首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arrangement of the DNA sequences coding for the ribosomal 5.8 S RNA in the genome of Xenopus laevis has been studied. In Xenopus the 5.8 S cistrons, like the ribosomal 28 S and 18 S cistrons, are reiterated some 600-fold (Clarkson et al., 1973a). When banded in caesium chloride, the 5.8 S cistrons separate from somatic DNA of high molecular weight and band as a distinct satellite, indicating a clustered arrangement in the genome. The buoyant density of this satellite (1.723 g cm?3) corresponds to that of the ribosomal DNA satellite.It has previously been shown that the ribosomal DNA sequences have been deleted from the genome of the anucleotide Xenopus mutant. Our findings, first that the anucleolate mutant does not synthesize 5.8 S RNA and second that somatic DNA from this mutant does not detectably hybridize with 5.8 S RNA, demonstrate that the 5.8 S cistronic complement has been similarly deleted. This finding supports our contention that 5.8 S sequences are clustered on chromosomal DNA and further suggests that they are located close to or within the rDNA complements in the nucleolus organizer region.Pre-hybridization to saturation with unlabelled 5.8 S RNA results in only a slight increase in the buoyant density of denatured 5.8 S coding sequences from low molecular weight DNA. Since a contiguous arrangement of the 5.8 S sequences would give rise to a much larger increase in density, it follows that, although clustered, the sequences must be intercalated within stretches of other DNA. By contrast, pre-hybridization of the somatic DNA with unlabelled 28 S or 18 S ribosomal RNAs results in large shifts in the buoyant density of the 5.8 S sequences. These shifts indicate that the 5.8 S sequences are closely linked to both 28 S and 18 S coding sequences.It is concluded that the 5.8 S cistrons are interspersed along the ribosomal DNA sense strand and that each is located together with a 28 S and an 18 S cistron in a ribosomal repeat unit. Estimates, obtained from the pre-hybridization experiments, of the separations between the 5.8 S and the 28 S and 18 S sequences, are combined in a model of the ribosomal repeat unit. In this model the 5.8 S cistron is located within the transcribed spacer which links the 28 S and 18 S coding sequences.  相似文献   

2.
Chloroplast ribosomal proteins from spinach have been prepared in the presence of a protease inhibitor and some modifications have been introduced to the previous characterization of the 50S subunits (Mache et al., MGG, 177, 333, 1980): 33 ribosomal proteins are detected instead of 34. No change has been observed for the 30S subunits.Using a light-driven system of protein synthesis it is shown that up to ten ribosomal proteins of the 30S and eight proteins of the 50S subunits are made in the chloroplast.Newly synthesized ribosomal subunits have been analysed on CsCl gradients after sedimentation at equilibrium, allowing the separation of fully assembled subunits from incomplete ribosomal particles. Most of the newly made 50S subunits are fully assembled (=1.634). A small amount of incomplete 50S particles (=1.686) is detectable. Newly made 30S subunits (=1.598) and incomplete 30S particles (=1.691) are also observed. The ribosomal proteins of the incomplete 30S have been determined. They contain eight or nine of the 30S-proteins, seven of which are synthesized within the chloroplast. It is suggested that incomplete ribosomal particles resulted from a step in the assembly of ribosomal subunits.  相似文献   

