首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Angiogenesis involves sprouting, migration, and proliferation of endothelial cells. The angiomotin-like2 gene (amotl2) has been found in blood vessels in zebrafish embryos, but its function in angiogenesis and underlying mechanisms remain unknown. In this study, we demonstrate that knockdown of amotl2 in zebrafish Tg(fli1:EGFP)(y1) and Tg(fli1:nEGFP)(y7) transgenic embryos impairs the intersegmental vessel growth and suppresses proliferation of endothelial cells. Transplantation experiments indicate that function of amotl2 in intersegmental vessel growth is cell-autonomous. AMOTL2 knockdown in cultured human umbilical vein endothelial cells also inhibits cell proliferation and migration and disrupts cell polarity, ultimately interrupting the formation of vascular tube-like structures. Amotl2 promotes MAPK/ERK activation via c-Src, which is dependent on phosphorylation of tyrosine residue at position 103 but independent of the C-terminal PDZ-binding domain. Taking together, our data indicate that Amotl2 plays a pivotal role in polarity, migration and proliferation of angiogenic endothelial cells.  相似文献   

2.
Angiogenesis is an essential requirement for embryonic development and adult homeostasis. Its deregulation is a key feature of numerous pathologies and many studies have shown that members of the transforming growth factor beta (TGF‐β) family of proteins play important roles in angiogenesis during development and disease. Betaglycan (BG), also known as TGF‐β receptor type III, is a TGF‐β coreceptor essential for mice embryonic development but its role in angiogenesis has not been described. We have cloned the cDNA encoding zebrafish BG, a TGF‐β‐binding membrane proteoglycan that showed a dynamic expression pattern in zebrafish embryos, including the notochord and cells adjacent to developing vessels. Injection of antisense morpholinos decreased BG protein levels and morphant embryos exhibited impaired angiogenesis that was rescued by coinjection with rat BG mRNA. In vivo time‐lapse microscopy revealed that BG deficiency differentially affected arterial and venous angiogenesis: morphants showed impaired pathfinding of intersegmental vessels migrating from dorsal aorta, while endothelial cells originating from the caudal vein displayed sprouting and migration defects. Our results reveal a new role for BG during embryonic angiogenesis in zebrafish, which has not been described in mammals and pose interesting questions about the molecular machinery regulating angiogenesis in different vertebrates. genesis 53:583–603, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Angiogenesis requires concomitant remodeling of cell junctions and migration, as exemplified by recent observations of extensive endothelial cell movement along growing blood vessels. We report that a protein complex that regulates cell junctions is required for VEGF-driven directional migration and for angiogenesis in vivo. The complex consists of RhoA and Syx, a RhoA guanine exchange factor cross-linked by the Crumbs polarity protein Mupp1 to angiomotin, a phosphatidylinositol-binding protein. The Syx-associated complex translocates to the leading edge of migrating cells by membrane trafficking that requires the tight junction recycling GTPase Rab13. In turn, Rab13 associates with Grb2, targeting Syx and RhoA to Tyr(1175)-phosphorylated VEGFR2 at the leading edge. Rab13 knockdown in zebrafish impeded sprouting of intersegmental vessels and diminished the directionality of their tip cells. These results indicate that endothelial cell mobility in sprouting vessels is facilitated by shuttling the same protein complex from disassembling junctions to the leading edges of cells.  相似文献   

4.
Blood vessels form either by the assembly and differentiation of mesodermal precursor cells (vasculogenesis) or by sprouting from preexisting vessels (angiogenesis). Endothelial-specific receptor tyrosine kinases and their ligands are known to be essential for these processes. Targeted disruption of vascular endothelial growth factor (VEGF) or its receptor kdr (flk1, VEGFR2) in mouse embryos results in a severe reduction of all blood vessels, while the complete loss of flt1 (VEGFR1) leads to an increased number of hemangioblasts and a disorganized vasculature. In a large-scale forward genetic screen, we identified two allelic zebrafish mutants in which the sprouting of blood vessels is specifically disrupted without affecting the assembly and differentiation of angioblasts. Molecular cloning revealed nonsense mutations in flk1. Analysis of mRNA expression in flk1 mutant embryos showed that flk1 expression was severely downregulated, while the expression of other genes (scl, gata1, and fli1) involved in vasculogenesis or hematopoiesis was unchanged. Overexpression of vegf(121+165) led to the formation of additional vessels only in sibling larvae, not in flk1 mutants. We demonstrate that flk1 is not required for proper vasculogenesis and hematopoiesis in zebrafish embryos. However, the disruption of flk1 impairs the formation or function of vessels generated by sprouting angiogenesis.  相似文献   

