首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Creation of stable hemopoietic chimerism has been considered to be a prerequisite for allograft tolerance after bone marrow transplantation (BMT). In this study, we demonstrated that allogeneic BMT with bone marrow cells (BMC) prepared from either knockout mice deficient in both CD4 and CD8 T cells or CD3E-transgenic mice lacking both T cells and NK cells maintained a high degree of chimerism, but failed to induce tolerance to donor-specific wild-type skin grafts. Lymphocytes from mice reconstituted with T cell-deficient BMC proliferated when they were injected into irradiated donor strain mice, whereas lymphocytes from mice reconstituted with wild-type BMC were unresponsive to donor alloantigens. Donor-specific allograft tolerance was restored when donor-type T cells were adoptively transferred to recipient mice given T cell-deficient BMC. These results show that donor T cell engraftment is required for induction of allograft tolerance, but not for creation of continuous hemopoietic chimerism after allogeneic BMT, and that a high degree of chimerism is not necessarily associated with specific allograft tolerance.  相似文献   

2.
Induction of molecular chimerism following reconstitution of mice with autologous bone marrow cells expressing a retrovirally encoded allogeneic MHC class I Ag results in donor-specific tolerance. To investigate the mechanism by which CD4 T cells that recognize allogeneic MHC class I through the indirect pathway of Ag presentation are rendered tolerant in molecular chimeras, transgenic mice expressing a TCR on CD4 T cells specific for peptides derived from K(b) were used. CD4 T cells expressing the transgenic TCR were detected in mice reconstituted with bone marrow cells transduced with retroviruses carrying the gene encoding H-2K(b), albeit detection was at lower levels than in mice receiving mock-transduced bone marrow. Despite the presence of CD4 T cells expressing an alloreactive TCR, mice receiving H-2K(b)-transduced bone marrow permanently accepted K(b) disparate skin grafts. CD4+CD25+ T cells from mice reconstituted with H-2K(b)-transduced bone marrow prevented rejection of K(b) disparate skin grafts when adoptively transferred into immunodeficient mice along with effector T cells, suggesting that induction of molecular chimerism leads to the generation of donor specific regulatory T cells, which may be involved in preventing alloreactive CD4 T cell responses that lead to rejection.  相似文献   

3.
Mixed chimerism and donor-specific tolerance are achieved in mice receiving 3 Gy of total body irradiation and anti-CD154 mAb followed by allogeneic bone marrow (BM) transplantation. In this model, recipient CD4 cells are critically important for CD8 tolerance. To evaluate the role of CD4 cells recognizing donor MHC class II directly, we used class II-deficient donor marrow and were not able to achieve chimerism unless recipient CD8 cells were depleted, indicating that directly alloreactive CD4 cells were necessary for CD8 tolerance. To identify the MHC class II(+) donor cells promoting this tolerance, we used donor BM lacking certain cell populations or used positively selected cell populations. Neither donor CD11c(+) dendritic cells, B cells, T cells, nor donor-derived IL-10 were critical for chimerism induction. Purified donor B cells induced early chimerism and donor-specific cell-mediated lympholysis tolerance in both strain combinations tested. In contrast, positively selected CD11b(+) monocytes/myeloid cells did not induce early chimerism in either strain combination. Donor cell preparations containing B cells were able to induce early deletion of donor-reactive TCR-transgenic 2C CD8 T cells, whereas those devoid of B cells had reduced activity. Thus, induction of stable mixed chimerism depends on the expression of MHC class II on the donor marrow, but no requisite donor cell lineage was identified. Donor BM-derived B cells induced early chimerism, donor-specific cell-mediated lympholysis tolerance, and deletion of donor-reactive CD8 T cells, whereas CD11b(+) cells did not. Thus, BM-derived B cells are potent tolerogenic APCs for alloreactive CD8 cells.  相似文献   

