首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mentha pulegium L. is a medicinal and aromatic plant belonging to the Labiatae family present in the humid to the arid bioclimatic regions of Tunisia. We studied the effect of different salt concentrations on plant growth, mineral composition and antioxidant responses. Physiological and biochemical parameters were assessed in the plant organs after 2 weeks of salt treatment with 25, 50, 75 and 100 mM NaCl. Results showed that, growth was reduced even by 25 mM, and salt effect was more pronounced in shoots (leaves and stems) than in roots. This growth decrease was accompanied by a restriction in tissue hydration and K+ uptake, as well as an increase in Na+ levels in all organs. Considering the response of antioxidant enzymes to salt, leaves and roots reacted differently to saline conditions. Leaf and root guaiacol peroxidase activity showed an increase by different concentration of NaCl, but superoxide dismutase activity in the same organs showed a slight modification in NaCl-treated leaves and roots. Moreover, polyphenol contents and antioxidant activity were analysed in M. pulegium leaves and roots under salt constraint. The analysis showed an increase of total polyphenol content (2.41–8.17 mg gallic acid equivalent g−1 dry weight) in leaves. However, methanol extract of leaves at 100 mM NaCl displayed the highest DPPH· scavenging ability with the lowest IC50 value (0.27 μg ml−1) in comparison with control which exhibited IC50 equal to 0.79 μg ml−1.  相似文献   

2.
An hydroponic culture was conducted to investigate the effect of saline stress on the essential oil and fatty acid composition of Tunisian coriander (Coriandrum sativum L.) roots. Ten days old coriander seedlings were treated during 3 weeks with different NaCl concentrations (0, 25, 50 and 75 mM). Roots volatile components and fatty acids were analyzed. The essential oil yield was 0.06% in the control, on the basis of dry matter weight, and did not changed at low concentration (25 mM), while it increased significantly with increasing NaCl concentrations to reach 0.12 and 0.21% at 50 and 75 mM NaCl, respectively. The major volatile component was (E)-2-dodecenal with 52% of total essential oil constituents, followed by decanal, dodecanal, (E)-2-tridecenal and (E)-2-dodecenal. Further, the amount of these compounds was affected differently by the NaCl level. Total fatty acid amount of coriander roots increased significantly only with 50 and 75 mM NaCl. Three major fatty acids: linoleic (43%), oleic (25.5%) and palmitic (21.6%) were identified. Linoleic acid amount remains unchanged at 25 mM, while it increased with raising NaCl concentrations. However, oleic acid amount decreased only at 25 mM and no effect was observed at 50 and 75 mM. Fatty acid percentages were differently affected by salt. The oleic/linoleic ratio was reduced with raising NaCl concentrations.  相似文献   

3.
The potential of four essential cations (K+, Ca2+, Mg2+ and Fe2+) to alleviate salt toxicity was studied in sage (Salvia officinalis L.) plants grown in pots. Two concentrations of the following chloride salts: KCl, CaCl2, MgCl2 and FeCl3, were used together with 100 mM NaCl to study the effects of these nutrients on plant growth, leaf essential oils (EOs) and phenolic diterpenes composition. The sage plants accumulated Na+ in their leaves (includers); this has affected secondary metabolites’ biosynthesis. Treatment with 100 mM NaCl slightly decreased borneol and viridiflorol, while increased manool concentrations. Addition of KCl, CaCl2 and MgCl2 increased considerably in a dose-dependent manner the oxygen-containing monoterpenes (1.8-cineole, camphor, β-thujone and borneol) in 100 mM NaCl-treated sage. Whereas, the contents of viridiflorol decreased further with the addition of KCl in 100 mM NaCl-treated sage. Our results suggest that the changes in EOs composition were more related to K+ and Ca2+ availability than to Na+ toxicity. Furthermore, treatment with NaCl decreased by 50% carnosic acid (CA), a potent antioxidant, content in the leaves. K+ and Ca2+ promoted the accumulation of CA and its methoxylated form (MCA) in the leaves. The concentration of CA was positively correlated with leaf K+ (r = 0.56, P = 0.01) and Ca2+ (r = 0.44, P = 0.05) contents. It appears that different salt applications in combination with NaCl treatments had a profound effect on EOs and phenolic diterpene composition in sage. Therefore, ionic interactions may be carefully considered in the cultivation of this species to get the desired concentrations of these secondary metabolites in leaf extracts.  相似文献   

