首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
McAllister BF 《Genetics》2003,165(3):1317-1328
Sex chromosomes originate from pairs of autosomes that acquire controlling genes in the sex-determining cascade. Universal mechanisms apparently influence the evolution of sex chromosomes, because this chromosomal pair is characteristically heteromorphic in a broad range of organisms. To examine the pattern of initial differentiation between sex chromosomes, sequence analyses were performed on a pair of newly formed sex chromosomes in Drosophila americana. This species has neo-sex chromosomes as a result of a centromeric fusion between the X chromosome and an autosome. Sequences were analyzed from the Alcohol dehydrogenase (Adh), big brain (bib), and timeless (tim) gene regions, which represent separate positions along this pair of neo-sex chromosomes. In the northwestern range of the species, the bib and Adh regions exhibit significant sequence differentiation for neo-X chromosomes relative to neo-Y chromosomes from the same geographic region and other chromosomal populations of D. americana. Furthermore, a nucleotide site defining a common haplotype in bib is shown to be associated with a paracentric inversion [In(4)ab] on the neo-X chromosome, and this inversion suppresses recombination between neo-X and neo-Y chromosomes. These observations are consistent with the inversion acting as a recombination modifier that suppresses exchange between these neo-sex chromosomes, as predicted by models of sex chromosome evolution.  相似文献   

2.
Sex chromosomes are generally morphologically and functionally distinct, but the evolutionary forces that cause this differentiation are poorly understood. Drosophila americana americana was used in this study to examine one aspect of sex chromosome evolution, the degeneration of nonrecombining Y chromosomes. The primary X chromosome of D. a. americana is fused with a chromosomal element that was ancestrally an autosome, causing this homologous chromosomal pair to segregate with the sex chromosomes. Sequence variation at the Alcohol Dehydrogenase (Adh) gene was used to determine the pattern of nucleotide variation on the neo-sex chromosomes in natural populations. Sequences of Adh were obtained for neo-X and neo-Y chromosomes of D. a. americana, and for Adh of D. a. texana, in which it is autosomal. No significant sequence differentiation is present between the neo-X and neo-Y chromosomes of D. a. americana or the autosomes of D. a. texana. There is a significantly lower level of sequence diversity on the neo-Y chromosome relative to the neo-X in D. a. americana. This reduction in variability on the neo-Y does not appear to have resulted from a selective sweep. Coalescent simulations of the evolutionary transition of an autosome into a Y chromosome indicate there may be a low level of recombination between the neo-X and neo-Y alleles of Adh and that the effective population size of this chromosome may have been reduced below the expected value of 25% of the autosomal effective size, possibly because of the effects of background selection or sexual selection.  相似文献   

3.
Sex chromosomes originated from ordinary autosomes, and their evolution is characterized by continuous gene loss from the ancestral Y chromosome. Here, we document a new feature of sex chromosome evolution: bursts of adaptive fixations on a newly formed X chromosome. Taking advantage of the recently formed neo-X chromosome of Drosophila miranda, we compare patterns of DNA sequence variation at genes located on the neo-X to genes on the ancestral X chromosome. This contrast allows us to draw inferences of selection on a newly formed X chromosome relative to background levels of adaptation in the genome while controlling for demographic effects. Chromosome-wide synonymous diversity on the neo-X is reduced 2-fold relative to the ancestral X, as expected under recent and recurrent directional selection. Several statistical tests employing various features of the data consistently identify 10%–15% of neo-X genes as targets of recent adaptive evolution but only 1%–3% of genes on the ancestral X. In addition, both the rate of adaptation and the fitness effects of adaptive substitutions are estimated to be roughly an order of magnitude higher for neo-X genes relative to genes on the ancestral X. Thus, newly formed X chromosomes are not passive players in the evolutionary process of sex chromosome differentiation, but respond adaptively to both their sex-biased transmission and to Y chromosome degeneration, possibly through demasculinization of their gene content and the evolution of dosage compensation.  相似文献   

