首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
陆地生态系统野外增温控制实验的技术与方法   总被引:1,自引:0,他引:1       下载免费PDF全文
朱彪  陈迎 《植物生态学报》2020,44(4):330-339
由于人类活动导致的碳排放急剧增加, 工业革命以来全球地表温度显著增加约1 ℃, 未来全球气候还将持续变暖, 到21世纪末最高可升温4 ℃。这种前所未有的气候变化不仅影响陆地植被的适应策略, 也深刻影响生态系统的结构和功能。其中陆地生态系统碳收支对全球变暖的反馈, 是决定未来气候变化强度的关键因素, 因此全球已经开展了大量的生态系统尺度的野外增温控制实验, 研究生态系统碳收支对气温升高的响应, 从而提高地球系统模型的预测精度。然而由于增温技术和方法的不同, 不同研究的结果之间难以进行比较。该文系统总结了常见的野外增温技术和方法, 包括主动增温和被动增温, 阐述了其优缺点、适用对象以及相关研究成果。同时简要介绍了野外增温控制实验的前沿研究方向——新一代野外增温技术(包括全土壤剖面增温和全生态系统增温)和基于新一代增温技术开展的野外增温联网实验。  相似文献   

2.
由于人类活动导致的碳排放急剧增加,工业革命以来全球地表温度显著增加约1℃,未来全球气候还将持续变暖,到21世纪末最高可升温4℃。这种前所未有的气候变化不仅影响陆地植被的适应策略,也深刻影响生态系统的结构和功能。其中陆地生态系统碳收支对全球变暖的反馈,是决定未来气候变化强度的关键因素,因此全球已经开展了大量的生态系统尺度的野外增温控制实验,研究生态系统碳收支对气温升高的响应,从而提高地球系统模型的预测精度。然而由于增温技术和方法的不同,不同研究的结果之间难以进行比较。该文系统总结了常见的野外增温技术和方法,包括主动增温和被动增温,阐述了其优缺点、适用对象以及相关研究成果。同时简要介绍了野外增温控制实验的前沿研究方向——新一代野外增温技术(包括全土壤剖面增温和全生态系统增温)和基于新一代增温技术开展的野外增温联网实验。  相似文献   

3.
昼夜不对称变暖指的是白天和夜间的增温幅度不同,夜间温度升高的比白天快,全球大部分地区存在昼夜不对称变暖的现象。以往关于气候变暖对生态系统影响的研究大多建立在全天对等增温的基础上,缺乏对白天和夜间增温不对称性影响的深入研究。一些研究表明,白天增温和夜间增温对生态系统的作用机制不同,进而产生不同的影响。本文梳理了近期的研究进展,综述了昼夜不对称变暖对植物物候、生态系统碳循环、生物群落以及植被生产力等方面的特异性影响及其机理机制,并引述了不对称变暖对高寒生态系统碳循环可能产生的影响。在总结研究基础上,提出未来关于不对称变暖的影响研究应重视一些生态学规律的普适性验证,例如夜间增温下“光合补偿作用”,关注高寒冻土区土壤的碳积累和释放过程,深入剖析生物多样性与生态系统生产力稳定性间的关系等,提升我们对全球气候变暖影响的理解和认知。  相似文献   

4.
全球气候变暖将对陆地生态系统(尤其是高寒草甸生态系统)碳循环产生深远影响。该研究依托中国科学院地理科学与资源研究所藏北高原草地生态系统研究站(那曲站), 设置不同增温幅度实验, 模拟未来2 ℃增温和4 ℃增温的情景, 探究不同增温幅度对青藏高原高寒草甸净生态系统碳交换(NEE)的影响。研究结果显示: 1)在2015年生长季(6-9月), 不增温和2 ℃增温处理下NEE小于0, 总体表现为碳汇, 而4 ℃增温处理下NEE大于0, 总体表现为碳源; 2)在生长季的6月、8月及整个生长季, 与不增温相比, 4 ℃增温处理显著提高了NEE, 而2 ℃增温处理没有显著改变NEE; 7月, 2 ℃和4 ℃增温处理均显著提高了NEE; 3)在半干旱的高寒草甸生态系统, 土壤水分是决定NEE的关键因素, 增温通过降低土壤水分而导致高寒草甸生态系统碳汇能力下降。该研究可为青藏高原高寒草甸生态系统应对未来气候变化提供基础数据和理论依据。  相似文献   