4.
Growth, photosynthesis, and Na+, K+, and Ca2+ distributions were investigated in 2-year-old hydroponically cultured Populus alba L. cuttings exposed to salt stresses (0, 0.85, 8.5, 17, and 85 mM NaCl in experiment 1 and 0, 50, 100, 150, and 200 mM in experiment 2) for 4 weeks in 2/5 Hoagland solution. Salt did not markedly inhibit height growth and diameter increment in 150 and 100 mM NaCl, respectively. The 85 mM NaCl treatment increased the dry weights of roots and total dry weight of plants, while 150 mM NaCl significantly reduced the dry weights of leaves, stems, and total plant weight. The decline in the photosynthetic rate lagged 2 weeks behind that of stomatal conductance in the 50 and 100 mM salt solutions. Different ions exhibited different distributions in different parts of the plant. Most Na+ ions were excluded and/or compartmentalized in roots at low and moderate salt stress (≤50 mM). K+ content in leaves increased with the increase in the salt concentration in the growth solutions.  相似文献   

5.
The aim of this work was to investigate the growth, mineral nutrition and essential oil composition of marjoram aerial part. Seedlings were cultivated for 20 days on nutrient solution, and then transferred to hydroponic solution with different NaCl concentrations (0, 50, 100, 150 mM). Plants were harvested after 17 days of treatment. Mineral nutrition and essential oil composition of shoots were determined. Results showed that growth, water content and development of the different organs of marjoram plant were affected just at the highest NaCl concentration (150 mM). Furthermore, salt did not seem to affect leaf area and root length but reduced the number of leaves. An increase in the total leaf surface and its thickness was observed at different NaCl concentrations. At 50 mM NaCl, sodium was primarily accumulated in roots but at 150 mM, it was strongly accumulated in leaves. However, Cl? accumulation was lower at higher NaCl concentrations. Essential oil yield of marjoram shoots was 0.12% in the control and 0.10% at 50 mM but an important decrease was observed at 100 mM (0.05%). Thirty-three components were identified belonging to different chemical classes. In the control, the essential oil was found to be rich in trans-sabinene hydrate (47.67%), terpinen-4-ol (20.82%) and cis-sabinene hydrate (7.23%). The proportions of these main compounds were differently affected by salt.  相似文献   

6.
This study examined the influence of salt treatment on the growth parameters (fresh and dry weights), the mineral content (K+ and Na+), total lipid contents, fatty acid composition, yields and chemical composition of the essential oil of safflower (Carthamus tinctorius L.) grown in hydroponics for 2 weeks. Results showed that the application of 50 mM NaCl reduced the fresh weight of aerial parts (shoots and leaves) while it enhanced those of the roots. The reduction of dry weight was found to be more pronounced in the aerial parts. Salt treatment increased markedly the concentrations of Na+ in both plant parts while it reduced those of K+ which resulted in a sharp reduction of K+/Na+ ratio. In response to salt treatment, total lipids contents decreased in both plant parts and great qualitative changes in the fatty acids profiles were observed. Whatever the plant parts analysed, a redirection of the lipidic metabolism towards synthesis of unsaturated fatty acids as revealed by the increase of double bond index and linoleic desaturation ratio was pointed out. The increased unsaturation index was found to be more important in roots than in aerial parts. Such treatment also reduced the essential oil yields and induced marked quantitative changes in the chemical composition of the essential oils from both plant parts. Of all the identified components, oxygenated components display a prominent salt-induced synthesis and/or accumulation in both roots and aerial parts.  相似文献   

7.
A pot experiment was carried out with tomato (Lycopersicon esculentum Mill.) cv. “Target F1” in a mixture of peat, perlite, and sand (1:1:1) to investigate the effects of supplementary calcium sulphate on plants grown at high NaCl concentration (75 mM). The treatments were: (i) control (C), nutrient solution alone; (ii) salt treatment (C + S), 75 mM NaCl; (iii) salt plus calcium treatment 1 (C + S + Ca1), 75 mM NaCl plus additional mixture of 2.5 mM CaSO4 in nutrient solution; (iv) salt plus calcium treatment 2 (C + S + Ca2), 75 mM NaCl plus additional mixture of 5 mM CaSO4 in nutrient solution. The plants grown under salt stress produced low dry matter, fruit weight, and relative water content than those grown in standard nutrient solution. Supplemental calcium sulphate added to nutrient solution containing salt significantly improved growth and physiological variables affected by salt stress (e.g. plant growth, fruit yield, and membrane permeability) and also increased leaf K+, Ca2+, and N in tomato plants. The effects of supplemental CaSO4 in maintaining membrane permeability, increasing concentrations of Ca2+, N, and K+ and reducing concentration of Na+ (because of cation competition in root zone) in leaves could offer an economical and simple solution to tomato crop production problems caused by high salinity.  相似文献   