4.
In organisms with chromosomal sex determination, sex is determined by a set of dimorphic sex chromosomes that are thought to have evolved from a set of originally homologous chromosomes. The chromosome inherited only through the heterogametic sex (the Y chromosome in the case of male heterogamety) often exhibits loss of genetic activity for most of the genes carried on its homolog and is hence referred to as degenerate. The process by which the proto-Y chromosome loses its genetic activity has long been the subject of much speculation. We present a DNA sequence variation analysis of marker genes on the evolving sex chromosomes (neo-sex chromosomes) of Drosophila miranda. Due to its relatively recent origin, the neo-Y chromosome of this species is presumed to be still experiencing the forces responsible for the loss of its genetic activity. Indeed, several previous studies have confirmed the presence of some active loci on this chromosome. The genes on the neo-Y chromosome surveyed in the current study show generally lower levels of variation compared with their counterparts on the neo-X chromosome or an X-linked gene. This is in accord with a reduced effective population size of the neo-Y chromosome. Interestingly, the rate of replacement nucleotide substitutions for the neo-Y linked genes is significantly higher than that for the neo-X linked genes. This is not expected under a model where the faster evolution of the X chromosome is postulated to be the main force driving the degeneration of the Y chromosome.  相似文献   

5.
Sex chromosomes play a role in many important biological processes, including sex determination, genomic conflicts, imprinting, and speciation. In particular, they exhibit several unusual properties such as inheritance pattern, hemizygosity, and reduced recombination, which influence their response to evolutionary factors (e.g., drift, selection, and demography). Here, we examine the evolutionary forces driving X chromosome evolution in aphids, an XO system where females are homozygous (XX) and males are hemizygous (X0) at sex chromosomes. We show by simulations that the unusual mode of transmission of the X chromosome in aphids, coupled with cyclical parthenogenesis, results in similar effective population sizes and predicted levels of genetic diversity for X chromosomes and autosomes under neutral evolution. These results contrast with expectations from standard XX/XY or XX/X0 systems (where the effective population size of the X is three-fourths that of autosomes) and have deep consequences for aphid X chromosome evolution. We then localized 52 microsatellite markers on the X and 351 on autosomes. We genotyped 167 individuals with 356 of these loci and found similar levels of allelic richness on the X and on the autosomes, as predicted by our simulations. In contrast, we detected higher dN and dN/dS ratio for X-linked genes compared with autosomal genes, a pattern compatible with either positive or relaxed selection. Given that both types of chromosomes have similar effective population sizes and that the single copy of the X chromosome of male aphids exposes its recessive genes to selection, some degree of positive selection seems to best explain the higher rates of evolution of X-linked genes. Overall, this study highlights the particular relevance of aphids to study the evolutionary factors driving sex chromosomes and genome evolution.  相似文献   

6.
Compared with autosomes, the X chromosome shows different patterns of evolution as a result of its hemizygosity in males. Additionally, inactivation of the X during spermatogenesis can make the X chromosome an unfavorable location for male-specific genes. These factors can help to explain why in many species gene content of the X chromosome differs from that of autosomes. Indeed, the X chromosome in mouse is enriched for male-specific genes while they are depleted on the X in Drosophila but show neither of these trends in mosquito. Here, we will discuss recent findings on the ancestral and neo-X chromosomes in Drosophila that support sexual antagonism as a force shaping gene content evolution of sex chromosomes and suggest that selection could be driving male-biased genes off the X.  相似文献   

7.
8.
Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.  相似文献   

9.
Yi M  Yu Q 《Genetika》2002,38(11):1480-1484
Human sex chromosome-specific probes were hybridized to metaphase spreads of three fish species, Monopterus albus Zuiew, Danio rerio and Mastacembelus aculeatus Basilewsky, to reveal evolutionary conservation of sex chromosomal segments between distantly related species of vertebrates. The human X chromosomal paint disclosed 4, 8, and 6 conserved syntenic segments in the karyotypes of the three fish species respectively, which were scattered in several pairs of homologous chromosomes. But no conserved segment was identified in our experiments when the human Y chromosomal probes were used. The evolution of the X chromosome of vertebrates is discussed.  相似文献   

10.
11.
李书粉  李莎  邓传良  卢龙斗  高武军 《遗传》2015,37(2):157-164
XY性染色体决定系统是决定植物性别的主要方式,但是对于其起源与演化机制却知之甚少。目前认为,携带控制雌蕊或雄蕊发育基因的一对常染色体由于某种未知原因的突变形成早期的neo-Y或neo-X性染色体,随着演化的进行,早期XY性染色体之间的重组逐渐受到抑制,非重组区域扩展最终形成异型的性染色体。研究发现,重复序列的累积以及DNA甲基化等因素都可能参与了XY性染色体的异染色质化、重组抑制及Y染色体体积增大过程。转座子作为一种基因组中含量最高的重复序列在性染色体演化中扮演了重要的角色,包括性染色体演化的起始激发,以及导致性染色体局部表观遗传修饰使其发生异染色质化扩展和重组抑制。文章综述了转座子在植物性染色体上的累积及其与性染色体异染色质化之间的关系,并简要分析了转座子在性染色体演化过程中的作用。  相似文献   