3.
4.
5.
BACKGROUND AND AIMS: The Brassicaceae family encompasses numerous species of great agronomic importance, belonging to such genera, as Brassica, Raphanus, Sinapis and Armoracia. Many of them are characterized by extensive intraspecific diversity of phenotypes. The present study focuses on the polymorphism of number, appearance and chromosomal localization of ribosomal DNA (rDNA) sites and, when possible, in relation to polyploidy, in 42 accessions of Brassica species and ten accessions of Diplotaxis, Eruca, Raphanus and Sinapis species. METHODS: Chromosomal localization of ribosomal DNA was carried out using dual colour fluorescence in situ hybridization (FISH) with 5S rDNA and 25S rDNA sequences as probes on enzymatically digested root-tip meristematic cells. KEY RESULTS: Loci for 5S and 18S-5.8S-25S rDNA were determined for the first time in six taxa, and previously unreported rDNA constellations were described in an additional 12 accessions. FISH revealed frequent polymorphism in number, appearance and chromosomal localization of both 5S and 25S rDNA sites. This phenomenon was most commonly observed in the A genome of Brassica, where it involves exclusively pericentromeric sites of 5S and 25S rRNA genes. The intraspecific polymorphism was between subspecies/varieties or within a variety or cultivar (i.e. interindividual). CONCLUSIONS: The number of rDNA sites can differ up to 5-fold in species with the same chromosome number. In addition to the eight previously reported chromosomal types with ribosomal genes, three new variant types are described. The extent of polymorphism is genome dependent. Comparing the A, B and C genomes revealed the highest rDNA polymorphism in the A genome. The loci carrying presumably inactive ribosomal RNA genes are particularly prone to polymorphism. It can also be concluded that there is no obvious polyploidization-related tendency to reduce the number of ribosomal DNA loci in the allotetraploid species, when compared with their putative diploid progenitors. The observed differences are rather caused by the prevailing polymorphism within the diploids and allotetraploids. This would make it difficult to predict expected numbers of rDNA loci in natural polyploids.  相似文献   

6.
Small ribosomal subunits from the prokaryoteEscherichia coli and the eukaryoteThermomyces lanuginosus were imaged electron spectroscopically, and single particle analysis used to yield three-dimensional reconstructions of the net phosphorus distribution representing the nucleic acid (RNA) backbone. This direct approach showed both ribosomal RNAs to have a three domain structure and other characteristic morphological features. The eukaryotic small ribosomal subunit had a prominent bill present in the head domain, while the prokaryotic subunit had a small vestigial bill. Both ribosomal subunits contaied a thick collar central domain which correlates to the site of the evolutionarily conserved ribosomal RNA core, and the location of the majority of ribosomal RNA bases that have been implicated in translation. The reconstruction of the prokaryotic subunit had a prominent protrusion extending from the collar, forming a channel approximately 1.5 nm wide and potentially representing a bridge to the large subunit in the intact monosome. The basal domain of the prokaryotic ribosomal subunit was protein free. In this region of the eukaryotic subunit, there were two basal lobes composed of ribosomal RNA, consistent with previous hypotheses that this is a site for the non-conserved core ribosomal RNA.  相似文献   

7.
We used silver nitrate staining, CMA3 and FISH to study the chromosomal localization of both the major ribosomal genes and the nucleolar organizer regions as well as that of the minor ribosomal genes (5S rDNA) in two species of Batoidea, Taeniura lymma (Dasyatidae) and Raja montagui (Rajidae). In both species, all the metaphases examined showed the presence of multiple NOR-bearing sites, while the gene for 5S rRNA proved to be localized on two chromosome pairs. Furthermore, one of the two 5S rDNA sites in T. lymma was shown to be co-localized with the major ribosomal cluster. The presence of multiple nucleolar organizer regions in the two species might be interpreted as being the result of intraspecific polymorphisms, or as a phenomenon of the amplified transposition of mobile elements of the genome. We also determined the nucleotide sequence of the 5S rRNA gene, consisting of 564 bp in R. montagui and 612 bp in T. lymma. We also found TATA-like and (TGC)n trinucleotides, (CA)n dinucleotides and (GTGA)n tetranucleotides, which probably influence gene regulation.  相似文献   

8.
9.
核糖体蛋白质与核糖体RNA共同组成了核糖体,是合成蛋白质的细胞器。除参与蛋白质合成,核糖体蛋白质还具有广泛的核糖体外功能,如独立于核糖体外发挥调控基因转录、mRNA翻译、细胞的增殖、分化和凋亡等等。基于诸多的核糖体外功能,核糖体蛋白质与人类疾病密切相关,例如在先天性贫血、生长发育不全和肿瘤的发生发展过程中均发挥重要作用。本文对近年来核糖体蛋白质的核糖体外新功能及其相关疾病的研究进展作一综述。  相似文献   