4.
Reconstitution of lethally irradiated mice with a mixture of T cell-depleted syngeneic plus T cell-depleted allogeneic bone marrow (B10 + B10.D2----B10) leads to the induction of mixed lymphopoietic chimerism, excellent survivals, specific in vivo transplantation tolerance to subsequent donor strain skin grafts, and specific in vitro unresponsiveness to allogeneic donor lymphoid elements as assessed by mixed lymphocyte reaction (MLR) proliferative and cell-mediated lympholysis (CML) cytotoxicity assays. When B10 recipient mice received mixed marrow inocula in which the syngeneic component had not been T cell depleted, whether or not the allogeneic donor marrow was treated, they repopulated exclusively with host-type cells, promptly rejected donor-type skin allografts, and were reactive in vitro to the allogeneic donor by CML and MLR assays. In contrast, T cell depletion of the syngeneic component of the mixed marrow inocula resulted in specific acceptance of allogeneic donor strain skin grafts, whether or not the allogeneic bone marrow was T cell depleted. Such animals were specifically unreactive to allogeneic donor lymphoid elements in vitro by CML and MLR, but were reactive to third party. When both the syngeneic and allogeneic marrow were T cell depleted, variable percentages of host- and donor-type lymphoid elements were detected in the mixed reconstituted host. When only the syngeneic bone marrow was T cell depleted, animals repopulated exclusively with donor-type cells. Although these animals had detectable in vitro anti-host (B10) reactivity by CML and MLR and reconstituted as fully allogeneic chimeras, they exhibited excellent survival and had no in vivo evidence for graft-vs-host disease. In addition, experiments in which untreated donor spleen cells were added to the inocula in this last group suggest that the presence of T cell-depleted syngeneic bone marrow cells diminishes graft-vs-host disease and the mortality from it. This system may be helpful as a model for the study of alloresistance and for the identification of syngeneic cell phenotypes, which when present prevent engraftment of allogeneic marrow.  相似文献   

5.
Donor hemopoietic cell engraftment is considered to be an indicator of allograft tolerance. We depleted chimerism with cells specifically presensitized to the bone marrow donor to investigate its role in mixed chimera-induced tolerance. Three experimental models were used: model A, B10.A cells presensitized to B6 (a anti-b cells) were injected into (B6 x D2)F(1) --> B10.A mixed chimeras grafted with DBA/2 skin; model B, anti-B6 presensitized cells prepared in DBA/2 --> B10.A mixed chimeras, thus unresponsive to DBA/2 (a anti-b/tol-d cells), were injected into (B6 x D2)F(1) --> B10.A mixed chimeras grafted with DBA/2 skin; and model C, (BALB/c x B6)F(1) cells presensitized to CBA (d/b anti-k cells) were injected into (B6 x CBA)F(1) --> BALB/c mixed chimeras grafted with B6 skin. Skin was grafted on day 30. Injection of each cell type before skin grafting abolished hemopoietic cell engraftment and prevented allograft acceptance. Injection of presensitized cells after skin grafting resulted in different outcomes depending on the models. In model A, injection of a anti-b cells completely depleted chimerism and caused allograft rejection. In model B, injection of a anti-b/tol-d cells markedly reduced, but did not deplete, peripheral chimerism and maintained skin allograft survival. In model C, d/b anti-k cells reduced chimerism to the background levels but failed to cause graft rejection, probably due to persistence of injected cells which share MHC with skin grafts. Together, the results show that presence of chimeric donor cells is essential in both the induction and maintenance phases of tolerance induced by mixed chimerism.  相似文献   

6.
Induction of immunological tolerance is highly desirable for the treatment and prevention of autoimmunity, allergy, and organ transplant rejection. Adoptive transfer of MHC class I disparate mature T cells at the time of reconstitution of mice with syngeneic bone marrow resulted in specific tolerance to allogeneic skin grafts that were matched to the T cell donor strain. Mature allogeneic T cells survived long-term in reconstituted hosts and were able to re-enter the thymus. Analysis of T cell development using transgenic mice expressing an alloantigen-reactive TCR revealed that expression of allogeneic MHC class I on adoptively transferred mature T cells mediated negative selection of developing alloreactive T cells in the thymus. Thus, mature allogeneic T cells are able to mediate central deletion of alloreactive cells and induce transplantation tolerance without the requirement for any other alloantigen-expressing cell type.  相似文献   