12.
DNA replication in the neo-X neo-Y sex determining system was studied by means of tritiated thymidine and autoradiography. Asynchronous replication was found in the X arm of the neo-X and the long arm of the neo-Y. In addition, striking asynchrony was also found for short isopycnotic homologous regions at the distal end of the autosmal arm of neo-X and the short arm of neo-Y to which pairing during meiosis is restricted. These short regions are asynchronous with respect to the heterochromatic segments as well as to the remaining proximal region of the autosomal euchromatic arm of neo-X. This difference in replication pattern within the same chromosome arm may be related to a differentiation between regions which are homozygous in both sexes and regions which are hemizygous in males.This work was supported by U.S. Atomic Energy Commission Contract N AT (30-1) 3517 to Prof. F. A. Saez.  相似文献   

13.
Fluorescence in situ hybridization mapping of fully integrated human BAC clones to primate chromosomes, combined with precise breakpoint localization by PCR analysis of flow-sorted chromosomes, was used to analyze the evolutionary rearrangements of the human 3q21.3-syntenic region in orangutan, siamang gibbon, and silvered-leaf monkey. Three independent evolutionary breakpoints were localized within a 230-kb segment contained in BACs RP11-93K22 and RP11-77P16. Approximately 200 kb of the human 3q21.3 sequence was not present on the homologous orangutan, siamang, and Old World monkey chromosomes, suggesting a genomic DNA insertion into the breakpoint region in the lineage leading to humans and African great apes. The breakpoints in the orangutan and siamang genomes were narrowed down to 12- and 20-kb DNA segments, respectively, which are enriched with endogenous retrovirus long terminal repeats and other repetitive elements. The inserted DNA segment represents part of an ancestral duplication. Paralogous sequence blocks were found at human 3q21, approximately 4 Mb proximal to the evolutionary breakpoint cluster region; at human 3p12.3, which contains an independent orangutan-specific breakpoint; and at the subtelomeric and pericentromeric regions of multiple human and orangutan chromosomes. The evolutionary breakpoint regions between human chromosome 3 and orangutan 2 as well their paralogous segments in the human genome coincide with breaks of chromosomal synteny in the mouse, rat, and/or chicken genomes. Collectively our data reveal reuse of the same short recombinogenic DNA segments in primate and vertebrate evolution, supporting a nonrandom breakage model of genome evolution.  相似文献   

14.
Previous studies on organisms with well-differentiated X and Y chromosomes, such as Drosophila and mammals, consistently detected an excess of genes moving out of the X chromosome and gaining testis-biased expression. Several selective evolutionary mechanisms were shown to be associated with this nonrandom gene traffic, which contributed to the evolution of the X chromosome and autosomes. If selection drives gene traffic, such traffic should also exist in species with Z and W chromosomes, where the females are the heterogametic sex. However, no previous studies on gene traffic in species with female heterogamety have found any nonrandom chromosomal gene movement. Here, we report an excess of retrogenes moving out of the Z chromosome in an organism with the ZW sex determination system, Bombyx mori. In addition, we showed that those "out of Z" retrogenes tended to have ovary-biased expression, which is consistent with the pattern of non-retrogene traffic recently reported in birds and symmetrical to the retrogene movement in mammals and fruit flies out of the X chromosome evolving testis functions. These properties of gene traffic in the ZW system suggest a general role for the heterogamety of sex chromosomes in determining the chromosomal locations and the evolution of sex-biased genes.  相似文献   

15.
Human sex chromosome-specific probes were hybridized to metaphase spreads of three fish species, Monopterus albus Zuiew, Danio rerioandMastacembelus aculeatusBasilewsky, to reveal evolutionary conservation of sex chromosomal segments between distantly related species of vertebrates. The human X chromosomal paint disclosed 4, 8, and 6 conserved syntenic segments in the karyotypes of the three fish species respectively, which were scattered in several pairs of homologous chromosomes. But no conserved segment was identified in our experiments when the human Y chromosomal probes were used. The evolution of the X chromosome of vertebrates is discussed.  相似文献   

