首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Aspergillus nidulans gene (acvA) encoding the first catalytic steps of penicillin biosynthesis that result in the formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), has been positively identified by matching a 15-amino acid segment of sequence obtained from an internal CNBr fragment of the purified amino-terminally blocked protein with that predicted from the DNA sequence. acvA is transcribed in the opposite orientation to ipnA (encoding isopenicillin N synthetase), with an intergenic region of 872 nucleotides. The gene has been completely sequenced at the nucleotide level and found to encode a protein of 3,770 amino acids (molecular mass, 422,486 Da). Both fast protein liquid chromatography and native gel estimates of molecular mass are consistent with this predicted molecular weight. The enzyme was identified as a glycoprotein by means of affinity blotting with concanavalin A. No evidence for the presence of introns within the acvA gene has been found. The derived amino acid sequence of ACV synthetase (ACVS) contains three homologous regions of about 585 residues, each of which displays areas of similarity with (i) adenylate-forming enzymes such as parsley 4-coumarate-CoA ligase and firefly luciferase and (ii) several multienzyme peptide synthetases, including bacterial gramicidin S synthetase 1 and tyrocidine synthetase 1. Despite these similarities, conserved cysteine residues found in the latter synthetases and thought to be essential for the thiotemplate mechanism of peptide biosynthesis have not been detected in the ACVS sequence. These observations, together with the occurrence of putative 4'-phosphopantetheine-attachment sites and a putative thioesterase site, are discussed with reference to the reaction sequence leading to production of the ACV tripeptide. We speculate that each of the homologous regions corresponds to a functional domain that recognizes one of the three substrate amino acids.  相似文献   

2.
3.
A gene (lat) encoding lysine 6-aminotransferase was found upstream of the pcbAB (encoding alpha-aminoadipylcysteinyl-valine synthetase) and pcbC (encoding isopenicillin N synthase) genes in the cluster of early cephamycin biosynthetic genes in Nocardia lactamdurans. The lat gene was separated by a small intergenic region of 64 bp from the 5' end of the pcbAB gene. The lat gene contained an open reading frame of 1,353 nucleotides (71.4% G + C) encoding a protein of 450 amino acids with a deduced molecular mass of 48,811 Da. Expression of DNA fragments carrying the lat gene in Streptomyces lividans led to a high lysine 6-aminotransferase activity which was absent from untransformed S. lividans. The enzyme was partially purified from S. lividans(pULBS8) and showed a molecular mass of 52,800 Da as calculated by Sephadex gel filtration and polyacrylamide gel electrophoresis. DNA sequences which hybridized strongly with the lat gene of N. lactamdurans were found in four cephamycin-producing Streptomyces species but not in four other actinomycetes which are not known to produce beta-lactams, suggesting that the gene is specific for beta-lactam biosynthesis and is not involved in general lysine catabolism. The protein encoded by the lat gene showed similarity to ornithine-5-aminotransferases and N-acetylornithine-5-aminotransferases and contained a pyridoxal phosphate-binding consensus amino acid sequence around Lys-300 of the protein. The evolutionary implications of the lat gene as a true beta-lactam biosynthetic gene are discussed.  相似文献   

4.
The beta-lactam antibiotic penicillin is produced as a secondary metabolite by some filamentous fungi. In this study, the molecular regulation of the Aspergillus (Emericella) nidulans penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) was analyzed. acvA and ipnA are divergently oriented and separated by an intergenic region of 872 bp. Translational fusions of acvA and ipnA with the two Escherichia coli reporter genes lacZ and uidA enabled us to measure the regulation of both genes simultaneously. A moving-window analysis of the 872-bp intergenic region indicated that the divergently oriented promoters are, at least in part, overlapping and share common regulatory elements. Removal of nucleotides -353 to -432 upstream of the acvA gene led to a 10-fold increase of acvA-uidA expression and simultaneously to a reduction of ipnA-lacZ expression to about 30%. Band shift assays and methyl interference analysis using partially purified protein extracts revealed that a CCAAT-containing DNA element within this region was specifically bound by a protein (complex), which we designated PENR1, for penicillin regulator. Deletion of 4 bp within the identified protein binding site caused the same contrary effects on acvA and ipnA expression as observed for all of the deletion clones which lacked nucleotides -353 to -432. The PENR1 binding site thus represents a major cis-acting DNA element. The intergenic regions of the corresponding genes of the beta-lactam-producing fungi Penicillium chrysogenum and Acremonium chrysogenum also diluted the complex formed between the A. nidulans probe and PENR1 in vitro, suggesting that these beta-lactam biosynthesis genes are regulated by analogous DNA elements and proteins.  相似文献   