7.
The effector mechanism of skin allograft rejection has been characterized as Ag specific, rejecting cells that express the target alloantigen but sparing those that do not. However, the rejection of MHC class II disparate skin grafts, in which very few cells (Langerhans cells) actually express the target Ia Ag could conceivably proceed by either one of two distinct rejection mechanisms. One possibility is that Ia- cells are destroyed by a sequence of events in which CD4+ T cells, activated by Ia+ LC, elaborate soluble factors that are either directly cytolytic or that recruit and activate non-specific effector cells. The alternative possibility is that activated CD4+ T cells elaborate soluble factors which induce Ia expression on Ia- cell populations, and that these Ia+ cells are subsequently destroyed by effector cells specific for the induced Ia alloantigens. We found that rejection of Ia+ LC was not of itself sufficient to cause rejection of skin grafts, indicating that skin allograft rejection is contingent on the destruction not only of LC but of other graft cell populations as well. We then investigated whether CD4+ T cells rejected allogeneic skin grafts in an antigen specific fashion. To do so, we engrafted immunoincompetent H-2b nude mice with trunk skin grafts from B6----A/J allophenic mice because such skin is composed of mutually exclusive cell populations expressing either H-2a or H-2b histocompatibility Ag, but not both. The engrafted mice were subsequently reconstituted with H-2b CD4+ T cells. The CD4+ T cells destroyed keratinocytes of A/J origin but spared keratinocytes of B6 origin, even though neither cell population constitutively expresses target IAk alloantigen. The targeted rejection of A/J keratinocytes but not of B6 keratinocytes indicates that the target Ia alloantigen must have been induced on Ia- A/J keratinocytes, rendering them susceptible to destruction by anti-Iak-specific CD4+ effector cells. These data demonstrate that CD4+ T cell rejection of skin allografts is mediated by Ag-specific CD4+ cytolytic T cells and hence, requires the induction of target Ia alloantigens on epidermal cells within the graft.  相似文献   

8.
A pure method of drug (cyclophosphamide plus busulfan)-induced skin allograft tolerance in mice that can regularly overcome fully H-2-mismatched barriers in mice has been established. The components of the method are i.v. administration of 1 x 108 allogeneic spleen cells on day 0, i.p. injection of 200 mg/kg CP and 25 mg/kg busulfan on day 2, and i.v. injection of T cell-depleted 1 x 107 bone marrow cells from the same donor on day 3. Recipient B10 (H-2b; IE-) mice prepared with this conditioning developed donor-specific tolerance, and long-lasting survival of skin allografts was shown in almost of the recipient mice. In the tolerant B10 mice prepared with new conditioning, stable multilineage mixed chimerism was observed permanently, and IE-reactive Vbeta11+ T cells were reduced in periphery as seen in untreated B10.D2 (H-2d; IE+) mice. The specific tolerant state was confirmed by the specific abrogation against donor Ag in the assays of CTL activity and MLR and donor-specific acceptance in the second skin grafting. These results demonstrated that the limitation of standard protocol of cyclophosphamide-induced tolerance, which have been reported by us since 1984, can be overcome by the additional treatments with the myelosuppressive drug busulfan, followed by 1 x 107 T cell-depleted bone marrow cells. To our knowledge, this is the first report to induce allograft tolerance with a short course of the Ag plus immunosuppressive drug treatment without any kind of mAbs (pure drug-induced tolerance).  相似文献   

9.
To study the role of the direct and indirect pathways in achieving tolerance, we used genetically altered mouse strains in two ways: 1) MHC class II-deficient mice were used as donors of skin and cardiac grafts to eliminate the direct CD4(+) T cell response, and 2) B6 II(-)4(+) mice, which are MHC class II-deficient mice expressing an MHC class II transgene only on thymic epithelium, were used as recipients of normal grafts. These mice cannot mount an indirect response. Eliminating the indirect pathway actually made it more difficult to achieve prolonged allograft survival when we used costimulatory blockade than when both pathways were available. Costimulatory blockade was ineffective even when CD4(+) T cells from normal animals were transferred into recipients that lacked MHC class II molecules. These results suggest that an active CD4(+) response through the indirect pathway is necessary for costimulatory blockade to be effective in prolonging allograft survival.  相似文献   

