首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Meyers-Wallen VN 《Theriogenology》2006,66(6-7):1655-1658
The genomic revolution is beginning to facilitate advances in canine and feline medicine, as illustrated in our research. Our studies are focused upon identifying the gene mutation that causes canine Sry-negative XX sex reversal, a disorder of sex determination in which chromosomal females (78,XX) develop testicular tissue, becoming either XX true hermaphrodites with ovotestes, or XX males with bilateral testes. A genome-wide screen, using mapped markers in our pedigree of Sry-negative XX sex reversed dogs founded upon the American cocker spaniel, identified five chromosomal regions in which the causative gene may be located. The canine genome was used to identify the canine homologue of goat Pisrt1 and so determine that canine and caprine Sry-negative XX sex reversal are genetically heterogeneous. A second goal of our research is to determine the molecular mechanism by which the mutation causes testis induction. Thus far, we have reported gonadal Sry and Sox9 expression patterns in normal embryos, which have temporal and spatial patterns similar to those reported in humans, sheep, and pigs. Once gene mutations causing such inherited disorders are identified, DNA tests will become a part of general veterinary practice, advancing both diagnostic techniques and preventative medicine.  相似文献   

3.
4.
A true hermaphrodite was diagnosed in a 7-mo.-old Basset hound. The diagnosis was based on the clinical signs, the histology of the gonads and the karyogram. Additionally, the dog was tested for the Y-linked gene Sry, which was negative. The Basset hound presented here is compared to other XX sex reversed animals described in the literature. In man, XX sex reversal is a heterogenous condition. The pathogenesis in Sry-negative individuals is not understood. Thus Sry-negative animals could serve as an animal model of the human disease.  相似文献   

5.
The Sry gene product serves an important function in male sex determination through testis induction. However, testicular development has been reported in SRY-negative XX sex reversed humans. XX sex reversal of the American cocker spaniel, inherited as an autosomal recessive trait, may be a homolog of this disorder. The purpose of this study was to determine whether the Sry high mobility group (HMG) box is present in genomic DNA of affected dogs. Conserved Sry HMG box and hypoxanthine phosphoribosyltransferase (HPRT) sequences were used as primers in polymerase chain reactions. A 167 bp Y-specific canine Sry HMG box sequence was cloned from genomic DNA of normal male dogs. Internal primers generated a 104 bp Sry HMG box product from normal males, but not from females or XX sex reversed dogs. Parallel reactions generated an HPRT product from all dogs. Results indicate that the Sry HMG box is absent in genomic DNA of XX sex reversed dogs. We speculate that activation of the testis differentiation cascade in the absence of Sry in this model is due to a mutant autosomal gene. © 1995 Wiley-Liss, Inc.  相似文献   

6.
7.
Canine Sry-negative XX sex reversal is a disorder of gonadal development wherein individuals having a female karyotype develop testes or ovotestes. In this study, linkage mapping was undertaken in a pedigree derived from one proven carrier American cocker spaniel founder male and beagle females. All affected dogs in the analysis were XX true hermaphrodites and confirmed to be Sry negative by polymerase chain reaction. A genome-wide linkage screen conducted using 245 microsatellite markers revealed highest LOD score of 3.4 (marker CPH9) on CFA29. Fine mapping with additional microsatellites in the region containing CPH9 localized the Sry-negative XX sex reversal locus to a 5.4-Mb candidate region between markers CPH9 and FH3003 (LOD score 3.15). Insignificant LOD scores were found at genome-wide screen or fine mapping markers that were within 10 Mb of 45 potential candidate genes reported to have a role in mammalian sex determination or differentiation. Together, these results suggest that a novel locus on CFA29 may be responsible for sex reversal in this pedigree.  相似文献   

8.
In mammals a single gene on the Y chromosome, Sry, controls testis formation. One of the earliest effects of Sry expression is the induction of somatic cell migration from the mesonephros into the XY gonad. Here we show that mesonephric cells are required for cord formation and male-specific gene expression in XY gonads in a stage-specific manner. Culturing XX gonads with an XY gonad at their surface, as a 'sandwich', resulted in cell migration into the XX tissue. Analysis of sandwich gonads revealed that in the presence of migrating cells, XX gonads organized cord structures and acquired male-specific gene expression patterns. From these results, we conclude that mesonephric cell migration plays a critical role in the formation of testis cords and the differentiation of XY versus XX cell types.  相似文献   

