首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accumulation of mutant genotypes within a biofilm evokes the controversy over whether the biofilm environment induces adaptive mutation or whether the accumulation can be explained by natural selection. A comparison of the virulence of two strains of the dental pathogen Streptococcus mutans showed that rats infected with one of the strains accumulated a high proportion (average, 22%) of organisms that had undergone a deletion between two contiguous and highly homologous genes. To determine if the accumulation of deletion mutants was due to selection or to an increased mutation rate, accumulations of deletion mutants within in vitro planktonic and biofilm cultures and within rats inoculated with various proportions of deletion organisms were quantified. We report here that natural selection was the primary force behind the accumulation of the deletion mutants.  相似文献   

2.
3.
The survival of bacteria in nature is greatly enhanced by their ability to grow within surface-associated communities called biofilms. Commonly, biofilms generate proliferations of bacterial cells, called microcolonies, which are highly recalcitrant, 3-dimensional foci of bacterial growth. Microcolony growth is initiated by only a subpopulation of bacteria within biofilms, but processes responsible for this differentiation remain poorly understood. Under conditions of crowding and intense competition between bacteria within biofilms, microevolutionary processes such as mutation selection may be important for growth; however their influence on microcolony-based biofilm growth and architecture have not previously been explored. To study mutation in-situ within biofilms, we transformed Pseudomonas aeruginosa cells with a green fluorescent protein gene containing a +1 frameshift mutation. Transformed P. aeruginosa cells were non-fluorescent until a mutation causing reversion to the wildtype sequence occurs. Fluorescence-inducing mutations were observed in microcolony structures, but not in other biofilm cells, or in planktonic cultures of P. aeruginosa cells. Thus microcolonies may represent important foci for mutation and evolution within biofilms. We calculated that microcolony-specific increases in mutation frequency were at least 100-fold compared with planktonically grown cultures. We also observed that mutator phenotypes can enhance microcolony-based growth of P. aeruginosa cells. For P. aeruginosa strains defective in DNA fidelity and error repair, we found that microcolony initiation and growth was enhanced with increased mutation frequency of the organism. We suggest that microcolony-based growth can involve mutation and subsequent selection of mutants better adapted to grow on surfaces within crowded-cell environments. This model for biofilm growth is analogous to mutation selection that occurs during neoplastic progression and tumor development, and may help to explain why structural and genetic heterogeneity are characteristic features of bacterial biofilm populations.  相似文献   

4.
It is often assumed that the efficiency of selection for mutational robustness would be proportional to mutation rate and population size, thus being inefficient in small populations. However, Krakauer and Plotkin (2002) hypothesized that selection in small populations would favor robustness mechanisms, such as redundancy, that mask the effect of deleterious mutations. In large populations, by contrast, selection is more effective at removing deleterious mutants and fitness would be improved by eliminating mechanisms that mask the effect of deleterious mutations and thus impede their removal. Here, we test whether these predictions are supported in experiments with evolving populations of digital organisms. Digital organisms are self-replicating programs that inhabit a virtual world inside a computer. Like their organic counterparts, digital organisms mutate, compete, evolve, and adapt by natural selection to their environment. In this study, 160 populations evolved at different combinations of mutation rate and population size. After 10(4) generations, we measured the mutational robustness of the most abundant genotype in each population. Mutational robustness tended to increase with mutation rate and to decline with population size, although the dependence with population size was in part mediated by a negative relationship between fitness and robustness. These results are independent of whether genomes were constrained to their original length or allowed to change in size.  相似文献   

5.
Rapid Evolution of Novel Traits in Microorganisms   总被引:1,自引:0,他引:1       下载免费PDF全文
The use of natural microorganisms in biotransformations is frequently constrained by their limited tolerance to the high concentrations of metabolites and solvents required for effective industrial production. In many cases, more robust strains have to be generated by random mutagenesis and selection. This process of directed evolution can be accelerated in mutator strains, which carry defects in one or more of their DNA repair genes. However, in order to use mutator strains, it is essential to restore the normal low mutation rate of the selected organisms immediately after selection to prevent the accumulation of undesirable spontaneous mutations. To enable this process, we constructed temperature-sensitive plasmids that temporarily increase the mutation frequency of their hosts by 20- to 4,000-fold. Under appropriate selection pressure, microorganisms transformed with mutator plasmids can be quickly evolved to exhibit new, complex traits. By using this approach, we were able to increase the tolerance of three bacterial strains to dimethylformamide by 10 to 20 g/liter during only two subsequent transfers. Subsequently, the evolved strains were returned to their normal low mutation rate by curing the cells of the mutator plasmids. Our results demonstrate a new and efficient method for rapid strain improvement based on in vivo mutagenesis.  相似文献   

