首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sucrose polyester, a fat substitute, has shown promise in reducing blood cholesterol and body weight of obese individuals. Effects of this compound in the Zucker rat, a genetic model of obesity, are unknown. Thus, we examined food intake, body weight, body composition, and several metabolic parameters in sera of lean and obese female Zucker rats. Eight-week-old lean and obese animals were given a choice between a control diet (15% corn oil) and fat substitute diet (5% corn oil and 10% sucrose polyester) for 2 days. Next, one-half of the lean and obese groups received control diet; the remaining lean and obese rats received fat substitute diet for 18 days. Cumulative food intake was depressed in fat substitute groups relative to control-fed animals; however, this effect was more predominant in obese animals. Obese rats consuming fat substitute diet (O-FS) gained less weight as compared to obese control-fed animals (O-C). Lean rats given fat substitute (L-FS) did not have significantly different body weights as compared to the L-C group. Fat substitute groups, combined, had lower body fat and higher body water as compared to controls. The O-FS group had lower serum glucose and insulin and higher fatty acid levels compared to the O-C group. There were no differences in serum cholesterol, HDL, or triglyceride levels due to fat substitute diet. These data suggest that the obese Zucker rat is unable to defend its body weight when dietary fat is replaced with sucrose polyester.  相似文献   

2.
Glycogen stores (liver and carcass) have been studied in lean and obese Zucker rats. The animals were submitted to one of three feeding conditions: ad libitum, a 48-h fast, or a 48-h fast and food ad libitum for 24 h, and to two environmental conditions, either thermoneutrality or an acute cold exposure (2 days at 4-7 degrees C). After a 2-day fast at 25 degrees C, the liver glycogen store was reduced by 45 times in the lean rats, while it was decreased by only 3 times in the obese rats. Under these conditions, the liver glycogen store was 45 times higher in the obese than in the lean rats. After 2 days in the cold, liver glycogen store was 4.4 times higher in obese rats than in lean rats. After a 2-day fast in the cold, the liver glycogen store in the obese rats was 30 times higher than in the lean rats. In comparison to fasting at thermoneutrality, fasting in the cold did not lead to a further reduction in hepatic glycogen in obese Zucker rats. The differences observed in the mobilization of the hepatic glycogen store between obese and lean rats have not been found in the mobilization of the carcass glycogen store. Drastic conditions, such as a 2-day fast in the cold, did not exhaust the glycogen store in obese Zucker rats. The present observations point out that obese Zucker rats cannot mobilize the entire hepatic glycogen store, as seen in lean control rats. The role of this abnormality in the high hyperlipogenesis that maintains the obese state is still to be evaluated.  相似文献   

3.
The existence of a restriction fragment length polymorphism (RFLP) closely linked to the fatty locus between the Zucker (Z) and Brown Norway (BN) rat strains allows evaluation of early effects of the fatty (fa) gene using offspring of back-crosses (N2) between F1 females and Zucker obese males. We examined several metabolic characteristics of N2 animals to determine if these hybrid animals exhibited similar characteristics of the obese syndrome to those of Zucker rats. Females from crosses of obese male Zucker (fd/fa) and lean female BN (+/+) rats were back-crossed to their sires, resulting in twelve N2 litters. At 9 weeks of age, liver, spleen, interscapular brown fat (IBAT), and gonadal, retroperitoneal (RP), and inguinal fat depots were removed and weighed. Samples of the RP depot were analyzed for cell size and number. Obese N2 rats were hyperphagic, with body weights in the range of those of obese Zucker rats. Obese N2 rats were also hyperinsulinemic [mean f SEM, pU/ml: females, 7.9 ± 0.6 vs. 82.1 f 8.4 (lean vs. obese); males, 10.5 ± 1.6 vs. 128.5 ± 13.4 (lean vs. obese)] and mildly hyperglycemic [mean ± SEM, mg/dl: females, 104.1 ± 2.0 vs. 139.0 ± 14.7 (lean vs. obese); males, 100.9 ± 2.6 vs. 132.0 ± 2.8 (lean vs. obese) p ≤ 0.05]. White fat depots in obese tats were 3 to 7 times heavier than those in lean rats; adipocyte numbers in RP depots were 50% greater in obese than in lean rats; and cell size was more than 3 times larger. IBAT, liver, and spleen were also heavier in obese vs. lean rats, while tail lengths were shorter. Percent lean carcass mass and % carcass protein were about 30% greater in lean vs. obese rats, while % carcass fat in obese rats was 5 times greater than that of lean rats. Thus, phenotypic expression of the fa gene in ZBN hybrid animals, with approximately 25% of their genetic background coming from the BN strain, appears to be similar to that in Zucker rats. Given the similarity of phenotypic expression of the fa gene between the Zucker strain and ZBN hybrids, it is plausible to consider using ZBN hybrids for studies of early manifestations of fa gene action prior to onset of detectable obesity .  相似文献   