5.
6.
A 34 kb fragment of the Nocardia lactamdurans DNA carrying the cluster of early cephamycin biosynthetic genes was cloned in lambda EMBL3 by hybridization with probes internal to the pcbAB and pcbC genes of Penicillium chrysogenum and Streptomyces griseus. The pcbAB and pcbC genes were found to be closely linked together in the genome of N. lactamdurans. The pcbAB gene of N. lactamdurans showed the same orientation as the pcbC gene, in contrast to the divergent expression of the genes in the pcbAB-pcbC cluster of P. chrysogenum and Acremonium chrysogenum. The pcbAB gene encodes a large (3649 amino acids) multidomain delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase with a deduced Mr of 404,134. This enzyme contains three repeated domains and a consensus thioesterase active-site sequence. The pcbC gene encodes a protein of 328 amino acids with a deduced Mr of 37,469, which is similar to other isopenicillin N synthases except that it lacks one of two cysteine residues conserved in all other isopenicillin N synthases. The different organization of the pcbAB-pcbC gene cluster in N. lactamadurans and Streptomyces clavuligerus relative to P. chrysogenum and A. chrysogenum is intriguing in relation to the hypothesis of horizontal transference of these genes from actinomycetes to filamentous fungi by a single transfer event.  相似文献   

7.
The final step in the biosynthesis of beta-lactam antibiotics in Penicillium chrysogenum and Aspergillus nidulans involves removal of the L-alpha-aminoadipyl side chain from isopenicillin N (IPN) and exchange with a nonpolar side chain. The enzyme catalyzing this reaction, acyl-coenzyme A:isopenicillin N acyltransferase (acyltransferase), was purified from P. chrysogenum and A. nidulans. Based on NH2-terminal amino acid sequence information, the acyltransferase gene (penDE) from P. chrysogenum and A. nidulans were cloned. In both organisms, penDE was located immediately downstream from the isopenicillin N synthetase gene (pcbC) and consisted of four exons encoding an enzyme of 357 amino acids (approximately 40 kilodaltons [kDa]). The DNA coding sequences showed approximately 73% identity, while the amino acid sequences were approximately 76% identical. Noncoding DNA regions (including the region between pcbC and penDE) were not conserved. Acyltransferase activity from Escherichia coli producing the 40-kDa protein accepted either 6-aminopenicillanic acid or IPN as the substrate and made a penicillinase-sensitive antibiotic in the presence of phenylacetyl coenzyme A. Therefore, a single gene is responsible for converting IPN to penicillin G. The active form of the enzyme may result from processing of the 40-kDa monomeric precursor to a heterodimer containing subunits of 11 and 29 kDa.  相似文献   

8.
The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as an end product by some fungi, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesized by both bacteria and fungi, e.g., by the fungus Acremonium chrysogenum (Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. Penicillin biosynthesis is catalyzed by three enzymes encoded by acvA (pcbAB), ipnA (pcbC), and aatA (penDE). The genes are organized into a cluster. In A. chrysogenum, in addition to acvA and ipnA, a second cluster contains the genes encoding enzymes that catalyze the reactions of the later steps of the cephalosporin pathway (cefEF and cefG). Within the last few years, several studies have indicated that the fungal β-lactam biosynthesis genes are controlled by a complex regulatory network, e.g., by the ambient pH, carbon source, and amino acids. A comparison with the regulatory mechanisms (regulatory proteins and DNA elements) involved in the regulation of genes of primary metabolism in lower eukaryotes is thus of great interest. This has already led to the elucidation of new regulatory mechanisms. Furthermore, such investigations have contributed to the elucidation of signals leading to the production of β-lactams and their physiological meaning for the producing fungi, and they can be expected to have a major impact on rational strain improvement programs. The knowledge of biosynthesis genes has already been used to produce new compounds.  相似文献   

9.
10.
The entire nucleotide sequence of the Bacillus brevis grsB gene encoding the gramicidin S synthetase 2, which activates and condenses the four amino acids proline, valine, ornithine and leucine has been determined. The gene contains an open reading frame of 13,359 bp which encodes a protein of 4453 amino acids with a predicted Mr of 510,287. The gene is located within the gramicidin S biosynthetic operon, also containing the genes grsT and grsA, whose nucleotide sequences have been determined previously. Within the GrsB amino acid sequence four conserved and repeated domains of about 600 amino acids (45-50% identity) have been identified. The four domains are separated by non-homologous sequences of about 500 amino acids. The domains also share a high degree of similarity (20-70%) with eight peptide synthetases of bacterial and fungal origin as well as with conserved sequences of nine other adenylate-forming enzymes of diverse origin. On the basis of sequence homology and functional similarities, we infer that those enzymes share a common evolutionary origin and present a phylogenetic tree for this superfamily of domain-bearing enzymes.  相似文献   

11.
Lysergyl peptide synthetase 1 catalyzes the assembly of toxic ergopeptines from activated D-lysergic acid and three amino acids. The gene encoding this enzyme in the endophytic fungus Neotyphodium lolii was analyzed and compared to a homologous gene from the ergot fungus Claviceps purpurea. Each gene contained two introns, which were found in the same relative position within two modules of the gene. The 5' ends of the two genes were unusually divergent. Signature sequences determining substrate specificity were similar in adenylation domains that recognized identical amino acids but differed within the adenylation domain for the amino acid that varies between the major ergopeptines of the two fungi. Homologues were detected in several related endophytic fungi; the tall fescue endophyte Neotyphodium coenophialum contained a divergent, second copy of the gene. Our results provide new information on the structure and distribution of this important peptide synthetase involved in ergot alkaloid biosynthesis.  相似文献   