6.
The ECOR collection of natural Escherichia coli isolates was screened to determine the proportion of strains that carried functional, cryptic and nonfunctional genes for utilization of the three beta-glucoside sugars, arbutin, salicin and cellobiose. None of the 71 natural isolates utilized any of the beta-glucosides. Each strain was subjected to selection for utilization of each of the sugars. Only five of the isolates were incapable of yielding spontaneous beta-glucoside-utilizing mutants. Forty-five strains yielded cellobiose+ mutants, 62 yielded arbutin+ mutants, and 58 strains yielded salicin+ mutants. A subset of the mutants was screen by mRNA hybridization to determine whether they were expressing either the cel or the bgl beta-glucoside utilization operons of E. coli K12. Two cellobiose+ and two arbutin+-salicin+ strains failed to express either of these known operons. It is concluded that there are at least four gene clusters specifying beta-glucoside utilization functions in E. coli populations, and that all of these are normally cryptic. It is estimated that in any random isolate the probability of any particular cluster having been irreversibly inactivated by the accumulation of random mutations is about 0.5.  相似文献   

7.
Rapid evolution of novel traits in microorganisms   总被引:1,自引:0,他引:1  
The use of natural microorganisms in biotransformations is frequently constrained by their limited tolerance to the high concentrations of metabolites and solvents required for effective industrial production. In many cases, more robust strains have to be generated by random mutagenesis and selection. This process of directed evolution can be accelerated in mutator strains, which carry defects in one or more of their DNA repair genes. However, in order to use mutator strains, it is essential to restore the normal low mutation rate of the selected organisms immediately after selection to prevent the accumulation of undesirable spontaneous mutations. To enable this process, we constructed temperature-sensitive plasmids that temporarily increase the mutation frequency of their hosts by 20- to 4,000-fold. Under appropriate selection pressure, microorganisms transformed with mutator plasmids can be quickly evolved to exhibit new, complex traits. By using this approach, we were able to increase the tolerance of three bacterial strains to dimethylformamide by 10 to 20 g/liter during only two subsequent transfers. Subsequently, the evolved strains were returned to their normal low mutation rate by curing the cells of the mutator plasmids. Our results demonstrate a new and efficient method for rapid strain improvement based on in vivo mutagenesis.  相似文献   

8.
B C Lamb  M Saleem  W Scott  N Thapa  E Nevo 《Genetics》1998,149(1):87-99
We have studied whether there is natural genetic variation for mutation frequencies, and whether any such variation is environment-related. Mutation frequencies differed significantly between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. Strains from the harsher, drier, south-facing slope had higher frequencies of new spontaneous mutations and of accumulated mutations than strains from the milder, lusher, north-facing slope. Collective total mutation frequencies over many loci for ascospore pigmentation were 2.3, 3.5 and 4.4% for three strains from the south-facing slope, and 0.9, 1.1, 1.2, 1.3 and 1.3% for five strains from the north-facing slope. Some of this between-slope difference was inherited through two generations of selfing, with average spontaneous mutation frequencies of 1.9% for south-facing slope strains and 0.8% for north-facing slope strains. The remainder was caused by different frequencies of mutations arising in the original environments. There was also significant heritable genetic variation in mutation frequencies within slopes. Similar between-slope differences were found for ascospore germination-resistance to acriflavine, with much higher frequencies in strains from the south-facing slope. Such inherited variation provides a basis for natural selection for optimum mutation rates in each environment.  相似文献   

9.
Transposable element activity is thought to be responsible for a large portion of all mutations, but its influence on the evolution of populations has not been well studied. Using mutation accumulation experiments with the nematode Caenorhabditis elegans, we investigated the impact of transposable element activity on the production of mutational variances and covariances. The experiments involved the use of two mutator strains (RNAi-deficient mutants) that are characterized by high levels of germline transposition, as well as the Bristol N2 strain, which lacks germline transposition. We found that transposition led to an increase in mutational heritabilities, as well as to the intensification of correlation patterns observed in the absence of transposition. No mutational trade-offs were detected and mutations generally had a deleterious effect on components of fitness. We also tested whether the pattern of mutational covariation could be used to predict observed patterns of population divergence in this species. Using 15 natural populations, we found that population divergence of C. elegans in multivariate phenotypic space occurred in directions only partially concordant with mutation, and thus other evolutionary factors, such as natural selection and genetic drift, must be acting to produce divergence within this species. Our results suggest that mutations induced by mobile elements in C. elegans are similar to other spontaneous mutations with respect to their contribution to the microevolution of quantitative traits.  相似文献   