4.
1. Genetically obese Zucker rats (fa/fa) contain 2-3 times higher activities mono- and diacylglycerol lipases in their spinal cords than their lean littermates. 2. When rats were exercised (1 hr daily, 5 days/week) on a treadmill for 6 months, there was a decrease of about 30% (P less than 0.05) in the activities of mono- and diacylglycerol lipases in lean rats but not in obese animals. 3. High activities of lipases in Zucker obese rats may be related to the elevated levels of beta-endorphin present in these animals. 4. The activities of arylsulfatase, beta-N-acetylhexosaminidase and alkaline phosphatase, tested to check the stability of spinal cord extracts, were similar in lean and obese rat spinal cords.  相似文献   

5.
Injections of 5 micrograms estradiol benzoate (EB) for 5 days resulted in decreases in the rate of body weight gain in both lean (Fafa) and obese (fafa) Zucker rats. EB administration also resulted in significant induction of cytoplasmic progestin binding sites in both hypothalamic-preoptic area (H-POA) and adipose tissues from rats of both genotypes. However, EB treatment significantly decreased lipoprotein lipase (LPL) activity in adipose tissue from lean, but not obese, Zucker rats and the same treatment increased LPL activity in the uteri from lean, but not obese, Zucker rats. The data are discussed in terms of the metabolic and reproductive dysfunctions observed in the genetically obese rat.  相似文献   

6.
The obese Zucker rat has a genetically flawed leptin system and is a model of hyperphagia, obesity, hyperlipidemia, and markedly elevated leptin levels. Dehydroepiandrosterone (DHEA) administration reduces hyperphagia, hyperlipidemia, and obesity in Zucker rats. Since serum leptin levels are associated with body fat, we wondered what the effects of fat pad weight reduction from DHEA administration would have on leptin levels. This experiment investigated the effects of DHEA on intra-abdominal fat pads, serum lipids, and peripheral leptin in male lean and obese Zucker rats that were administered DHEA in their food from 4 weeks of age to 20 weeks. Lean and obese rats received plain chow or chow containing DHEA. Additional chow-fed groups of lean and obese weight-matched controls and obese pair-fed rats helped to control for the reduced body weight, food intake, and fat pad weights seen with DHEA administration. DHEA administration to lean Zucker rats reduced body weight and fat pad weights, but leptin levels showed a lower trend. Among obese rats, both DHEA treatment and pair-feeding reduced body weight and fat pad weights, but only DHEA lowered leptin levels. The weight-matched controls had reductions in fat pad weights similar to the DHEA-treated group, but with increased leptin levels. Thus, DHEA may exert a small, independent effect on leptin levels in this animal model, but the reduction is less than what would be expected.  相似文献   

7.
The genetically obese Zucker rat has a reduced capacity to deposit dietary protein in skeletal muscle. To determine whether amino acid uptake by muscle of obese Zucker rats is impaired, soleus strip (SOL) and epitrochlearis (EPI) muscles from 10-wk-old lean and obese Zucker rats were studied in vitro by use of [14C]alpha-aminoisobutyric acid (AIB). Muscles from fasted rats were incubated under basal conditions at rest or after a 1-h treadmill run at 8% grade. To equate total work completed, lean and obese rats ran at 27 and 20 m/min, respectively. Muscles were pinned at resting length, preincubated for 30 min at 37 degrees C in Krebs-Ringer bicarbonate buffer containing 5 mM glucose under 95% O2-5% CO2, and then incubated up to 3 h in Krebs-Ringer bicarbonate with 0.5 mM AIB, [14C]AIB, and [3H]inulin as a marker of extracellular fluid. Basal AIB uptake in EPI and SOL from obese rats was significantly reduced by 40 and 30% (P less than 0.01), respectively, compared with lean rats. For both lean and obese rats, exercise increased (P less than 0.05) basal AIB uptake in EPI and SOL, but the relative increases were greater in the obese rats (EPI 54% and SOL 71% vs. EPI 32% and SOL 37%). These results demonstrate that genetically obese Zucker rats have reduced basal skeletal muscle amino acid uptake and suggest that physical inactivity may partially contribute to this defect.  相似文献   