8.
Soil salinity is one of the most important environmental factors responsible for serious agricultural problems. Tomato salt tolerance may be improved by genetic selection and by the use of adapted physiological tools. The aim of this study was to investigate the impact of exogenous application of salicylic acid (SA 0.01 mM) and calcium sulphate (CaSO4 5 mM), singly or in combination, on plant growth, photosynthetic pigments, nutritional behaviour and some metabolic parameters (total chlorophyll, carotenoids, soluble sugars, proline and lipid peroxidation) of two tomato cultivars (cv. Super Marmande and cv. Red River) exposed to salt stress (100 mM NaCl). Application of 100 mM NaCl reduced plant growth, total chlorophyll and carotenoid contents. Salt stress also induced an accumulation of Na+, a decrease in K+ and Ca2 + concentration and root sugar level, an increase in malondialdehyde (MDA) and proline concentration. Deleterious impact of salinity was related to modification in ion content rather than modification in the plant water status. Exogenous application of SA or Ca alone improved plant behaviour in the presence of NaCl. Nevertheless, the best results in terms of growth, photosynthetic pigment concentrations and mineral nutrition (limitation of Na+ accumulation and maintenance of K+ and Ca2 + content) were obtained in response to the combined SA + Ca treatment. Although the involved physiological parameters varied depending on the considered cultivar, our results suggest that Ca2 + and SA may interact to reduce the stress experienced by the plant in the presence of NaCl.  相似文献   

9.
In vitro responses of embryogenic sugarcane (Saccharum officinarum L.; cv. CoC-671) calli stressed with different levels of NaCl (0.0, 42.8, 85.6, 128.3, 171.1, 213.9 or 256.7 mM) were studied. The results showed that a significant decrease in callus growth and cell viability occurred with ≥85.6 mM NaCl. Higher amounts of free proline and glycine betaine were accumulated in NaCl-stressed calli. Although the leached and retained Na+ contents increased, the retained K+ content decreased with increasing levels of NaCl. Such a mechanism implies that sugarcane can be considered as a Na+-excluder. The accumulation of salt ions and osmolytes could play an important role in osmotic adjustment in sugarcane cells under salt stress.  相似文献   

10.
Reaumuria vermiculata (L.), a perennial dwarf shrub in the family of Tamaricaceae, is a salt-secreting xero-halophyte found widely in arid areas of Tunisia. In the present study, physiological attributes of R. vermiculata were investigated under salt stress. Four-month-old plants were subjected to various salinity levels (0, 100, 200, 300, 400 or 600 mM NaCl) for 30 days under greenhouse conditions. Results showed that plants grew optimally when treated with standard nutrient solution without NaCl supply. However, increasing osmolality of nutrient solutions caused a significant reduction in biomass production and relative growth rate. This reduction was more pronounced in roots than in shoots. In addition, this species was able to maintain its shoot water content at 30% of the control even when subjected to the highest salt level, whereas root water content seemed to be unaffected by salt. Shoot water potential declined significantly as osmotic potential of watering solutions was lowered and the more negative values were reached at 600 mM NaCl (−3.4 MPa). Concentrations of Na+ and Cl in the shoots of R. vermiculata were markedly increased with increasing osmolality of nutrient solutions, whereas concentration of K+ was not affected by NaCl supply. Salt excretion is an efficient mechanism of Na+ exclusion from the shoots of this species exhibiting high K+/Na+ selectivity ratio over a wide range of NaCl salinity. Proline accumulation in shoots was significantly increased with increase in salt level and may play a role in osmoregulation.  相似文献   