10.
NK cell tolerance in mixed allogeneic chimeras   总被引:11,自引:0,他引:11  
Alterations in inhibitory receptor expression on NK cells have been detected in mixed allogeneic chimeras and in mosaic MHC class I-expressing transgenic mice. However, it is not known whether or not NK cells are tolerant to host and donor Ags in mixed chimeras. In vitro studies have shown a lack of mutual tolerance of separated donor and host NK cells obtained from mixed chimeras. Using BALB/c-->B6 fully MHC-mismatched mixed chimeras, we have now investigated this question in vivo. Neither donor nor host NK cells in mixed chimeras showed evidence for activation, as indicated by expression of B220 and Thy-1.2 on NK cells in chimeric mice at levels similar to those in nonchimeric control mice. Lethally irradiated, established mixed BALB/c--> B6 chimeras rejected a low dose of beta(2)-microglobulin-deficient bone marrow cells (BMC) efficiently but did not reject BALB/c or B6 BMCs. In contrast, similarly conditioned B6 mice rejected both BALB/c and beta(2)-microglobulin-deficient BMCs. Thus, NK cells were specifically tolerant to the donor and the host in mixed allogeneic chimeras. The similar growth of RMA lymphoma cells in both chimeric and control B6 mice further supports the conclusion that donor BALB/c NK cells are tolerant to B6 Ags in chimeras. Administration of a high dose of exogenous IL-2 could not break NK cell tolerance in chimeric mice, suggesting that NK cell tolerance in chimeras is not due to a lack of activating cytokine. No reduction in the level of expression of the activating receptor Ly-49D, recognizing a donor MHC molecule, was detected among recipient NK cells in mixed chimeras. Thus, the present studies demonstrate that NK cells in mixed chimeras are stably tolerant to both donor and host Ags, by mechanisms that are as yet unexplained.  相似文献   

11.
Pretreatment of pancreatic islets in 95% oxygen culture depletes graft-associated APCs and leads to indefinite allograft acceptance in immunocompetent recipients. As such, the APC-depleted allograft represents a model of peripheral alloantigen presentation in the absence of donor-derived costimulation. Over time, a state of donor-specific tolerance develops in which recipients are resistant to donor APC-induced graft rejection. Thus, persistence of the graft is sufficient to induce tolerance independent of other immune interventions. Donor-specific tolerance could be adoptively transferred to immune-deficient SCID recipient mice transplanted with fresh immunogenic islet allografts, indicating that the original recipient was not simply "ignorant" of donor antigens. Interestingly, despite the fact that the original islet allograft presented only MHC class I alloantigens, CD8+ T cells obtained from tolerant animals readily collaborated with naive CD4+ T cells to reject donor-type islet grafts. Conversely, tolerant CD4+ T cells failed to collaborate effectively with naive CD8+ T cells for the rejection of donor-type grafts. In conclusion, the MHC class I+, II- islet allograft paradoxically leads to a change in the donor-reactive CD4 T cell subset and not in the CD8 subset. We hypothesize that the tolerant state is not due to direct class I alloantigen presentation to CD8 T cells but, rather, occurs via the indirect pathway of donor Ag presentation to CD4 T cells in the context of host MHC class II molecules.  相似文献   

12.

Background

Application of bone marrow cells (BMC) is a promising strategy for tolerance induction, but usually requires strong depletion of the host immune system. This study evaluates the ability of immunosuppressants to evolve tolerogenic properties of BMC in view of residual alloreactivity.

Methods

The rat model used a major histocompatibility complex (MHC) class II disparate bone marrow transplantation (BMT) setting (LEW.1AR1 (RT1auu) → LEW.1AR2 (RT1aau)). Heart grafts (LEW.1WR1 (RT1uua)) were disparate for the complete MHC to recipients and for MHC class I to BMC donors. Limited conditioning was performed by total body irradiation of 6 Gy. Cyclosporine (CsA) or Sirolimus (Srl) were administered for 14 or 28 days. Transplantation of heart grafts (HTx) was performed at day 16 or at day 100 after BMT. Chimerism and changes in the T cell pool were detected by flow cytometry.