8.
To determine the time onset of the growth hormone (GH) alteration in the genetically obese rat, we studied the in vivo and in vitro rat growth hormone releasing factor (rGRF(1-29)NH2)-induced GH secretion in 6- and 8-week-old lean and obese male Zucker rats. Under sodium pentobarbital anesthesia, rGRF(1-29)NH2 (GRF) was injected intravenously at two doses: 0.8 and 4.0 micrograms/kg b.w. Basal serum GH concentrations were similar in lean and obese age-matched animals. The GH response to both GRF doses tested was unchanged in 6-week-old obese rats as compared to their lean litter mates. In contrast, a significant decrease of the GH secretion in response to 4.0 micrograms/kg b.w. GRF was observed in the 8-week-old obese rats. The effect of GRF (1.56, 6.25 and 12.5 pM) was further studied in vitro, in a perifusion system of freshly dispersed anterior pituitary cells of lean and obese Zucker rats. Basal GH release was similar in the 6-week-old animal group. In contrast, it was significantly decreased in 8-week-old obese rats as compared to their lean litter mates. Stimulated GH response to 1.56 and 6.25 pM GRF was significantly greater in the 6-week-old obese group than in the age-matched control group. In contrast, the GH response to all GRF concentrations tested was significantly decreased in the 8-week-old obese rats as compared to their respective lean siblings. In 8-week-old obese rats, a decrease of GH pituitary content and an increase of hypothalamic somatostatin (SRIF) concentration were observed. Insulin and free fatty acid serum were significantly increased in 8-week-old obese rats. In contrast, lower insulin-like growth factor I serum levels were observed in the obese animals as compared to their lean litter mates. Finally, to further clarify the role of the periphery in the inhibition of GH secretion observed in the 8-week-old fatty rats, we exposed cultured pituitary cells of 8-week-old lean animals to 17% serum of their obese litter mates. A significant decrease of GRF-stimulated GH secretion of lean rat pituitary cells exposed to the obese serum was noted (P less than 0.05). This study demonstrates that, in the obese Zucker rat, an alteration of the GH response to GRF is evident by the 8th week of life. This defective GH secretion could be related to peripheral and central abnormalities.  相似文献   

9.
The ability to induce the pseudopregnant (psp) state and the decidual response (DR) in the obese Zucker rat was reexamined. Lean and obese rats were cervically stimulated on the evening of proestrus or morning of estrus. This procedure lengthened the period of vaginal diestrus in both groups to approximately 13 days. The percentage of obese rats (70.0%) that became psp was not significantly different from that of lean rats (72.2%). To test sensitivity to a decidual stimulus, sesame oil was injected into the lumen of uteri of psp rats on Day 4 of vaginal diestrus. Treated uterine horns of all rats decidualized. The mean percentage increases in weights of Day 9 decidualized horns were not significantly different between obese and lean rats (752 +/- 85% SE and 875 +/- 133%, respectively). These data contradict previous reports that obese rats do not become psp following cervical stimulation, and that their uteri do not develop a typical DR. Although it is recognized that the reproductive capacity of the obese female Zucker rat is severely limited, this study describes aspects of reproductive function that are less abnormal than previously reported. The ability of the obese Zucker rat to become psp following cervical stimulation suggests that the progestational state of pregnancy might be induced reflexly. Furthermore, the ability of its uterus to respond to a decidual stimulus suggests that the obese Zucker rat may be able to support implantation.  相似文献   