10.
Protocatechuate 3,4-dioxygenase is a member of a family of bacterial enzymes that cleave the aromatic rings of their substrates between two adjacent hydroxyl groups, a key reaction in microbial metabolism of varied environmental chemicals. In an appropriate genetic background, it is possible to select for Acinetobacter strains containing spontaneous mutations blocking expression of pcaH or -G, genes encoding the alpha and beta subunits of protocatechuate 3, 4-dioxygenase. The crystal structure of the Acinetobacter oxygenase has been determined, and this knowledge affords us the opportunity to understand how mutations alter function in the enzyme. An earlier investigation had shown that a large fraction of spontaneous mutations inactivating Acinetobacter protocatechuate oxygenase are either insertions or large deletions. Therefore, the prior procedure of mutant selection was modified to isolate Acinetobacter strains in which mutations within pcaH or -G cause a heat-sensitive phenotype. These mutations affected residues distributed throughout the linear amino acid sequences of PcaH and PcaG and impaired the dioxygenase to various degrees. Four of 16 mutants had insertions or deletions in the enzyme ranging in size from 1 to 10 amino acid residues, highlighting areas of the protein where large structural changes can be tolerated. To further understand how protein structure influences function, we isolated strains in which the phenotypes of three different deletion mutations in pcaH or -G were suppressed either by a spontaneous mutation or by a PCR-generated random mutation introduced into the Acinetobacter chromosome by natural transformation. The latter procedure was also used to identify a single amino acid substitution in PcaG that conferred activity towards catechol sufficient for growth with benzoate in a strain in which catechol 1,2-dioxygenase was inactivated.  相似文献   

11.
The molecular mechanisms underlying the aging process are still unclear, but the clonal accumulation of mitochondrial deletion mutants is one of the prime candidates. An important question for the mitochondrial theory of aging is to discover how defective organelles might be selected at the expense of wild-type mitochondria. We propose that mitochondrial fission and fusion events are of critical importance for resolving this apparent contradiction. We show that the occurrence of fusions removes the problems associated with the idea that smaller DNA molecules accumulate because they replicate in a shorter time--the survival of the tiny (SOT) hypothesis. Furthermore, stochastic simulations of mitochondrial replication, mutation and degradation show that two important experimental findings, namely the overall low mosaic pattern of oxidative phosphorylation (OXPHOS) impaired cells in old organisms and the distribution of deletion sizes, can be reproduced and explained by this hypothesis. Finally, we make predictions that can be tested experimentally to further verify our explanation for the age-related accumulation of mitochondrial deletion mutants.  相似文献   

12.
13.
Microbiological conversion of drugs and natural products, including sterols and steroids, is an important component of the commercial preparation of these agents. We have developed methodology which allows for the production and selection of mutant organisms capable of specific desirable transformations. This methodology is based upon mutation of wild-type strains which are capable of completely degrading certain sterols and selection of the mutants blocked at the desired conversion. This procedure should be equally useful for many if not all drug classes.  相似文献   

14.

Background

Phenotypes are variable within species, with high phenotypic variation in the fitness and cell morphology of natural yeast strains due to genetic variation. A gene deletion collection of yeast laboratory strains also contains phenotypic variations, demonstrating the involvement of each gene and its specific function. However, to date, no study has compared the phenotypic variations between natural strains and gene deletion mutants in yeast.

Results

The morphological variance was compared between 110 most distinct gene deletion strains and 36 typical natural yeast strains using a generalized linear model. The gene deletion strains had higher morphological variance than the natural strains. Thirty-six gene deletion mutants conferred significant morphological changes beyond that of the natural strains, revealing the importance of the genes with high genetic interaction and specific cellular functions for species conservation.

Conclusion

Based on the morphological analysis, we discovered gene deletion mutants whose morphologies were not seen in nature. Our multivariate approach to the morphological diversity provided a new insight into the evolution and species conservation of yeast.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-932) contains supplementary material, which is available to authorized users.  相似文献   

15.
A versatile natural transformation protocol was established for and successfully applied to 18 of the 19 Streptococcus thermophilus strains tested. The efficiency of the protocol enables the use of in vitro-amplified mutagenesis fragments to perform deletion or insertion of large genetic fragments. Depending on the phenotype linked to the mutation, markerless mutants can be selected either in two steps, i.e., resistance marker insertion and excision using an adapted Cre-loxP system, or in one step using a powerful positive screening procedure as illustrated here for histidine prototrophy.  相似文献   

16.