5.
6.
In vivo imaging of embryonic vascular development using transgenic zebrafish   总被引:24,自引:0,他引:24  
In this study we describe a model system that allows continuous in vivo observation of the vertebrate embryonic vasculature. We find that the zebrafish fli1 promoter is able to drive expression of enhanced green fluorescent protein (EGFP) in all blood vessels throughout embryogenesis. We demonstrate the utility of vascular-specific transgenic zebrafish in conjunction with time-lapse multiphoton laser scanning microscopy by directly observing angiogenesis within the brain of developing embryos. Our images reveal that blood vessels undergoing active angiogenic growth display extensive filopodial activity and pathfinding behavior similar to that of neuronal growth cones. We further show, using the zebrafish mindbomb mutant as an example, that the expression of EGFP within developing blood vessels permits detailed analysis of vascular defects associated with genetic mutations. Thus, these transgenic lines allow detailed analysis of both wild type and mutant embryonic vasculature and, together with the ability to perform large scale forward-genetic screens in zebrafish, will facilitate identification of new mutants affecting vascular development.  相似文献   

7.
As a link between exercise and metabolism, irisin is assumed to be involved in increased total body energy expenditure, reduced body weight, and increased insulin sensitivity. Although our recent evidence supported the contribution of irisin to vascular endothelial cell (ECs) proliferation and apoptosis, further research of irisin involvement in the angiogenesis of ECs was not conclusive. In the current study, it was found that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) angiogenesis via increasing migration and tube formation, and attenuated chemically-induced intersegmental vessel (ISV) angiogenic impairment in transgenic TG (fli1: GFP) zebrafish. It was further demonstrated that expression of matrix metalloproteinase (MMP) 2 and 9 were also up-regulated in endothelial cells. We also found that irisin activated extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling by using U0126 decreased the pro-migration and pro-angiogenic effect of irisin on HUVEC. Also, U0126 inhibited the elevated expression of MMP-2 and MMP-9 when they were treated with irisin. In summary, these findings provided direct evidence that irisin may play a pivotal role in maintaining endothelium homeostasis by promoting endothelial cell angiogenesis via the ERK signaling pathway.  相似文献   

8.
Angiogenesis, the formation of new blood vessels from pre-existing ones, is essential for development, wound healing, and tumor progression. The VEGF pathway plays irreplaceable roles during angiogenesis, but how other signals cross-talk with and modulate VEGF cascades is not clearly elucidated. Here, we identified that Gpr126, an endothelial cell-enriched gene, plays an important role in angiogenesis by regulating endothelial cell proliferation, migration, and tube formation. Knockdown of Gpr126 in the mouse retina resulted in the inhibition of hypoxia-induced angiogenesis. Interference of Gpr126 expression in zebrafish embryos led to defects in intersegmental vessel formation. Finally, we identified that GPR126 regulated the expression of VEGFR2 by targeting STAT5 and GATA2 through the cAMP-PKA-cAMP-response element-binding protein signaling pathway during angiogenesis. Our findings illustrate that GPR126 modulates both physiological and pathological angiogenesis through VEGF signaling, providing a potential target for the treatment of angiogenesis-related diseases.  相似文献   

9.
为探索小干扰RNA(small interfering RNA,siRNA)表达质粒在研究斑马鱼血管内皮生长因子(vascular endothelial growth factor,VEGF)基因调控网络中的应用,构建了4个以斑马鱼VEGF基因为靶点的siRNA表达载体pSI—VEGF、pS2-VEGF、pS3-VEGF及pS4-VEGF。通过显微注射的方法将载体导入1-2细胞期斑马鱼体内,于胚胎发育的48h采用RT-PCR的方法检测VEGF基因的表达量,研究不同干扰序列对VEGF基因表达的干涉作用。结果显示,成功地构建了siRNA表达载体。针对不同位点的寡核苷酸序列抑制VEGF基因表达的效率有显著差异,其中注射了ps1-VEGF的胚胎出现了心包膜水肿、血流速度减慢、循环红细胞堆积等症状,同时肠下静脉、节间血管以及其它血管出现不同程度的发育缺陷。实验结果说明,pS1-VEGF可引起斑马鱼胚胎血管发育缺陷。  相似文献   