Results

Mixed chimeras accepted HTx indefinitely, although the composition of the regenerated T cell pool was not changed to a basically donor MHC class II haplotype. Non-chimeric animals rejected HTx spontaneously. BMC recipients, who received HTx during T cell recovery at day 16, accepted HTx only after pre-treatment with Srl, although chimerism was lost. CsA pre-treatment led to accelerated HTx rejection as did isolated application of BMC.

Conclusion

Srl evolves tolerogenic properties of allogeneic BMC to achieve indefinite acceptance of partly MHC disparate HTx despite residual alloreactivity and in particular loss of chimerism.  相似文献   

13.
Recipient cells migrating into the transplantation site of an allograft recognize histocompatibility antigens on the grafts and are cytotoxic against the grafts. Although the alloreactive immune response is predominantly directed at the major histocompatibility complex (major histocompatibility complex [MHC]; H-2 in mice) class I molecules, the basic mechanisms of allograft rejection (e.g., ligand-receptor interaction) remain unclear, because of the polymorphism and complexity of the MHC. To examine the role of MHC class I molecules in allograft rejection, D(d) , K(d) or D(d) K(d) -transgenic skin or tumor cells we established on a C57BL/6 (D(b) K(b) ) background and transplanted into C57BL/6 mice. Skin grafts from allogeneic (i.e., BALB/c, B10.D2, and BDF1) strains of mice were rejected from C57BL/6 mice on days 12-14 after grafting, whereas isografts were tolerated by these mice. Unexpectedly, skin grafts from D(d) -, K(d) -, and D(d) K(d) -transgenic C57BL/6 mice were rejected on days 12-14 in a transgene expression rate-independent manner from 9/19 (47%), 20/39 (51%), and 12/17 (71%) of C57BL/6 mice, respectively. Similarly, intradermally transplanted allogeneic (i.e., Meth A), but not syngeneic (i.e., EL-4), tumor cells were rejected from C57BL/6 mice; the growth of D(d) - or K(d) -transfected EL-4 cells was delayed by 10-13 days; and 4/10 (40%) of D(d) K(d) -transfected tumor cells were rejected from C57BL/6 mice. These results indicate that D(d) and K(d) genes are equivalent as allogeneic MHC class I genes and that C57BL/6 (D(b) K(b) ) mice reject D(d) -, K(d) -, or D(d) K(d) -transgened skin or tumor cells in a transgene number-dependent, gene expression rate-independent manner.  相似文献   

14.
Lethally irradiated mice reconstituted with syngeneic bone marrow cells were grafted with allogeneic skin grafts 6-7 weeks after irradiation and reconstitution. Mice with intact thymuses rejected the grafts whereas the mice thymectomized before irradiation and reconstitution did not. Thymectomized irradiated mice (TIR mice) reconstituted with bone marrow cells from donors immune to the allografts rejected the grafts. Bone marrow cells from immunized donors, pretreated with Thy 1.2 antibody and C', did not confer immunity to TIR recipients. To determine the number of T lymphocytes necessary for the transfer of immunity by bone marrow cells from immunized donors, thymectomized irradiated mice were reconstituted with nonimmune bone marrow cells treated with Thy 1.2 antibody and C' and with various numbers of splenic T lymphocytes from nonimmune and immune donors. Allogeneic skin graft rejection was obtained with 10(6) nonimmune or 10(4) immune T cells. The effect of immune T cells was specific: i.e., immune T cells accelerated only rejection of the relevant skin grafts whereas against a third-party skin grafts acted as normal T lymphocytes.  相似文献   

