II induces TIMP-1 mRNA expression in a dose-dependent manner. The maximal increase in TIMP-1 expression was present after 3 h of ANG II stimulation. The ANG II increase in TIMP-1 expression was mediated by the ANG type 1 receptors because it was blocked by losartan. The increase in TIMP-1 expression was present after the first ANG II treatment, whereas repeated treatments (3 and 5 times) did not modify TIMP-1 expression. In vivo, exogenous ANG II was administered to Sprague-Dawley rats (200 ng. kg(-1). min(-1) sc) for 6 and 25 days. Control rats received physiological saline. After treatment, systolic blood pressure was significantly higher (P < 0.01), whereas plasma renin activity was suppressed (P < 0.01), in ANG II-treated rats. ANG II increased TIMP-1 expression in the aorta of ANG II-treated rats both at the mRNA (P < 0.05) and protein levels as evaluated by Western blotting (P < 0.05) and/or immunohistochemistry. Neither histological modifications at the vascular wall nor differences in collagen content in the tunica media were present in both the ANG II- and saline-treated groups. Our data demonstrate that ANG II increases TIMP-1 expression in rat aortic smooth muscle cells. In vivo, both short- and long-term chronic ANG II treatments increase TIMP-1 expression in the rat aorta. TIMP-1 induction by ANG II in aortic smooth muscle cells occurs in the absence of histological changes at the vascular wall.  相似文献   

13.
Gicerin is a cell adhesion molecule belonging to the immunoglobulin superfamily. It is reported that the human homologous molecule, CD146, is expressed in the endothelial cells. Here, we found that the expression of gicerin was increased in the rat carotid arteries after balloon injury. Immunohistochemical analysis demonstrated that the expression of gicerin protein was increased in the medial smooth muscle cells prior to the formation of neointima one week after the injury and was also increased in the luminal edge of the neointima after two weeks. We employed A10 cells, a cell line derived from rat aortic smooth muscle cell, and examined the effect of growth factors on the expression of gicerin, such as IGF-1, PDGF-BB, and bFGF. We found that IGF-1, but not PDGF-BB and bFGF, significantly increases the expression of gicerin protein in A10 cells. These suggest gicerin might be involved in the arteriosclerotic neointima formation in the artery.  相似文献   

14.
The platelet-derived growth factor (PDGF) beta receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF beta receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF beta receptor, we compared PDGF beta receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF beta receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cgamma1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cgamma1 activity and migratory hyperresponsiveness to PDGF. PDGF beta receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPepsilon ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF beta receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors.  相似文献   

15.
Lee CK  Park HJ  So HH  Kim HJ  Lee KS  Choi WS  Lee HM  Won KJ  Yoon TJ  Park TK  Kim B 《Proteomics》2006,6(24):6455-6475
We used 2-DE and MALDI-TOF/TOF to identify proteins of vascular smooth muscle cells whose expression was or was not altered by exposure to 500 microM H2O2 for 30 min. We detected more than 800 proteins on silver-stained gels of whole protein extracts from rat aortic smooth muscle strips. Of these proteins, 135 clearly unaffected and 19 having levels altered by exposure to H2O2 were identified. Protein characterization revealed that the most prominent vascular smooth muscle proteins were those with antioxidant, cytoskeletal structure, or muscle contraction. In addition, cofilin, an isoform of the actin depolymerizing factor family, shifted to its basic site on the 2-DE gel as a result of H2O2 treatment. In Western blot analysis of proteins from A7r5 aortic smooth muscle cells, the phosphorylation, but not the expression, of cofilin was decreased by H2O2 in a dose-dependent manner. The H2O2-induced dephosphorylation of cofilin and apoptosis was inhibited by Na3VO4, an inhibitor of protein tyrosine phosphatase (PTP). These results suggest that cofilin is one of the proteins regulated by H2O2 treatment in vascular smooth muscle, and has an important role in the induction of vascular apoptosis through PTP-dependent mechanisms.  相似文献   

16.
Abnormal vascular smooth muscle cell (VSMC) growth plays a key role in the pathogenesis of hypertension and atherosclerosis. Angiotensin II (ANG II) elicits a hypertrophic growth response characterized by an increase in protein synthesis without cell proliferation. The present study investigated the role of the nonreceptor tyrosine kinase PYK2 in the regulation of ANG II-induced signaling pathways that mediate VSMC growth. Using coimmunoprecipitation analysis, the role of PYK2 as an upstream regulator of both extracellular signal-related kinase (ERK) 1/2 mitogen-activated protein kinase and phosphatidylinositol 3-kinase (PI 3-kinase) pathways was examined in cultured rat aortic VSMC. ANG II (100 nM) promoted the formation of a complex between PYK2 and the ERK1/2 regulators Shc and Grb2. ANG II caused a rapid and Ca(2+)-dependent tyrosine phosphorylation of the adapter molecule p130Cas, which coimmunoprecipitated both PYK2 and PI 3-kinase in ANG II-treated VSMC. Complex formation between PI 3-kinase and p130Cas and PYK2 was associated with a rapid phosphorylation of the ribosomal p70(S6) kinase in a Ca(2+)- and tyrosine kinase-dependent manner. These data suggest that PYK2 is an important regulator of multiple signaling pathways involved in ANG II-induced VSMC growth.  相似文献   