10.
11.
12.
Sphingosine 1-phosphate (S1P) binds G-protein-coupled receptors (S1P1–5) to regulate a multitude of physiological effects, especially those in the vascular and immune systems. S1P receptors in the vascular system have been characterized primarily in mammals. Here, we report that the S1P receptors and metabolic enzymes are conserved in the genome of zebrafish Danio rerio. Bioinformatic analysis identified seven S1P receptor-like sequences in the zebrafish genome, including duplicated orthologs of receptors 3 and 5. Sphingolipidomic analysis detected erythrocyte and plasma S1P as well as high plasma ceramides and sphingosine. Morpholino-mediated knockdown of s1pr1 causes global and pericardial edema, loss of blood circulation, and vascular defects characterized by both reduced vascularization in intersegmental vessels, decreased proliferation of intersegmental and axial vessels, and hypersprouting in the caudal vein plexus. The s1pr2 gene was previously characterized as a regulator of cell migration and heart development, but its role in angiogenesis is not known. However, when expression of both s1pr1 and s1pr2 is suppressed, severely reduced vascular development of the intersegmental vessels was observed with doses of the s1pr1 morpholino that alone did not cause any discernible vascular defects, suggesting that s1pr1 and s1pr2 function cooperatively to regulate vascular development in zebrafish. Similarly, the S1P transporter, spns2, also cooperated with s1pr1. We propose that extracellular S1P acts through vascular S1P receptors to regulate vascular development.  相似文献   

13.
Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency''s (EPA''s) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA''s ToxCast Phase-I library in concentration-response format (0.05–50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO) – an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors – flumioxazin – resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis-driven and mechanism-focused investigations within zebrafish and mammalian models.  相似文献   

14.
Spleen tyrosine kinase (Syk) plays critical roles in B-cell and T-cell development, the maintenance of vascular integrity, and proper partitioning of the blood vascular and lymphatic vascular system. Here, we utilize the zebrafish as an in vivo system to demonstrate novel roles for Syk and the related kinase Zeta associated protein (Zap-70) in promoting angioblast migration. Partial knockdown of either gene results in early angiogenic delay of the intersegmental vessels, dorsal intersegmental vessel patterning defects, and partial loss of the thoracic duct. Higher dose knockdown of both genes results in little to no angiogenic sprouting of the intersegmental vessels, a phenotype which resembles knockdown of vegfa. Di-phosphorylated ERK, an effector of the vegfa pathway, is also downregulated in the aorta of syk:zap double morphants. Over-expression of syk under the control of a blood-specific or vascular-specific promoter rescues sprouting defects after loss of vegfa. Together these results suggest that syk and zap-70 function redundantly in an early progenitor to promote the migration of intersegmental vessel angioblasts and lymphangioblasts that contribute to the thoracic duct, either downstream of, or in parallel to vegfa.  相似文献   

15.
In this study, we utilize fluorescent activated cell sorting (FACS) of cells from transgenic zebrafish coupled with microarray analysis to globally analyze expression of cell type specific genes. We find that it is possible to isolate cell populations from Tg(fli1:egfp)(y1) zebrafish embryos that are enriched in vascular, hematopoietic and pharyngeal arch cell types. Microarray analysis of GFP+ versus GFP- cells isolated from Tg(fli1:egfp)(y1) embryos identifies genes expressed in hematopoietic, vascular and pharyngeal arch tissue, consistent with the expression of the fli1:egfp transgene in these cell types. Comparison of expression profiles from GFP+ cells isolated from embryos at two different time points reveals that genes expressed in different fli1+ cell types display distinct temporal expression profiles. We also demonstrate the utility of this approach for gene discovery by identifying numerous previously uncharacterized genes that we find are expressed in fli1:egfp-positive cells, including new markers of blood, endothelial and pharyngeal arch cell types. In parallel, we have developed a database to allow easy access to both our microarray and in situ results. Our results demonstrate that this is a robust approach for identification of cell type specific genes as well as for global analysis of cell type specific gene expression in zebrafish embryos.  相似文献   

16.
17.
We have previously shown that angiomotin (Amot) plays an important role in growth factor-induced migration of endothelial cells in vitro. Genetic knock-down of Amot in zebrafish also results in inhibition of migration of intersegmental vessels in vivo. Amot is expressed as two different isoforms, p80-Amot and p130-Amot. Here we have analyzed the expression of the two Amot isoforms during retinal angiogenesis in vivo and demonstrate that p80-Amot is expressed during the migratory phase. In contrast, p130-Amot is expressed during the period of blood vessel stabilization and maturation. We also show that the N-terminal domain of p130-Amot serves as a targeting domain responsible for localization of p130-Amot to actin and tight junctions. We further show that the relative expression levels of p80-Amot and p130-Amot regulate a switch between a migratory and a non-migratory cell phenotype where the migratory function of p80-Amot is dominant over the stabilization and maturation function of p130-Amot. Our data indicates that homo-oligomerization of p80-Amot and hetero-oligomerization of both isoforms are critical for this regulation.  相似文献   