9.
Homozygous inactivation of Sox9 causes complete XY sex reversal in mice   总被引:10,自引:0,他引:10  
In the presence of the Y-chromosomal gene Sry, the bipotential mouse gonads develop as testes rather than as ovaries. The autosomal gene Sox9, a likely and possibly direct Sry target, can induce testis development in the absence of Sry. Sox9 is thus sufficient but not necessarily essential for testis induction. Mutational inactivation of one allele of SOX9/Sox9 causes sex reversal in humans but not in mice. Because Sox9(-/-) embryos die around Embryonic Day 11.5 (E11.5) at the onset of testicular morphogenesis, differentiation of the mutant XY gonad can be analyzed only ex vivo in organ culture. We have therefore conditionally inactivated both Sox9 alleles in the gonadal anlagen using the CRE/loxP recombination system, whereby CRE recombinase is under control of the cytokeratin 19 promoter. Analysis of resulting Sox9(-/-) XY gonads up to E15.5 reveals immediate, complete sex reversal, as shown by expression of the early ovary-specific markers Wnt4 and Foxl2 and by lack of testis cord and Leydig cell formation. Sry expression in mutant XY gonads indicates that downregulation of Wnt4 and Foxl2 is dependent on Sox9 rather than on Sry. Our results provide in vivo proof that, in contrast to the situation in humans, complete XY sex reversal in mice requires inactivation of both Sox9 alleles and that Sox9 is essential for testogenesis in mice.  相似文献   

10.
11.
In mammals, the Y-linked SRY gene is normally responsible for testis induction, yet testis development can occur in the absence of Y-linked genes, including SRY. The canine model of SRY-negative XX sex reversal could lead to the discovery of novel genes in the mammalian sex determination pathway. The autosomal genes causing testis induction in this disorder in dogs, humans, pigs, and horses are presently unknown. In goats, a large deletion is responsible for sex reversal linked to the polled (hornless) phenotype. However, this region has been excluded as being causative of the canine disorder, as have WT1 and DMRT1 in more recent studies. The purpose of this study was to determine whether microsatellite marker alleles near or within five candidate genes (GATA4, FOG2, LHX1, SF1, SOX9) are associated with the affected phenotype in a pedigree of canine SRY-negative XX sex reversal. Primer sequences flanking nucleotide repeats were designed within genomic sequences of canine candidate gene homologues. Fluorescence-labeled polymorphic markers were used to screen a subset of the multigenerational pedigree, and marker alleles were determined by software. Our results indicate that the mutation causing canine SRY-negative XX sex reversal in this pedigree is unlikely to be located in regions containing these candidates.  相似文献   

12.
13.
Functional analysis of Sox8 and Sox9 during sex determination in the mouse   总被引:12,自引:0,他引:12  
Sex determination in mammals directs an initially bipotential gonad to differentiate into either a testis or an ovary. This decision is triggered by the expression of the sex-determining gene Sry, which leads to the activation of male-specific genes including the HMG-box containing gene Sox9. From transgenic studies in mice it is clear that Sox9 is sufficient to induce testis formation. However, there is no direct confirmation for an essential role for Sox9 in testis determination. The studies presented here are the first experimental proof for an essential role for Sox9 in mediating a switch from the ovarian pathway to the testicular pathway. Using conditional gene targeting, we show that homozygous deletion of Sox9 in XY gonads interferes with sex cord development and the activation of the male-specific markers Mis and P450scc, and leads to the expression of the female-specific markers Bmp2 and follistatin. Moreover, using a tissue specific knock-out approach, we show that Sox9 is involved in Sertoli cell differentiation, the activation of Mis and Sox8, and the inactivation of Sry. Finally, double knock-out analyses suggest that Sox8 reinforces Sox9 function in testis differentiation of mice.  相似文献   

14.
15.
When the Y chromosomes from certain populations of Mus musculus domesticus are introduced into the mouse strain C57BL/6 (B6), testis determination can fail, resulting in gonads developing either as ovotestes (with both ovarian and testicular components) or as ovaries. Not all Y(DOM) chromosomes cause sex reversal. Y(DOM) chromosomes are divided into three classes based upon their ability to induce testes in B6. The molecular basis underlying the three Y(DOM) classes is an enigma. The simplest explanation is that they harbor different alleles of the testis-determining gene, Sry. Sequencing of Sry(DOM) genes has indeed identified polymorphisms. However, none were unequivocally linked to the sex-reversal trait. It was concluded that all SRY(DOM) proteins are functionally equivalent. Using a semiquantitative RT-PCR assay, we now show that representatives of the three Y(DOM) classes have variant Sry expression patterns, that severity of sex reversal correlates with Sry mRNA titers, and that genetic correction of the sex reversal results in the upregulation of Sry expression. We propose that the variant Sry expression patterns result from polymorphisms at the site of a putative Sry enhancer.  相似文献   