Background

Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.

Methodology

We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.

Conclusion

The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.  相似文献   

17.
We report identification of the Escherichia coli ybhE gene as the pgl gene that encodes 6-phosphogluconolactonase. A tentative identification was first made based on the known approximate location of the pgl gene and the similarity of the presumptive ybhE-encoded protein sequence to a known Pgl enzyme. To test this notion, the ybhE gene was deleted and replaced with a drug marker. Like previously characterized pgl mutants, the ybhE deletion mutant had a Blu- phenotype (dark-blue staining with iodine due to accumulation of starch after growth on minimal maltose) and demonstrated impaired growth on minimal glucose medium when combined with a pgi mutation. Biochemical assay of crude extracts for 6-phosphogluconolactonase enzymatic activity showed that ybhE encodes this activity. The ybhE gene was transferred from the E. coli chromosome to an expression vector. This ybhE clone complemented both the precise deletion of the ybhE gene and a larger deletion, pglDelta8, for the Blu- phenotype and for phosphogluconolactonase activity, confirming that ybhE is the pgl gene. A newly observed phenotype of pgl strains is a lowered frequency of appearance of Bgl+ mutants that can utilize the beta-glucoside salicin. This is likely due to poor growth of Bgl+ pgl strains on salicin due to the accumulation of 6-phosphogluconolactone.  相似文献   

18.
Heterotrimeric G proteins are components of principal signaling pathways in eukaryotes. In higher organisms, alpha subunits of G proteins have been divided into four families, Gi, Gs, Gq, and G12. We previously identified a G alpha i homologue gna-1 in the filamentous fungus Neurospora crassa. Now we report that deletion of gna-1 leads to multiple phenotypes during the vegetative and sexual cycles in N. crassa. On solid medium, delta gna-1 strains have a slower rate of hyphal apical extension than wild type, a rate that is more pronounced under hyperosmotic conditions or in the presence of a cellophane overlay. delta gna-1 mutants accumulate less mass than wild-type strains, and their mass accumulation is not affected in the same way by exposure to light. delta gna-1 strains are defective in macroconidiation, possessing aerial hyphae that are shorter, contain abnormal swellings, and differentiate adherent macroconidia. During the sexual cycle, delta gna-1 strains are fertile as males. However, the mutants are female-sterile, producing small, aberrant female reproductive structures. After fertilization, delta gna-1 female structures do not enlarge and develop normally, and no sexual spores are produced. Thus, mutation of gna-1 results in sex-specific loss of fertility.  相似文献   

19.
Bacterial species dominance within a binary culture biofilm.   总被引:10,自引:7,他引:3       下载免费PDF全文
Studies with two species of bacteria, Pseudomonas putida and Hyphomicrobium sp. strain ZV620, were carried out to evaluate the overall net rate of accumulation of biofilm, the biofilm species composition, and individual species shear-related removal rates. Bacterial cells of either or both species were deposited onto glass or biofilm surfaces to initiate multispecies biofilms. Subsequent biofilm development was carried out under known conditions of nutrient concentration and laminar flow. Establishment of a depositing organism in a biofilm composed of another species was found to be a function of the relative growth rates of the bacterial species. In the case of simultaneous species deposition and subsequent binary culture development, the faster-growing organisms rapidly became the dominant biofilm species, but the slower-growing organisms remained established within the biofilm and continued to increase in numbers over time. The results also indicated that the rate of cell removal by fluid shear for a species was a function of biofilm cell number only if the species concentration was uniform with depth; in essence, only the upper layers of the biofilm were sheared off.  相似文献   

20.
Bacterial species dominance within a binary culture biofilm   总被引:1,自引:0,他引:1  
Studies with two species of bacteria, Pseudomonas putida and Hyphomicrobium sp. strain ZV620, were carried out to evaluate the overall net rate of accumulation of biofilm, the biofilm species composition, and individual species shear-related removal rates. Bacterial cells of either or both species were deposited onto glass or biofilm surfaces to initiate multispecies biofilms. Subsequent biofilm development was carried out under known conditions of nutrient concentration and laminar flow. Establishment of a depositing organism in a biofilm composed of another species was found to be a function of the relative growth rates of the bacterial species. In the case of simultaneous species deposition and subsequent binary culture development, the faster-growing organisms rapidly became the dominant biofilm species, but the slower-growing organisms remained established within the biofilm and continued to increase in numbers over time. The results also indicated that the rate of cell removal by fluid shear for a species was a function of biofilm cell number only if the species concentration was uniform with depth; in essence, only the upper layers of the biofilm were sheared off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号