5.
郑云普  徐明  王建书  王贺新 《生态学报》2016,36(6):1526-1538
未来全球变暖对农田生态系统产生的影响不仅可能改变整个陆地生态系统的碳平衡状态,更重要的是还关系到全球的粮食安全问题。然而,目前有关农作物对全球变暖响应和适应性机理的研究还很少见,尤其是缺少通过农田原位增温实验探讨作物叶片形态结构及其气体交换过程对增温的响应和适应性机理的研究。利用典型农田生态系统的实验增温平台,研究了未来全球气候变暖对我国华北平原重要农作物玉米叶片的形态、结构特征(解剖及亚显微结构)以及气体交换参数所可能产生的影响。研究结果显示,实验增温分别使玉米叶片的宽度和厚度减少了4%(P=0.017)和10%(P0.001)。然而,实验增温却导致叶绿体长度和宽度显著增加46%(P0.001)和50%(P0.001),从而使叶绿体的剖面面积显著增加了141%(P0.001)。另外,研究结果还显示,实验增温分别增加了玉米叶片的净光合速率52%(P=0.019)、气孔导度163%(P=0.001)以及蒸腾速率81%(P=0.017);同时,实验增温使玉米叶片的暗呼吸速率显著降低了24%(P=0.006),但却并没有对细胞间CO2浓度和水分利用效率产生显著的影响。因此,研究结果表明,未来气候变暖不仅会直接改变玉米叶片的形态和结构特征,同时还可能对玉米叶片的功能(例如光合和呼吸等关键生理生化过程)产生显著的影响。  相似文献   

6.
张相锋  彭阿辉  宋凤仙  陈冬勤 《广西植物》2018,38(12):1675-1684
开顶式生长室(OTCs)增温实验是研究全球气候变化与陆地生态系统关系的主要方法之一,已广泛应用于青藏高原地区。该文通过对近些年国内外研究文献的回顾,分别从植物物候、群落结构、生物量和土壤方面综合分析青藏高原草地生态系统对OTCs模拟增温实验的响应。研究发现:增温使群落返青期提前、枯黄期延迟,生长季延长;有利于禾本科植物的生长;高寒草甸地下生物量分配格局向深层转移;高寒草地生态系统对模拟增温的响应存在不确定性,受到地域、群落类型和实验时间的影响;在增温条件下,降雨和冻土融化引起的土壤水分变化通过调控生态系统的物候、生产力、土壤等途径控制着生态系统对气候变暖的响应。并在此基础上,提出了将来应着重研究的几个方面。  相似文献   

7.
增温对土壤有机碳矿化的影响研究综述   总被引:8,自引:0,他引:8  
全球变暖的大背景下,土壤作为陆地生态系统中最大碳汇的载体,其微小变化都会引起大气CO2浓度显著的改变。土壤有机碳对气候变化的响应和适应对于预测未来气候变化具有十分重要的作用。然而,目前增温对土壤有机碳的影响及其影响机制仍存诸多未解决的问题。综述了目前土壤有机碳矿化的研究方式及增温对土壤有机碳矿化影响的国内外研究进展。结果发现增温往往会促进土壤有机碳排放,主要源于土壤微生物代谢活性或群落组成的改变。同时该排放强度因生态系统类型、增温方式和幅度以及增温季节和持续时间的不同而存在巨大差异,且长期增温反而使土壤微生物产生适应及驯化现象,从而降低或缓解陆地生态系统对全球变暖的正反馈效应。但这些结果大都基于温带实验,而原位增温实验对高生产力、多样性丰富的热带亚热带地区的影响是否与温带一致仍待进一步考证。室内模拟实验虽可深入研究温度对土壤有机碳矿化的影响机制,却无法真实反映野外自然环境。同时,野外增温方式及室内研究方式的多样均降低不同研究之间的可比性,进而难以预估由实验方法本身差异引起的结果变异。  相似文献   

8.
由化石燃料燃烧和土地利用变化引起的全球气候变暖是地球上最严重的人为干扰之一,对陆地生态系统结构和功能产生重要的影响。土壤有机碳(SOC)是陆地生态系统最大的碳库,其微小变化都会影响全球碳平衡和气候变化。近30年来,国内外学者在不同森林生态系统相继开展了野外模拟增温对SOC分解的影响及其调控机制研究。基于在全球建立的26个野外模拟气候变暖实验平台,系统分析增温对森林生态系统SOC分解的影响格局和潜在机制,发现增温通常促进森林SOC的分解,对气候变暖产生正反馈作用。然而,因增温方式和持续时间、土壤微生物群落结构和功能的多样性、SOC结构和组成的复杂性、植物-土壤-微生物之间相互作用以及森林类型等不同而存在差异,导致人们对森林SOC分解响应气候变暖的程度及时空格局变化缺乏统一的认识,且各类生物和非生物因子的相对贡献尚不清楚。基于已有研究,从土壤微生物群落结构和功能、有机碳组分以及植物-土壤-微生物互作3个方面构建了气候变暖影响SOC分解的概念框架,并进一步阐述了今后的重点研究方向,以期深入理解森林生态系统碳-气候反馈效应,为制定森林生态系统管理措施和实现"碳中和"提供科学依据。1)加强模拟增温对不同森林生态系统(特别是热带亚热带森林生态系统) SOC分解的长期观测研究,查明SOC分解的时空动态特征;2)加强土壤微生物功能群与SOC分解之间关系的研究,揭示SOC分解对增温响应的微生物学机制;3)形成统一的SOC组分研究方法,揭示不同碳组分对增温的响应特征和机制;4)加强森林生态系统植物-土壤-微生物间相互作用对模拟增温的响应及其对SOC分解调控的研究;5)加强模拟增温与其他全球变化因子(例如降水格局变化、土地利用变化、大气氮沉降)对SOC分解的交互作用,为更好评估未来全球变化背景下森林土壤碳动态及碳汇功能的维持提供理论基础。  相似文献   