12.
Expression of the Aspergillus nidulans penicillin biosynthesis genes acvA and ipnA, encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase and isopenicillin N synthetase, respectively, was analyzed. The intergenic region carrying the divergently oriented promoters was fused in frame in both orientations to Escherichia coli lacZ and E. coli uidA reporter genes. Each construct permits simultaneous expression studies of both genes. Transformants of A. nidulans carrying a single copy of either plasmid integrated at the chromosomal argB locus were selected for further investigations. Expression of both genes was directed by the 872-bp intergenic region. ipnA- and acvA-derived gene fusions were expressed from this region at different levels. ipnA had significantly higher expression than did acvA. Glucose specifically reduced the production of penicillin and significantly repressed the expression of ipnA but not of acvA gene fusions. The specific activities of isopenicillin N synthetase, the gene product of ipnA, and acyl coenzyme A:6-aminopenicillanic acid acyltransferase were also reduced in glucose-grown cultures.  相似文献   

13.
14.
15.
The addition of 0.1 M L-lysine to the fermentation medium reduced the production of penicillin by about 50% in Aspergillus nidulans. To analyse this effect at the molecular level, the expression of the penicillin biosynthesis genes acvA and ipnA, encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase and isopenicillin N synthetase, was studied by using translational fusions with different reporter genes (strain AXB4A, acvA-uidA, ipnA-lacZ fusions; AXB4B, acvA-lacZ, ipnA-uidA fusions) integrated in single copy at the chromosomal argB locus of Aspergillus nidulans. Irrespective of the reporter genes used the expression of acvA and ipnA fusion genes was repressed in L-lysine grown cultures. The expression of a fusion gene of an A. nidulans primary metabolism gene (oliC-lacZ) was not affected by L-lysine.  相似文献   

16.
To maximize redox coupling efficiency with recombinant cytochrome P450 hydroxylases from yew (Taxus) species installed in yeast for the production of the anticancer drug Taxol, a cDNA encoding NADPH:cytochrome P450 reductase from T. cuspidata was isolated. This single-copy gene (2,154 bp encoding a protein of 717 amino acids) resembles more closely other reductases from gymnosperms (approximately 90% similarity) than those from angiosperms (<80% similarity). The recombinant reductase was characterized and compared to other reductases by heterologous expression in insect cells and was shown to support reconstituted taxoid 10beta-hydroxylase activity with an efficiency comparable to that of other plant-derived reductases. Coexpression in yeast of the reductase along with T. cuspidata taxoid 10beta-hydroxylase, which catalyzes an early step of taxoid biosynthesis, demonstrated significant enhancement of hydroxylase activity compared to that supported by the endogenous yeast reductase alone. Functional transgenic coupling of the Taxus reductase with a homologous cytochrome P450 taxoid hydroxylase represents an important initial step in reconstructing Taxol biosynthesis in a microbial host.  相似文献   

17.
18.
19.
A functional cloning procedure has been used to recover a cDNA coding for the GMP synthetase of Dictyostelium discoideum. The enzyme is encoded by a single gene, which is actively transcribed during growth, but not during development. The open reading frame encodes a protein of 718 amino acids with a predicted molecular mass of 79.6 kDa. The Dictyostelium enzyme has extensive homology with the GMP synthetase of Escherichia coli and regional homology to other glutamine amidotransferases.  相似文献   

20.
Adenylosuccinate synthetase (EC 6.3.4.4) catalyzes the first step in formation of AMP from IMP. At least two isozymes exist in vertebrate tissue. An acidic form, present in most tissues, has been suggested to be involved in de novo biosynthesis while a basic isozyme, which predominates in muscle, appears to function in the purine nucleotide cycle. Antibodies specific for the basic isozyme detect a single protein in mouse tissues with highest levels in skeletal muscle, tongue, esophagus, and heart tissue consistent with a role for the enzyme in muscle metabolism. A series of degenerate oligonucleotides were constructed based on peptide sequences from purified rat muscle enzyme and then used to clone a mouse muscle cDNA encoding the basic isozyme. The clone contains a open reading frame of 1356 bases with 452 amino acids. Northern analysis of RNA from mouse tissues showed a tissue distribution similar to that of the protein, indicating a high level of gene expression in muscle. Transfection of COS cells with the mouse muscle cDNA allows expression of a functional protein with a molecular mass of approximately 50 kDa, consistent with the open reading frame and the size of the isolated rat enzyme. The deduced amino acid sequence of the mouse synthetase is 47 and 37% identical to the synthetase sequences from Dictyostelium discoideum and Escherichia coli, respectively. The availability of antibodies and cDNA clones specific for the basic isozyme of adenylosuccinate synthetase from muscle will facilitate future genetic and biochemical analysis of this protein and its role in muscle physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号