10.
Previous studies have shown that the synthesis of renal cytochrome P-450 (CYP)-derived eicosanoids is downregulated in genetic or high-fat diet-induced obese rats. Experiments were designed to determine whether fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha agonist, would induce renal eicosanoid synthesis and improve endothelial function in obese Zucker rats. Administration of fenofibrate (150 mg.kg(-1).day(-1) for 4 wk) significantly reduced plasma insulin, triglyceride, and total cholesterol levels in obese Zucker rats. CYP2C11 and CYP2C23 proteins were downregulated in renal vessels of obese Zucker rats. Consequently, renal vascular epoxygenase activity decreased by 15% in obese Zucker rats compared with lean controls. Chronic fenofibrate treatment significantly increased renal cortical and vascular CYP2C11 and CYP2C23 protein levels in obese Zucker rats, whereas it had no effect on epoxygenase protein and activity in lean Zucker rats. Renal cortical and vascular epoxygenase activities were consequently increased by 54% and 18%, respectively, in fenofibrate-treated obese rats. In addition, acetylcholine (1 microM)-induced vasodilation was significantly reduced in obese Zucker kidneys (37% +/- 11%) compared with lean controls (67% +/- 9%). Chronic fenofibrate administration increased afferent arteriolar responses to 1 microM of acetylcholine in obese Zucker rats (69% +/- 4%). Inhibition of the epoxygenase pathway with 6-(2-propargyloxyphenyl)hexanoic acid attenuated afferent arteriolar diameter responses to acetylcholine to a greater extent in lean compared with obese Zucker rats. These results demonstrate that the PPAR-alpha agonist fenofibrate increased renal CYP-derived eicosanoids and restored endothelial dilator function in obese Zucker rats.  相似文献   

11.
LY226936, methylcarbamothoic acid-S-(4,5-dihydro-2-thiazolyl) ester, is a new compound that, when administered to obese Zucker rats, caused reduced food intake. LY226936 reduced the food consumption after a single oral dose of 50 and 100 mg/kg. On chronic oral administration to meal-fed obese (5 to 35 mg/kg. once daily) and to fed obese and lean (15 mg/kg. twice daily) Zucker rats, LY226936 reduced food intake and body weight gain for periods ranging from 40 to 48 days. The effect on both parameters was statistically significant. There is no evidence in our studies that tolerance to the actions of LY226936 developed. LY226936 decreased the consumption of both high carbohydrate and high fat diets. Food consumption of meal-fed obese Zucker rats was reduced significantly each time a single dose of 10 ugm LY226936 per rat was infused intracerebroventricularly. None of the receptors studied (mu and kappa opioid, CCK, serotonin, neuropeptide Y, galinin, N-methyl-D-aspartic acid) appeared to bind LY226936 and therefore, appear not to be involved in the depression of food intake by the obese Zucker rat.  相似文献   

12.
Rosiglitazone (RSG) is an insulin-sensitizing thiazolidinedione (TZD) that exerts peroxisome proliferator-activated receptor-gamma (PPARgamma)-dependent and -independent effects. We tested the hypothesis that part of the insulin-sensitizing effect of RSG is mediated through the action of AMP-activated protein kinase (AMPK). First, we determined the effect of acute (30-60 min) incubation of L6 myotubes with RSG on AMPK regulation and palmitate oxidation. Compared with control (DMSO), 200 microM RSG increased (P < 0.05) AMPKalpha1 activity and phosphorylation of AMPK (Thr172). In addition, acetyl-CoA carboxylase (Ser218) phosphorylation and palmitate oxidation were increased (P < 0.05) in these cells. To investigate the effects of chronic RSG treatment on AMPK regulation in skeletal muscle in vivo, obese Zucker rats were randomly allocated into two experimental groups: control and RSG. Lean Zucker rats were treated with vehicle and acted as a control group for obese Zucker rats. Rats were dosed daily for 6 wk with either vehicle (0.5% carboxymethylcellulose, 100 microl/100 g body mass), or 3 mg/kg RSG. AMPKalpha1 activity was similar in muscle from lean and obese animals and was unaffected by RSG treatment. AMPKalpha2 activity was approximately 25% lower in obese vs. lean animals (P < 0.05) but was normalized to control values after RSG treatment. ACC phosphorylation was decreased with obesity (P < 0.05) but restored to the level of lean controls with RSG treatment. Our data demonstrate that RSG restores AMPK signaling in skeletal muscle of insulin-resistant obese Zucker rats.  相似文献   