11.
Seedlings of Pistacia vera L. and Pistacia atlantica Desf. were cultured on hormone-free DKW medium supplemented with NaCl. The plants were subjected to low NaCl concentrations ranging from 0 to 80 mM for 45 days or to high salt concentrations (0, 131, and 158.5 mM for P. vera and 0, 131, and 240 mM for P. atlantica) for 25 days. Toxicity symptoms were recorded for seedlings exposed to low NaCl treatments. Plant growth, survival rates, mineral content, as well as proline and soluble sugar contents were determined and evaluated at the end of the culture period. The results indicated that low NaCl treatments yielded no instances of plant death in both species. At high salt conditions, however, significant mortality rates were noted for both species, being 22.86% at 240 mM NaCl for P. atlantica and 25.8% at 158.5 mM NaCl for P. vera. With regards to salinity effects, levels of 60 and 80 mM NaCl induced significant decreases of stem elongation and leaf number in the P. vera species. Salinities between 40 and 80 mM NaCl, however, induced a decrease in the root number of both species. The fresh weights of P. vera and P. atlantica also decreased significantly after 45 days of culture at NaCl concentrations between 40 and 80 mM and after 25 days of culture at 158.5 and 240 mM NaCl, respectively. The sodium and chloride uptake in plant organs seemed to be controlled more efficiently in P. atlantica than in P. vera. In both species, the K+ content was noted to undergo a significant decrease when salinity increased. While the K+/Na+ ratio was maintained above 2 at low NaCl treatments, it was sharply decreased at high NaCl conditions, suggesting a failure of K–Na selectivity mechanism. The Ca2+/Na+ ratio decreased significantly at 60 and 80 mM NaCl in P. vera and at 60 mM NaCl for P. atlantica. In both Pistacia species, high NaCl treatments (131–240 mM NaCl) induced a significant increase in proline content.  相似文献   

12.
Forty-day-old seedlings of Atriplex halimus were treated either with NaCl (50, 300 and 550 mM) for the subsequent 30 days or with 15% PEG for the subsequent 10 days. As much as 50 mM of NaCl significantly increased shoot fresh and dry weight and height; nevertheless, 300 or 550 mM NaCl seemed to have no effect. On the other hand, these growth parameters were not affected by drought after 3 or 6 days, but were reduced after 10 days. The gas exchange parameters (photosynthetic rate, stomatal conductance and transpiration rate) were increased by 50 mM NaCl, but decreased by 300 and 550 mM. These parameters were decreased in response to drought only after 10 days of withholding water. In contrast to Na+, K+ was significantly decreased by NaCl but not by drought. The time course effect revealed that phosphoenol pyruvate carboxylase (PEPC) protein was doubled in response to NaCl after 1 and 5 h and continued thereafter, higher than control, while drought had no significant effect. Rubisco seemed unchanged by NaCl or drought. It could be concluded that the decrease in fresh weight might be attributed to the decrease in water content. Moreover, the decrease in photosynthesis could result from a decrease in stomatal conductance, a protective mechanism against water loss to improve water use efficiency. These findings indicate that Atriplex halimus tolerates NaCl and drought through decreasing growth, reducing gas exchange parameters to improve water use efficiency, uptake Na+ and saving, if any, the photosynthetic enzyme particularly PEPC.  相似文献   

13.
In vitro-grown cells of Sesuvium portulacastrum L., an important ‘salt accumulator’ mangrove associate, were incubated on a medium containing different levels of salt, including 0, 100, 200, or 400 mM NaCl, in order to evaluate biochemical, physiological, and growth responses. A significant decrease in callus growth, water status, and cell membrane damage was observed under salt stress. Osmotic adjustment was revealed by the accumulation of inorganic ions, such as sodium (Na+), and organic osmolytes (proline, glycine betaine, and total soluble sugars) in NaCl-treated calli compared to control. However, accretion of osmolytes and inorganic ions did not support growth of calli under NaCl stress conditions. The observed reduced growth rate in calli subjected to stress, up to 200 mM NaCl, was coupled with lower catalase and ascorbate peroxidase activities and with a significantly higher superoxide dismutase activity. These findings suggested that S. portulacastrum cell cultures exhibited higher osmotic adjustment to salt stress.  相似文献   

14.
Salt stress perturbs a multitude of physiological processes such as photosynthesis and growth. To understand the biochemical changes associated with physiological and cellular adaptations to salinity, two lettuce varieties (Verte and Romaine) were grown in a hydroponics culture system supplemented with 0, 100 or 200 mM NaCl. Verte displayed better growth under 100 mM NaCl compared to Romaine, but both genotypes registered relatively similar reductions in growth under 200 mM NaCl treatment. Both varieties showed differences in net photosynthetic activity in the absence of salt and 8 days after salt treatment. These differences diminished subsequently under prolonged salt stress (14 days). Verte showed enhanced leaf proline and restricted total cations especially Na+, lesser malondialdehyde (MDA) formation and lignification in the roots under 100 mM NaCl salinity. Membrane damage estimated by electrolyte leakage increased with elevated salt concentrations in roots of both varieties, but Verte had significantly lower electrolyte leakage relative to Romaine under 100 mM NaCl. Moreover, Verte also accumulated greater levels of carotenoids under increasing NaCl concentrations compared to Romaine. Taken together, these findings suggest that the greater tolerance of Verte to 100 mM NaCl is related to the more restricted accumulation of total cations and toxic Na+ in the roots and enhanced levels of antioxidative metabolites in root and leaf tissue.  相似文献   