16.
17.
Sry induces cell proliferation in the mouse gonad   总被引:11,自引:0,他引:11  
Sry is the only gene on the Y chromosome that is required for testis formation in mammals. One of the earliest morphological changes that occurs as a result of Sry expression is a size increase of the rudimentary XY gonad relative to the XX gonad. Using 5'-bromo-2'-deoxyuridine (BrdU) incorporation to label dividing cells, we found that the size increase corresponds with a dramatic increase in somatic cell proliferation in XY gonads, which is not detected in XX gonads. This male-specific proliferation was observed initially in the cells of the coelomic epithelium and occurred in two distinct stages. During the first stage, proliferation in the XY gonad was observed largely in SF1-positive cells and contributed to the Sertoli cell population. During the second stage, proliferation was observed in SF1-negative cells at and below the coelomic epithelium and did not give rise to Sertoli cells. Both stages of proliferation were dependent on Sry and independent of any other genetic differences between male and female gonads, such as X chromosome dosage or other genes on the Y chromosome. The increase in cell proliferation began less than 24 hours after the onset of Sry expression, before the establishment of male-specific gene expression patterns, and before the appearance of any other known male-specific morphological changes in the XY gonad. Therefore, an increase in cell proliferation in the male coelomic epithelium is the earliest identified effect of Sry expression.  相似文献   

18.
Cell proliferation has been shown to have multiple functions in development and pattern formation, including roles in growth, morphogenesis, and gene expression. Previously, we determined that the earliest known morphological event downstream of the male sex determining gene, Sry, is the induction of proliferation. In this study, we used proliferation inhibitors to block cell division during early gonad development, at stages before the XY gonad has committed to the testis pathway. Using the expression of sex-specific genes and the formation of testis morphology as markers of testis determination, we found that proliferation within a specific 8-h window was critical for the establishment of the male pathway and the formation of the testis. Inhibition of proliferation before or after this critical period led to smaller gonads, but did not block testis formation. The critical period of proliferation coincides with the initiation of Sry expression and is essential for the differentiation of Sertoli cells, suggesting that proliferation is a vital component of the initiation of the male pathway by Sry. We believe these studies suggest that proliferation is involved not only in the elaboration of organ pattern, but also in the choice between patterns (male and female) in the bipotential gonad.  相似文献   

19.
The Q-rich domain of the mouse sex determining gene, Sry, is encoded by an in-frame insertion of a repetitive sequence composed of mostly CAG repeats. The exact function of this Q-rich domain is unknown. Studies on the polymorphisms within this Q-rich domain among different domesticus and musculus mouse strains suggest a possible role for this domain in sex determination. Using the farwestern protein-blotting technique and recombinant fusion proteins containing the Sry Q-rich domain as probes, three Sry interactive proteins of 94, 32 and 28 kDa apparent molecular weight (Sip-1, -2 and -3 respectively) were consistently detected in adult testis. Sip expression was detected in somatic cells and was associated with the spermatogenic activity of the testis. During embryogenesis, Sips were readily detected in total tissue extracts of embryos as early as E8.5 day. In fetal gonads of both sexes, their expression peaked around E11.5-13.5 day, at the time of sex determination and differentiation, and decreased drastically towards late stages of gestation. These observations support the hypothesis that the Q-rich domain may contribute to the biological function(s) of mouse Sry through a protein-protein interactive role(s).  相似文献   

20.
Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6) mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XY(B6) mice impaired testis differentiation, but no ovarian tissue developed. If, however, a Y(AKR) chromosome replaced the Y(B6) chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/- B6 XY(AKR), Wt1+/- B6 XY(AKR), B6 XY(POS), and B6 XY(AKR) fetuses. We propose that Wt1(B6) and Sf1(B6) are hypomorphic alleles of testis-determining pathway genes and that Wnt4(B6) is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1(B6) and/or Sf1(B6) alleles that compromise testis differentiation and a Wnt4(B6) allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a "weak" Sry allele, such as the one on the Y(POS) chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号