10.
Protein production is driven by protein translation and relies on ribosomal biogenesis, globally essential for cell growth, proliferation, and animal development. Deregulation of these sophisticated cellular processes leads to abnormal homeostasis and carcinogenesis. Thus, their tight regulation is vitally important for a cell to warrant normal growth and proliferation. One newly identified key regulator for ribosomal biogenesis and translation is the oncoprotein c-Myc, whose aberrantly excessive level and activity are highly associated with human cancers, too. Recently, we have shown that ribosomal protein L11 functions as a feedback regulator of c-Myc. Hence, in this review, we will provide some prospects on the interplay between c-Myc and ribosomal proteins during ribosomal biogenesis and discuss its implications in cancer.  相似文献   

11.
12.
Nevskaya  N. A.  Nikonov  O. S.  Revtovich  S. V.  Garber  M. B.  Nikonov  S. V. 《Molecular Biology》2004,38(5):789-798
Specific binding of ribosomal proteins to rRNA has been analyzed, and the method for determining the recognizing modules on the protein surface has been proposed. This method is based on the search for the atoms on the protein molecule that are involved in the conserved hydrogen bonds with rRNA and form invariant spatial structure in both free and RNA-bound ribosomal proteins. The potential of this method is illustrated by determining the rRNA-recognizing modules on the surface of ribosomal proteins S8, S15, and L5.  相似文献   

13.
核糖体蛋白S6(rpS6)是核糖体40S小亚基的核心组成蛋白之一。研究表明,rpS6可以通过核定位信号进入细胞核中,在核仁中参与核糖体的组装。在该研究中发现,rpS6在高等真核细胞核仁中的聚积与细胞周期有关,rpS6在S期中晚期开始在核仁中聚积,G2期含量达到最高,M期核仁分解时消失。推测,rpS6在核仁中的这种分布特性可能与核糖体的合成随细胞周期变化有关。  相似文献   

14.
Phosphorylation and dephosphorylation of ribosomal proteins have been suggested to participate in the regulation of protein synthesis in eukaryotic organisms. The present research focuses on the purification and partial characterization of a protein kinase from maize ribosomes that specifically phosphorylates acidic ribosomal proteins. Ribosomes purified from maize axes were used as the enzyme source. Purification of ribosomes was performed by centrifugation through a 0.5 M sucrose, 0.8 M KCl cushion. A protein kinase activity present in this fraction was released by extraction with 1.5 M KCl and further purified by diethylaminoethyl cellulose column chromatography. A peak containing protein kinase activity was eluted around 400 m M KCl. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one band of 38 kDa molecular mass, which cross-reacted in a western blot with antibodies raised against proteins from the large ribosomal subunit. This enzyme specifically phosphorylates one of the acidic ribosomal proteins (P2). Its activity is inhibited by Ca2+ and Zn2+ and is activated by Mg2+, polylysine and spermine. The relevance of this protein kinase in reinitiating the protein synthesis process during germination is discussed.  相似文献   

15.
Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function.  相似文献   

16.
【目的】利用核糖体DNA联合序列探讨天牛总科高阶元分子系统发育。【方法】本研究采用分子标记技术,分析测定了63种天牛核糖体28S rDNA D2和D3区以及18S rDNA V4和V7区的DNA序列,并采用邻接法、最大似然法和贝叶斯推论法分别构建了天牛总科2科6亚科63种的分子进化系统。【结果】序列联合比对分析,最终得到1 404 bp的联合数据组,其中可变位点446个(32.0%),保守位点958(68.0%),转换/颠换的平均值(R值)为1.73。28S rDNA和18S rDNA以及联合序列的饱和度分析显示碱基突变未达到饱和,说明这些序列适合于分子进化树的构建。利用不同系统发育重建方法得到进化树具有相似拓扑结构,结果支持沟胫天牛亚科、花天牛亚科和天牛亚科为单系群,这与形态学分类结果相似;狭胸天牛独立成为亚科得到了支持。【结论】利用28S rDNA D2和D3区以及18S rDNA V4和V7区联合序列成功构建出了天牛总科高阶元的系统发育树。研究表明联合序列分析是探讨天牛高阶元分类的有效的方法。  相似文献   