18.
Protein kinase D isoenzymes (PKDs, Prkds) are serine threonine kinases that belong to the CAMK superfamily. PKD1 is expressed in endothelial cells and is a major mediator of biological responses downstream of the VEGFRs that are relevant for angiogenesis such as endothelial cell migration, proliferation and tubulogenesis in vitro. PKDs also play a critical role in tumor development and progression, including tumor angiogenesis. However, given the plethora of signaling modules that drive angiogenesis, the precise role of PKD1 in both physiological and tumor angiogenesis in vivo has not been worked out so far. This study aimed at dissecting the contribution of PKD1 to physiological blood vessel formation, PKD1 was found to be widely expressed during zebrafish development. As far as physiological angiogenesis was concerned, morpholino-based silencing of PKD1 expression moderately reduced the formation of the intersomitic vessels and the dorsal longitudinal anastomotic vessel in tg(fli1:EGFP) zebrafish. In addition, silencing of PKD1 resulted in reduced formation of the parachordal lymphangioblasts that serves as a precursor for the developing thoracic duct. Interestingly, tumor angiogenesis was completely abolished in PKD1 morphants using the zebrafish/tumor xenograft angiogenesis assay. Our data in zebrafish demonstrate that PKD1 contributes to the regulation of physiological angiogenesis and lymphangiogenesis during zebrafish development and is essential for tumor angiogenesis.  相似文献   

19.
Human endothelial cells can be induced to form capillary-like tubular networks in collagen gels. We have used this in vitro model and representational difference analysis to identify genes involved in the formation of new blood vessels. HESR1 (HEY-1/HRT-1/CHF-2/gridlock), a basic helix-loop-helix protein related to the hairy/enhancer of split/HES family, is absent in migrating and proliferating cultures of endothelial cells but is rapidly induced during capillary-like network formation. HESR1 is detectable in all adult tissues and at high levels in well vascularized organs such as heart and brain. Its expression is also enriched in aorta and purified capillaries. Overexpression of HESR1 in endothelial cells down-regulates vascular endothelial cell growth factor receptor-2 (VEGFR2) mRNA levels and blocks proliferation, migration, and network formation. Interestingly, reduction of expression of HESR1 by antisense oligonucleotides also blocks endothelial cell network formation in vitro. Finally, HESR1 expression is altered in several breast, lung, and kidney tumors. These data are consistent with a temporal model for HESR1 action where down-regulation at the initiation of new vessel budding is required to allow VEGFR2-mediated migration and proliferation, but re-expression of HESR1 is necessary for induction of tubular network formation and continued maintenance of the mature, quiescent vessel.  相似文献   

20.
The Crim1 gene encodes a transmembrane protein containing six cysteine-rich repeats similar to those found in the BMP antagonist, chordin (chd). To investigate its physiological role, zebrafish crim1 was cloned and shown to be both maternally and zygotically expressed during zebrafish development in sites including the vasculature, intermediate cell mass, notochord, and otic vesicle. Bent or hooked tails with U-shaped somites were observed in 85% of morphants from 12 hpf. This was accompanied by a loss of muscle pioneer cells. While morpholino knockdown of crim1 showed some evidence of ventralisation, including expansion of the intermediate cell mass (ICM), reduction in head size bent tails and disruption to the somites and notochord, this did not mimic the classically ventralised phenotype, as assessed by the pattern of expression of the dorsal markers chordin, otx2 and the ventral markers eve1, pax2.1, tal1 and gata1 between 75% epiboly and six-somites. From 24 hpf, morphants displayed an expansion of the ventral mesoderm-derived ICM, as evidenced by expansion of tal1, lmo2 and crim1 itself. Analysis of the crim1 morphant phenotype in Tg(fli:EGFP) fish showed a clear reduction in the endothelial cells forming the intersegmental vessels and a loss of the dorsal longitudinal anastomotic vessel (DLAV). Hence, the primary role of zebrafish crim1 is likely to be the regulation of somitic and vascular development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号