13.
J Rouru  R Huupponen  U Pesonen  M Koulu 《Life sciences》1992,50(23):1813-1820
The effect of subchronic metformin treatment on food intake, weight gain and plasma and tissue hormone levels was investigated in genetically obese male Zucker rats and in their lean controls. Metformin hydrochloride (320 mg/kg/day for 14 days in the drinking water) significantly reduced 24 hour food intake both after one and two weeks treatment in obese rats. In contrast, metformin had only a transient effect on food intake in lean animals. The reduced food intake was associated with body weight decrease, particularly in obese rats. Metformin markedly reduced also the hyperinsulinemia of the obese animals without altering their plasma glucose or pancreatic insulin content which may reflect an improved insulin sensitivity after metformin treatment. Metformin did not change plasma corticosterone levels or insulin and somatostatin concentrations in the pancreas. Metformin reduced pyloric region somatostatin content in lean rats. It is concluded that metformin has an anorectic effect and reduces body weight and hyperinsulinemia in genetically obese Zucker rat.  相似文献   

14.
Objective: To investigate whether chronic administration of the long‐acting glucagon‐like peptide‐1 receptor agonist exendin‐4 can elicit sustained reductions in food intake and body weight and whether its actions require an intact leptin system. Research Methods and Procedures: Male lean and obese Zucker (fa/fa) rats were infused intracerebroventricularly with exendin‐4 using osmotic minipumps for 8 days. Results: Exendin‐4 reduced body weight in both lean and obese Zucker rats, maximum suppression being reached on Day 5 in obese (8%) and Day 7 in lean (16%) rats. However, epididymal white adipose tissue weight was not reduced, and only in lean rats was there a reduction in plasma leptin concentration. Food intake was maximally suppressed (by 81%) on Day 3 in obese rats but was reduced by only 18% on Day 8. Similarly, in lean rats food intake was maximally reduced (by 93%) on Day 4 of treatment and by 45% on Day 8. Brown adipose tissue temperature was reduced from Days 2 to 4. Plasma corticosterone was elevated by 76% in lean but by only 28% in obese rats. Discussion: Chronic exendin‐4 treatment reduced body weight in both obese and lean Zucker rats by reducing food intake: metabolic rate was apparently suppressed. These effects did not require an intact leptin system. Neither does the absence of an intact leptin system sensitize animals to exendin‐4. Partial tolerance to the anorectic effect of exendin‐4 in lean rats may have been due to elevated plasma corticosterone and depressed plasma leptin levels, but other counter‐regulatory mechanisms seem to play a role in obese Zucker rats.  相似文献   

15.
The activity of hepatic microsomal cholesterol 7 alpha-hydroxylase was studied in genetically obese and lean Zucker rats. The liver microsomal cholesterol 7 alpha-hydroxylase activity in fatty Zucker rats (fa/fa) is about 50% to 70% lower than that of the lean (Fa/-) rats of the same sex, when animals were sacrificed at the middle of the dark cycle. When rats were sacrificed at the middle of the light cycle, cholesterol 7 alpha-hydroxylase activity was the same as in the dark cycle in obese rats of both sexes, but was 65% lower in lean rats. However, cholesterol 7 alpha-hydroxylase activity was stimulated by the treatment with cholestyramine in both obese and lean rats. Our results suggested that the diurnal regulation of cholesterol 7 alpha-hydroxylase activity is lost in obese rats but was present under cholestyramine treatment in the genetically obese strain of rats.  相似文献   

16.
Ghrelin is a new orexigenic peptide primarily produced by the stomach but also present in the hypothalamus. It has adipogenic effects when it is chronically injected in rodents but in obese humans, its plasma concentration is decreased. It can reverse the anorectic effects of leptin when it is co-injected with this peptide in the brain ventricles. The Zucker fa/fa rat is a genetic model of obesity related to a default in the leptin receptor. It is characterized by a large dysregulation of numerous hypothalamic peptides but the ghrelin status of this rat has not yet been determined. Through several experiments, we determine in lean and obese Zucker rats its circulating form in the plasma, its tissue levels and/or expression, and studied the influence of different feeding conditions and its light/dark variations. Ghrelin expression was higher in the obese stomach and hypothalamus (P < 0.05 and P < 0.02, respectively). The ratio of [Octanoyl-Ser3]-ghrelin (active form) to [Des-Octanoyl-Ser3]-ghrelin (inactive form) was approximately 1:1 in the stomach and 2:1 in the plasma in lean and obese rats (no differences). After fasting, plasma ghrelin concentrations increased significantly in lean (+ 64%; P < 0.001) and obese (+ 60%; P < 0.02) rats. After 24 hours of refeeding, they returned to their initial ad lib levels. Ghrelin concentrations were higher in obese rats by 69% (P < 0.005), 65% (P < 0.02), and 73% (P < 0.005) in the ad libitum, fast, and refed states respectively. These results indicate that the obese Zucker rat is characterized by increases in the stomach mRNA expression and in peptide release in the circulation. They clearly support a role for ghrelin in the development of obesity in the absence of leptin signaling.  相似文献   