15.
Expression of a retrovirally transduced MHC class I Ag, H-2K(b) (K(b)), in bone marrow-derived cells leads to specific prolongation of K(b) disparate skin grafts. To examine the extent to which peptides derived from K(b) contribute to the induction of tolerance, retroviruses carrying mutant K(b) genes designed to enter separate pathways of Ag presentation were constructed. Thymectomized and CD8 T cell-depleted mice that had been irradiated and reconstituted with bone marrow cells expressing a secreted form of K(b) showed prolongation of K(b) disparate skin graft survival. Skin graft prolongation was not observed when similar experiments were performed using mice that were not CD8 T cell depleted. This suggests that hyporesponsiveness can be induced in CD4 T cells, but not CD8 T cells by Ags presented via the exogenous pathway of Ag processing. Modest prolongation of skin allografts was observed in mice reconstituted with bone marrow cells transduced with retroviruses carrying a gene encoding a mutant K(b) molecule expressed only in the cytoplasm. Prolongation was also observed in similar experiments in mice that were thymectomized and CD4 T cell depleted following complete reconstitution, but not in mice that were reconstituted and then thymectomized and CD8 T cell depleted. Thus, hyporesponsiveness can be induced in a subset of CD8 T cells by recognition of peptides derived from K(b) through both the direct and indirect pathways of Ag recognition, while CD4 T cell hyporesponsiveness to MHC class I disparate grafts occurs only through the indirect pathway of Ag recognition.  相似文献   

16.
Inhibition of graft-versus-host disease by double-negative regulatory T cells   总被引:12,自引:0,他引:12  
Pretransplant infusion of lymphocytes that express a single allogeneic MHC class I Ag has been shown to induce tolerance to skin and heart allografts that express the same alloantigens. In this study, we demonstrate that reconstitution of immunoincompetent mice with spleen cells from MHC class I L(d)-mismatched donors does not cause graft-vs-host disease (GVHD). Recipient mice become tolerant to skin allografts of lymphocyte donor origin while retaining immunity to third-party alloantigens. The mechanism involves donor-derived CD3(+)CD4(-)CD8(-) double-negative T regulatory (DN Treg) cells, which greatly increase and form the majority of T lymphocytes in the spleen of recipient mice. DN Treg cells isolated from tolerant recipient mice can suppress the proliferation of syngeneic antihost CD8(+) T cells in vitro. Furthermore, we demonstrate that DN Treg cells can be generated in vitro by stimulating them with MHC class I L(d)-mismatched lymphocytes. These in vitro generated L(d)-specific DN Treg cells are able to down-regulate the activity of antihost CD8(+) T cells in vitro by directly killing activated CD8(+) T cells. Moreover, infusing in vitro generated L(d)-mismatched DN Treg cells prevented the development of GVHD caused by allogeneic CD8(+) T cells. Together these data demonstrate that infusion of single MHC class I locus-mismatched lymphocytes may induce donor-specific transplantation tolerance through activation of DN Treg cells, which can suppress antihost CD8(+) T cells and prevent the development of GVHD. This finding indicates that using single class I locus-mismatched grafts may be a viable alternative to using fully matched grafts in bone marrow transplantation.  相似文献   

17.
Mechanisms of cyclophosphamide (CP)-induced tolerance to class I (D) and class II (IE) alloantigens were studied. Transplantation tolerance across H-2D plus IE Ag-barriers has been achieved when B10.Thy-1.1 (Kb,IAb,IE-,Db; Thy-1.1) mice were primed i.v. with 9 x 10(7) spleen cells plus 3 x 10(7) bone marrow cells from B10.A(5R) mice (5R; kb,IAb,IEb,Dd; Thy-1.2) and treated i.p. with 200 mg/kg of CP 2 days later. The tolerant state in the early and the late stage was confirmed by prolonged acceptance of donor-type skin grafts, and in vitro unresponsiveness to donor Ag. In the tolerant B10.Thy-1.1 mice treated with 5R cells 28 days earlier and followed by CP, intrathymic clonal deletion of V beta 11+ T cells reactive to IE-encoded antigens was observed in association with intrathymic mixed chimerism. 5R skin survived, however, even after the clonal deletion of V beta 11+ T cells terminated by 180 days after tolerance induction. V beta 11+ T cells, which reappeared in the periphery of the recipient B10.Thy-1.1 mice bearing 5R skin at this stage, were not capable of proliferating in response to receptor cross-linking with V beta 11-specific mAb. Furthermore, the CTL activity against class I (Dd) alloantigens of spleen cells from these tolerant mice was restored by the addition of IL-2 to MLC. Thus, our experiments provide direct evidence that tolerance to both class I (Dd) and class II (IEb) alloantigens by clonal allergy occurs during the termination of intrathymic clonal deletion. These results clearly show practical hierarchy of the mechanisms of transplantation tolerance.  相似文献   