16.
Chromosomal inversions largely inhibit recombination and may be associated with selective forces, such as hitch-hiking effects: the effect of positive selection on linked loci. A West African population of Drosophila melanogaster showed a high frequency (0.61) of the In(2L)t inversion. Departure from neutrality statistically associated with the inversion polymorphism was previously recorded at Su(H), a locus distant from the proximal breakpoint of the inversion. These results were consistent with hitch-hiking effects with recombination. The present sequence polymorphism survey involves a 1 kb fragment of the Vha68-1 locus located closer to the proximal breakpoint of the inversion. It shows a significant deficit of polymorphism with respect to divergence when compared with other loci studied in the same population, thus suggesting selective effects. Only 11 polymorphic sites are present in a sample of 20 chromosomes and these sites present a significant excess of rare-frequency variants. The major haplotype shows an unexpectedly high frequency. Our estimate of the background selection effect is not sufficient to account for the observed reduction of polymorphism. Intraspecific variation is structured between inverted and standard chromosomes; there are no shared polymorphisms but also no fixed differences between them. This pattern, together with that found on other loci previously studied near this inversion breakpoint, suggests hitch-hiking effects enhanced by the inversion.  相似文献   

17.
Sex chromosomes originated from autosomes but have evolved a highly specialized chromatin structure. Drosophila Y chromosomes are composed entirely of silent heterochromatin, while male X chromosomes have highly accessible chromatin and are hypertranscribed as a result of dosage compensation. Here, we dissect the molecular mechanisms and functional pressures driving heterochromatin formation and dosage compensation of the recently formed neo-sex chromosomes of Drosophila miranda. We show that the onset of heterochromatin formation on the neo-Y is triggered by an accumulation of repetitive DNA. The neo-X has evolved partial dosage compensation and we find that diverse mutational paths have been utilized to establish several dozen novel binding consensus motifs for the dosage compensation complex on the neo-X, including simple point mutations at pre-binding sites, insertion and deletion mutations, microsatellite expansions, or tandem amplification of weak binding sites. Spreading of these silencing or activating chromatin modifications to adjacent regions results in massive mis-expression of neo-sex linked genes, and little correspondence between functionality of genes and their silencing on the neo-Y or dosage compensation on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those becoming heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities along the ancestral chromosome that formed the sex chromosome to adopt active or repressive chromatin configurations. Our findings have broad implications for current models of sex chromosome evolution, and demonstrate how mechanistic constraints can limit evolutionary adaptations. Our study also highlights how evolution can follow predictable genetic trajectories, by repeatedly acquiring the same 21-bp consensus motif for recruitment of the dosage compensation complex, yet utilizing a diverse array of random mutational changes to attain the same phenotypic outcome.  相似文献   

18.
Randomly cloned DNA fragments and a poly-(GATA) containing sequence were used as probes to identify sex chromosomal inheritance and to detect differences at the molecular level between the homomorphic X and Y in the phorid fly,Megaselia scalaris. Restriction fragment length differences between males and females and between two laboratory stocks of different geographic origin were used to differentiate between sex chromosomal and autosomal origin of the respective fragments. Five random probes detected X and Y chromosomal DNA loci and two others recognized autosomal DNA loci. One random probe and the poly(GATA) probe hybridized with both sex chromosomal and autosomal restriction fragments. Most of the Y chromosomal restriction fragments were conserved in length between the two stocks while most of the X chromosomal and autosomal fragments showed length polymorphism. It was concluded, therefore, that the Y chromosome contains a conserved segment in which crossover is suppressed and restriction site differences have accumulated relative to the X. These chromosomes, therefore, conform to a theoretically expected early stage of sex chromosome evolution.  相似文献   

19.
Throughout mammalian evolution, recombination between the two sex chromosomes was suppressed in a stepwise manner. It is thought that the suppression of recombination led to an accumulation of deleterious mutations and frequent genomic rearrangements on the Y chromosome. In this article, we review three evolutionary aspects related to genomic rearrangements and structures, such as inverted repeats (IRs) and palindromes (PDs), on the mammalian sex chromosomes. First, we describe the stepwise manner in which recombination between the X and Y chromosomes was suppressed in placental mammals and discuss a genomic rearrangement that might have led to the formation of present pseudoautosomal boundaries (PAB). Second, we describe ectopic gene conversion between the X and Y chromosomes, and propose possible molecular causes. Third, we focus on the evolutionary mode and timing of PD formation on the X and Y chromosomes. The sequence of the chimpanzee Y chromosome was recently published by two groups. Both groups suggest that rapid evolution of genomic structure occurred on the Y chromosome. Our re-analysis of the sequences confirmed the species-specific mode of human and chimpanzee Y chromosomal evolution. Finally, we present a general outlook regarding the rapid evolution of mammalian sex chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号