17.
The protein tyrosine phosphatases (PTPs) SHP-1, SHP-2 and PTP1B are overexpressed early on during the development of cerulein -induced acute pancreatitis (AP) in rats, and their levels can be modulated by some species of mitogen-activated protein kinases (MAPKs), the intracellular levels of cAMP and by general leukocyte infiltration, the latter at least for SHP-2 and PTP1B. In this study we show that cerulein treatment activates extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) but not p38 MAPK during the early phase of cerulein-induced AP (2 h after the first injection of cerulein). Therefore, by using the MAPK inhibitors SP600125 (a specific JNK inhibitor) and PD98059 (a specific ERK inhibitor), we have unmasked the particular MAPK that underlies the modulation of the expression levels of these PTPs. JNK would act by preventing SHP-1 protein expression from increasing beyond a certain level. ERK 1/2 was the main MAPK involved in the increase in SHP-2 protein expression due to cerulein. JNK negatively modulated the SH2-domain containing PTPs. Both MAPKs played a role in the increase in PTP1B protein expression due to cerulein. Finally, by using the white blood cell inhibitors vinblastine sulfate, gadolinium chloride and FK506 (tacrolimus), we show that the macrophage activity or T-lymphocytes does not modulate the expression of any of the PTPs, although neutrophil infiltration was found to be a regulator of SHP-2 and PTP1B protein expression due to cerulein.  相似文献   

18.
Won KJ  Lee P  Jung SH  Jiang X  Lee CK  Lin HY  Kang H  Lee HM  Kim J  Toyokuni S  Kim B 《Proteomics》2011,11(2):193-201
3-Morpholinosydnonimine (SIN-1) affects vascular smooth muscle cell migration and proliferation, processes essential for atherosclerosis. However, the mechanism by which SIN-1 exerts these effects has not been elucidated. We used 2-DE followed by MALDI-TOF/TOF MS to identify responses in protein expression to SIN-1 in rat aortic smooth muscle. Platelet-derived growth factor-BB increased cell migration and proliferation in rat aortic smooth muscle cells, and subsequent SIN-1 treatment inhibited it. Administration of SIN-1 in vivo attenuated neointima formation in balloon-injured rat carotid arteries. Proteomic analysis showed that glutathione peroxidase and 40S ribosomal protein S12 were differentially expressed in aortic strips exposed to SIN-1. Expression of annexin A2 was decreased by SIN-1. Platelet-derived growth factor-BB-induced cell migration was increased and inhibited in rat aortic smooth muscle cells with overexpression and knockdown of annexin A2 gene, respectively. The expression of annexin A2 was increased in vascular neointima compared with the intact control, which was inhibited by SIN-1 treatment. These results demonstrate that SIN-1 may attenuate vascular neointima formation by inhibiting annexin A2-mediated migration. Therefore, annexin A2 may be a potential target for therapeutic strategies for atherosclerosis.  相似文献   

19.
We report the first intracellular characterization of an endogenous nontransmembrane protein tyrosine phosphatase (PTP). Using affinity-purified polyclonal antibodies, we have identified PTP-1B as a 50 kd serine phosphoprotein in immunoprecipitation and immunoblotting assays. Surprisingly, indirect immunofluorescence experiments indicate that PTP-1B is localized predominantly in the endoplasmic reticulum (ER). Subcellular fractionation is consistent with this localization and establishes that PTP-1B is tightly associated with microsomal membranes, with its phosphatase domain oriented towards the cytoplasm. The C-terminal 35 amino acids of PTP-1B are both necessary and sufficient for targeting to the ER. The finding of a tyrosine phosphatase on the ER suggests new possibilities for cellular events controlled by tyrosine phosphorylation.  相似文献   

20.
Vascular injury increases nitric oxide (NO) levels, and this effect may play a counterregulatory role in neointima formation, by decreasing vascular smooth muscle cell motility. However, the mechanisms underlying this effect are not well established. We tested the hypothesis that NO decreases cell motility by increasing the activity of a protein tyrosine phosphatase (PTP), PTP-PEST, in cultured rat aortic smooth muscle cells. Two NO donors increased the activity of PTP-PEST. A cGMP analog mimicked the effect of NO, whereas a guanyl cyclase inhibitor blocked it, indicating that elevated cGMP is both necessary and sufficient to induce PTP-PEST activity. Overexpression of wild-type PTP-PEST induced antimotogenesis, whereas expression of dominant negative PTP-PEST blocked the antimotogenic effect of NO, indicating that increased PTP-PEST activity is both sufficient and necessary to explain the effect of NO. Overexpression of PTP-PEST mimicked NO-induced dephosphorylation of adapter protein p130cas, whereas dominant negative PTP-PEST blocked the effect of NO, indicating that upregulation of PTP-PEST is both necessary and sufficient to explain NO-induced p130cas dephosphorylation. Expression of a substrate domain-deleted p130cas decreased motogenesis, whereas overexpression of wild-type p130cas blocked the antimotogenic effect of NO, indicating the functional importance of p130cas dephosphorylation. NO induced dissociation of the Cas-Crk complex, an effect that was mimicked by overexpression of PTP-PEST and opposed by expression of dominant negative PTP-PEST. Our results indicate that NO decreases aortic smooth muscle cell motility via a cGMP-mediated mechanism, involving upregulation of PTP-PEST, in turn inducing dephosphorylation of p130cas, and likely involving Cas-Crk dissociation as a downstream event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号