15.
The effect of salinity on the non-enzymic and enzymic antioxidant activity, shoot proliferation and nutrient accumulation was studied in in vitro cultures of the rootstock CAB-6P (Prunus cerasus L.). Three concentrations (0, 30 and 60 mM) of NaCl or CaCl2 were added to a modified MS medium. Between the two salt treatments used, only the explants treated with CaCl2 presented significant decrease in growth parameters. The concentrations of Na+ and Cl in the explants treated with NaCl were increased, as NaCl in the culture medium increased. Furthermore, in the explants treated with CaCl2 the concentrations of Ca2+ and Cl were increased while that of K+ decreased, as CaCl2 concentration increased. The activity of peroxidase in leaves as well as the number of its anionic isoforms was increased under 30 mM CaCl2 as well as 60 mM NaCl or CaCl2. On the contrary, increasing salinity, from 0 to 60 mM CaCl2, resulted in a reduction of the catalase activity in leaves followed by disappearance of the only one catalase isoform that was detected in leaves (60 mM CaCl2). In the stems of the explants treated with NaCl the peroxidase activity was reduced. In the stems and leaves of the explants grown in saline substrate the non-enzymic antioxidant activity was significantly increased. The results suggest that the stems and leaves of CAB-6P explants presented variable antioxidant responses that were depended on the salt form used. The contribution of enzymic and non-enzymic protection mechanisms to the adaptation of CAB-6P explants under salinity stress is discussed.  相似文献   

16.
Sodium chloride and sodium sulfate are commonly present in extraction tailings waters produced as a result of surface mining and affect plants on reclaimed areas. Red-osier dogwood (Cornus stolonifera Michx) seedlings were demonstrated to be relatively resistant to these high salinity oil sands tailings waters. The objectives of this study were to compare the effects of Na2SO4 and NaCl, on growth, tissue ion content, water relations and gas exchange in red-osier dogwood (Cornus stolonifera Michx) seedlings. In the present study, red-osier dogwood seedlings were grown in aerated half-strength modified Hoagland's mineral solution containing 0, 25, 50 or 100 mM of NaCl or Na2SO4. After four weeks of treatment, plant dry weights decreased and the amount of Na+ in plant tissues increased with increasing salt concentration. Na+ tissue content was higher in plants treated with NaCl than Na2SO4 and it was greater in roots than shoots. However, Cl concentration in the NaCl treated plants was higher in shoots than in roots. The decrease in stomatal conductance and photosynthetic rates observed in presence of salts is likely to contribute to the growth reduction. Our results suggest that red-osier dogwood is able to control the transport of Na+ from roots to shoots when external concentrations are 50 mM or less.  相似文献   

17.
Salinity and drought stress, which combines a lack of water and sodium toxicity, are more of the problems faced by plants and agricultural crops in newly reclaimed lands. Therefore, the direction of our research is to produce salinity-tolerant plants to increase the productivity of crops under conditions of salt stress. Potato callus was studied using different concentrations of NaCl (0.0, 50, 75, 100, 125, 150 and 200 mM). Shoot induction was obtained from callus treated with MS medium containing 4.0 and 5.0 mg l?1 TDZ + 0.5 mg l?1 GA3 with NaCl up to 125 mM and 150 mM for Rosetta and Victoria, respectively. When plantlets were cultured on MS medium containing 3.0 mg l?1 kinetin and 1.0 mg l-1paclobutrazol (PBZ) with 80 or 90 g l?1 sucrose after two months gave a good microtuber per explant of Rosetta and Victoria cultivar which gave number of microtuber/plantlet (1.85) and (2.40) when plantlets treated with 125 mM and 150 mM NaCl of Rosetta and Victoria cultivar, respectively. In general, the results were shown in each treatment of NaCl and that amounts of proline at 125 and 150 mMNaCl were significantly more than 0.0, 50, 75 and 100 mM NaCl. This result is related to the role of proline in the osmotic adjustment of a higher concentration of salinity. The results showed that the amounts of sodium increased with increasing the salt concentration, but the amount of potassium decreased and also increased the Na+/K+ ratio with increasing the salt concentration. This research is important for in vitro potato plant regeneration, which requires optimization before genetic transformation can be achieved.  相似文献   