17.
Organization of the ribosomal RNA gene cluster in Aspergillus nidulans   总被引:3,自引:0,他引:3  
DNA coding for ribosomal RNA in Aspergillus nidulans was found to consist of a unit 7.8 kb in size which is tandemly repeated in the genome and codes for 5.8S, 18S and 26S rRNA. The repeat unit has been cloned, and its restriction map and the location of the individual rRNA coding sequences within the unit have been established.  相似文献   

18.
We have determined for the X chromosomes of 10 laboratory strains and the Y chromosomes of 4 of them both the total number of ribosomal units and the relative percentages of uninterrupted (ins-), type 1 (ins1: with distinction between small ins1S and large ins1L) and type 2 (ins2) interrupted ribosomal units. These studies were made with the DNA extracted from third instar larval diploid tissues (brains and imaginal discs) of X/X female lines or XNO-/Y male lineages (devoid of X ribosomal genes) whose members possess copies of the same initial X or Y chromosome. Between the X chromosomes as well as the Y chromosomes an approximately equal to 2-fold variation was observed in the total number of ribosomal genes: from approximately equal to 200 to 420 for the X chromosomes and from approximately equal to 150 to 330 for the Y ones. The Y chromosomes are devoid of insertion 1 interrupted units, but one can observe some variation in the percentage and hence the absolute numbers of uninterrupted and insertion 2 interrupted units. Among the X chromosomes a very large variation exists between the percentage and absolute number of all the ribosomal unit types; it is to be noted especially that the number of uninterrupted units, which are the only kind of ribosomal genes actively transcribed, can vary from about 20 to 140 without any differences in the development of the different strains.  相似文献   

19.
ABSTRACT. Cyclotrichiids are of ecological and evolutionary interest by virtue of their importance in red tide formation, their highly divergent small subunit (SSU) ribosomal RNA (rRNA) genes, kleptoplastidy, and utility as indicators of eutrophication. However, only seven strains have had their SSU rRNA genes sequenced and their environmental diversity and distribution are largely unknown. We probed 67 globally dispersed freshwater column/sediment and soil DNA samples (eDNAs) and constructed 24 environmental gene libraries using polymerase chain reaction primers specific to an uncharacterised cyclotrichiid subgroup. We reveal a novel, globally ubiquitous freshwater clade comprising 25 genetically distinct SSU ribosomal DNA (rDNA) sequences (SSU-types). Some identical SSU-types were detected at globally widely distributed sites. The SSU-types form four distinct phylogenetic clusters according to marine or non-marine provenance, suggesting at least one major marine–freshwater evolutionary transition within the cyclotrichiids. We used the same primers to sample intensively 18 sampling points in 13 closely situated lakes, each characterised by 14 environmental variables, and showed that molecular detection or non-detection of cyclotrichiids was most significantly influenced by levels of total phosphorus, dissolved organic carbon, and chlorophyll a . Within the subset of lakes in which cyclotrichiids were detected, closely related SSU-types differed in their ecological preferences to pH, total phosphorus, and sample depth.  相似文献   

20.
The differentiation of Bifidobacterium species was performed with specific primers using the PCR technique, the amplified ribosomal DNA restriction analysis (ARDRA) technique based on reports on the sequence of the 16S rRNA gene and speciation based on a short region of the ldh gene. Four specific primer sets were developed for each of the Bifidobacterium species, B. animalis, B. infantis and B. longum. The use of the ARDRA method made it possible to discriminate between B. infantis, B. longum and B. animalis with the combination of BamHI, TaqI and Sau3AI restriction enzymes. The ldh gene sequences of 309-312 bp were determined for 19 Bifidobacterium strains. Alignment of these short regions of the ldh gene confirmed that it is possible to distinguish between B. longum and B. infantis but not between B. lactis and B. animalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号