17.
Although the rat is usually not considered to be sensitive to photoperiod, under some experimental conditions photoperiod responses are unmasked. In addition, we have observed photoperiod-induced changes in body weight gain in lean and obese Zucker rats. In this experiment, body mass, food intake, body composition, brown adipose tissue (BAT) thermogenic state, and blood concentrations of corticosterone, insulin, and glucose were evaluated under one of two lighting conditions: a short (10 h light: 14 h dark) or a long (14 h light: 10 h dark) photoperiod. Plasma corticosterone and glucose concentrations measured under fasting conditions were unaffected by photoperiod in either genotype. The amount of BAT mitochondrial protein isolated was less in long photoperiod rats. BAT mitochondrial GDP binding was unaffected by photoperiod in the lean rats, but tended to be lower in long photoperiod obese rats than in short photoperiod obese rats. Although, photoperiod had no effect on daily food intake of rats exposed to the short versus long photoperiod, body mass was heaviest in obese rats raised in long photoperiod. Plasma insulin was increased in both lean and obese rats in long photoperiod. In addition, fat storage appeared to shift to internal depots in the lean rats exposed to long photoperiod. Our data demonstrate that photoperiod does have an effect on male Zucker rats with respect to body weight and fat distribution, with the obese rats being more sensitive to changes in photoperiod than the lean rats.  相似文献   

18.
The Zucker obese (fa/fa) rat is a model of hypertrophic/hyperplastic obesity. These rats develop marked hyperinsulinemia, insulin resistance, and pancreatic beta-cell hyperplasia. In the present study, chronic (22 weeks) administration of the 17-ketosteroid, dehydroepiandrosterone (DHEA), to obese Zucker rats significantly decreased body weight, and retroperitoneal and parametrial fat pad weights. In addition, beta-cell hyperplasia was reduced as well as pancreatic insulin content. DHEA treatment of lean Zucker rats also reduced body weight, fat depot weight, pancreatic islet diameter, and pancreatic insulin content. These data indicate that DHEA treatment appears to inhibit insulin synthesis and beta-cell proliferation. Whether this is due to a direct effect on the pancreas or due to improvement of peripheral insulin sensitivity remains to be elucidated.  相似文献   

19.
The in vitro conversion of thyroxine (T4) to triiodothyronine (T3) was studied in liver homogenates from fed and fasted lean and obese Zucker rats. T3 generation was decreased in fed young (2 month) obese rats as compared to values in fed lean controls. This was not corrected by the addition of dithiothreitol (DTT), suggesting a deficiency in 5'-deiodinase activity in young obese rats. Both lean and obese 2 month old rats responded to a 2 day fast by decreasing hepatic T3 generation as is always observed in other strains of rats. The hepatic conversion rate was not decreased in older (5 month) fed obese rats when compared to age-matched lean controls. Hepatic conversion of T4 to T3 was markedly decreased in 5 month old lean Zucker rats fasted for 4 days. In contrast, a 4 day fast had no effect on the hepatic conversion rate in the 5 month old obese rats. The hepatic conversion rate was assessed in 5 month old obese rats fasted for up to 28 days and hepatic conversion still did not decrease. This paradoxical response of the 5 month old obese rat may provide a new model to further evaluate the control of hepatic T3 generation from T4.  相似文献   

20.
The contents of three major digestive enzymes (amylase, lipase and chymotrypsinogen) were measured in the obese Zucker rat. Only minimal changes were found in 7-week-old rats, but in adult obese rats (14-16 weeks) the amylase content was decreased by 50%, whereas the lipase and chymotrypsinogen contents were increased by 45% and 20%, respectively, compared with lean controls. Abnormalities of enzyme secretion were also found. Since the changes observed in enzyme proportions in adult obese Zucker rats are qualitatively similar to those observed in insulinopenic diabetes and other states associated with decreased glucose metabolism, it is speculated that the abnormalities found in the obese Zucker rat may be due to decreased glucose metabolism in the exocrine tissue consequent to insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号