18.
Salt tolerance of sorghum varieties in terms of fresh weight, ion accumulations, proline content and peroxidase activity was analyzed in this study. Three sorghum varieties, Payam, Kimia, and Jambo, differing in salt tolerance, were grown in a greenhouse-hydroponic culture with a complete nutrition solution to which 0, 50, 100, 150 and 200 mM NaCl was added. Plant roots and leaves were harvested at 15 and 30 days after treatment and subjected to analysis. Clear decline in K+ and Ca2+ concentrations and increase in Na+ and proline contents were observed in the root and leaf tissues at each NaCl concentration in all varieties during the NaCl treatment. The Ca2+ concentration in leaves was higher than in roots, and had the following order in the tested cultivars: Jambo, Kimia, and Payam. Total peroxidase activity increased under salinity stress and it was proportional with the salt concentration. Payam had the largest decrease (46.95%) in fresh weight caused by NaCl, while Jambo had the lowest decrease, 28.63%. Linear regression analysis revealed significant relationships between the estimated factors and fresh weight. The profiles of isoperoxidases were modified under stress conditions. Two isoforms, A1 and A2, were detected in all three varieties with different intensities. Under NaCl stress, isoperoxidases were strongly expressed and a third isoform, A3, was specifically found in variety Jambo suggesting that A3 is implicated in salt adaptation of this variety.  相似文献   

19.
The antioxidative defense mechanism to salinity was assessed by monitoring the activities of some antioxidative enzymes and levels of antioxidants in an obligate halophyte, Salicornia brachiata, subjected to varying levels of NaCl (0, 200, 400, and 600 mM) under hydroponic culture. In the shoots of S. brachiata, salt treatment preferentially enhanced the activities of ascorbate peroxidase (APX), guaiacol peroxidase (POX), glutathione reductase (GR), and superoxide dismutase (SOD), whereas it induced the decrease of catalase (CAT) activity. Similarly, salinity caused an increase in total glutathione content (GSH + GSSG) and a decrease in total ascorbate content. Growth of S. brachiata was optimum at 200 mM NaCl and decreased with further increase in salinity. Salinity caused an increase in Na+ content and a decrease in K+ content of shoots. Proline levels did not change at low (0-200 mM NaCl) or moderate (400 mM NaCl) salinities, whereas a significant increase in proline level was observed at high salinity (600 mM NaCl). Accumulation of Na+ may have a certain role in osmotic homeostasis under low and moderate salinities in S. brachiata. Parameters of oxidative stress such as malondialdehyde (MDA), a product of lipid peroxidation, and H2O2 concentrations decreased at low salinity (200 mM NaCl) and increased at moderate (400 mM NaCl) and high salinities (600 mM NaCl). As a whole, our results suggest that the capacity to limit ionic and oxidative damage by the elevated levels of certain antioxidative enzymes and antioxidant molecules is important for salt tolerance of S. brachiata.  相似文献   

20.
Summary Growth and physiological responses of date palm. Phoenix dactylifera L. cv. Barhee, callus to salinity stress were examined. Callus induced from shoot tips of offshoots was cultured on Murashige and Skoog medium supplemented with NaCl at concentrations ranging from 0 to 225 mM, in consective increments of 25 mM. Data obtained after 6 wk of exposure to salt have shown a significant increase in callus proliferation in response to 25 mM NaCl the lowest level tested, beyond which callus weight decreased. At 125 mM NaCl and higher, callus growth was nearly completely inhibited. Physiological studies on callus exposed to salt stress have shown an increase in proline accumulation in response to increased salinity. Proline accumulation was correlated to callus growth inhibition. Furthermore, increasing the concentration of NaCl in the culture medium generally resulted in a steady increase in Na+ and reduction in K+ concentrations. However, at 25 mM NaCl, the only level at which callus growth was significantly enhanced, an increase in K+ content was noted, in comparison to the NaCl free control. In response to increasing external NaCl level, the Na+/K+ ratio increased The Na+/K+ ratio was positively correlated to proline accumulation and hence callus growth inhibition. This study provides, an understanding of the response of date palm callus to salinity, which is important for future studies aimed at developing strategies for selecting and characterizing somaclonal variants tolerant to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号