18.
Allogeneic bone marrow chimerism induces robust systemic tolerance to donor alloantigens. Achievement of chimerism requires avoidance of marrow rejection by pre-existing CD4 and CD8 T cells, either of which can reject fully MHC-mismatched marrow. Both barriers are overcome with a minimal regimen involving anti-CD154 and low dose (3 Gy) total body irradiation, allowing achievement of mixed chimerism and tolerance in mice. CD4 cells are required to prevent marrow rejection by CD8 cells via a novel pathway, wherein recipient CD4 cells interacting with recipient class II MHC tolerize directly alloreactive CD8 cells. We demonstrate a critical role for recipient MHC class II, B cells, and dendritic cells in a pathway culminating in deletional tolerance of peripheral alloreactive CD8 cells.  相似文献   

19.
Hematopoietic chimerism is considered to generate robust allogeneic tolerance; however, tissue rejection by chimeras can occur. This "split tolerance" can result from immunity toward tissue-specific Ags not expressed by hematopoietic cells. Known to occur in chimeric recipients of skin grafts, it has not often been reported for other donor tissues. Because chimerism is viewed as a potential approach to induce islet transplantation tolerance, we generated mixed bone marrow chimerism in the tolerance-resistant NOD mouse and tested for split tolerance. An unusual multilevel split tolerance developed in NOD chimeras, but not chimeric B6 controls. NOD chimeras demonstrated persistent T cell chimerism but rejected other donor hematopoietic cells, including B cells. NOD chimeras also showed partial donor alloreactivity. Furthermore, NOD chimeras were split tolerant to donor skin transplants and even donor islet transplants, unlike control B6 chimeras. Surprisingly, islet rejection was not a result of autoimmunity, since NOD chimeras did not reject syngeneic islets. Split tolerance was linked to non-MHC genes of the NOD genetic background and was manifested recessively in F(1) studies. Also, NOD chimeras but not B6 chimeras could generate serum alloantibodies, although at greatly reduced levels compared with nonchimeric controls. Surprisingly, the alloantibody response was sufficiently cross-reactive that chimerism-induced humoral tolerance extended to third-party cells. These data identify split tolerance, generated by a tolerance-resistant genetic background, as an important new limitation to the chimerism approach. In contrast, the possibility of humoral tolerance to multiple donors is potentially beneficial.  相似文献   

20.
Specific tolerance can be induced in animals by transplanting hemopoietic cells across concordant species barriers. Despite the fact that the rat-mouse species combination is considered concordant, we have recently demonstrated that normal murine serum contains natural antibodies (nAb), predominantly of the IgM and IgG3 subclasses, with markedly greater binding to rat bone marrow cells (BMC) than to rat splenocytes or thymocytes. Since much greater numbers of rat BMC than of allogeneic murine BMC are required to achieve engraftment in mice, we considered the possibility that these nAbs might be responsible, and that the increased numbers of BMC might be required to absorb these nAb. To evaluate the effect of these nAb on engraftment of rat BMC in mice, we have now performed adoptive transfer studies using T and B cell-deficient severe combined immunodeficiency disease (SCID) mice as recipients. Administration of as few as 5 x 10(5) T cell-depleted rat BMC led to induction of stable xenochimerism in SCID mice conditioned with 4-Gy whole body irradiation. Rat T cells developed after a delay of several weeks, and conferred the ability to reject non-donor-type rat skin grafts, whereas donor-type grafts were accepted. Adoptive transfer of 4 ml of normal BALB/c serum led to a marked reduction in the level of rat chimerism in SCID recipients of 2 x 10(6) F344 BMC. The ability of sera to inhibit engraftment of rat BMC correlated with their cytotoxic nAb content, and the inhibitory effect of highly cytotoxic sera could be overcome by administration of large numbers of rat BMC. Thus, normal mouse serum has a limited ability to hinder engraftment of rat BMC, and this degree of resistance can be overcome by adsorption when large numbers of BMC are administered. Eliminating nAb from serum may be more difficult in discordant species combinations in recipients with functional B cells, but may likewise permit the use of BMT as a means of inducing transplantation tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号