9.
 川西亚高山针叶林是青藏高原东部高寒林区的重要组成部分, 也是研究全球变化对森林生态系统影响的重要森林类型。开展亚高山针叶林不同树种对气候变暖响应差异的研究, 可为预测未来气候变暖背景下亚高山针叶林植被组成和森林动态提供科学依据。我们以川西亚高山针叶林两种主要树种——红桦(Betula albo-sinensis)和岷江冷杉(Abies faxoniana)为研究材料, 采用开顶式增温法(Open-top chamber, OTC)模拟气候变暖, 研究了增温对全光条件和林下低光环境中(约为全光的10%)生长的红桦和岷江冷杉幼苗生长和生理的影响。在人工林环境下, OTC使增温框内平均气温和地表温度分别升高了0.51和0.33 ℃; 而在林外空地处, OTC使二者分别升高了0.69和0.41 ℃。研究结果显示, 增温总体上促进了两种幼苗的生长和生理过程, 并促使幼苗将更多的生物量投入到其同化部位——叶, 使幼苗的根冠比(R/S)显著降低。增温通过增加叶片的光合色素含量和表观量子效率等光合参数, 促进了幼苗的光合过程和生长。然而, 增温对两种幼苗生长和生理的影响效果与植物种类及其所处的光环境有关。增温仅在林外全光条件下显著影响红桦幼苗的生长和生理过程。岷江冷杉幼苗对增温的响应与红桦相反, 即增温仅在林下低光环境下对岷江冷杉幼苗的生长和生理过程有明显促进作用。这种响应差异可能赋予这两种植物在未来气候变暖背景下面对外界环境变化时具有不同的适应能力和竞争优势, 从而对亚高山针叶林生态系统物种组成和森林动态产生潜在影响。  相似文献   

10.
气候变暖对陆地生态系统碳循环的影响   总被引:12,自引:1,他引:12       下载免费PDF全文
作为全球变化的主要表现之一,气候变暖对全球陆地生态系统碳循环的影响巨大,揭示这一作用对于精确理解碳循环的过程和相关政策的制定具有重要的指导意义。该文综述了此领域近十几年来的主要研究工作,总结了陆地生态系统碳循环对气候变暖响应的主要内部机制及其过程,简述了相关模型的发展及其主要应用,并指出以往研究中存在的主要问题以及未来研究的主要方向。在气候变暖条件下,陆地生态系统碳循环的变化主要体现在以下几个方面:1)低纬度地区生态系统NPP一般表现为降低,而在中高纬度地区通常表现为增加,而在全球尺度上表现为NPP增加;2)土壤呼吸作用增强,但经过一段时间后表现出一定的适应性;3)高纬度地区的生态系统植被碳库表现为增加趋势,低纬度地区生态系统植被碳库变化不大,或略微降低,在全球尺度上表现为植被碳库增加;4)地表凋落物的产量和分解速率增加;5)土壤有机碳分解加速,进而减少土壤碳储存,同时植被碳库向土壤碳库的流动增加从而增加土壤碳库,这两种作用在不同生态系统的比重不同,在全球尺度上表现为土壤碳库的减少;6)尽管不同生态系统表现各异,总体上全球陆地生态系统表现为一个弱碳源。生物物理模型、生物地理模型和生物地球化学模型陆续被开发出来用于研究工作,并取得了一定的成果,但是研究结果仍然存在很大的不确定性。在未来的数年甚至是数十年间,气候变暖与全球变化的其它表现间的协同影响将是下一步的研究重点,气候变暖和陆地生态系统间的双向反馈作用机制是进行更准确研究的理论基础,生态系统结构和功能对气候变化的适应性是准确理解和预测未来气候情景下陆地生态系统碳循环的前提。  相似文献   

11.
徐满厚  薛娴 《生命科学》2012,(5):492-500
由于自然因素及人类活动的长期影响,全球气候变化已经成为不容置疑的事实,并对陆地生态系统的植被及土壤产生了深远影响。陆地植被一土壤生态系统在全球气候变化中的反应与适应等过程已成为众多科学家所关注的问题。为更好地了解陆地植被一土壤生态系统对全球气候变化的响应机制,综述了气候变暖对植物的物候与生长、光合特征、生物量生产与分配,以及土壤呼吸等方面的影响,并对分析得到的结论进行了总结。分析指出,随着全球气候变暖,植物个体和群落特征以及土壤特性都会发生相应改变,高海拔地区的植被高度有增加趋势,而低海拔地区的植被可能出现矮化。然而,在以下方面还存有不确定性:(1)气候变暖导致的植被特征变化是否会减弱全球气候变化;(2)在较长时间尺度上气候变暖如何影响植物的物候和生长,特别是植物的体型;(3)高寒生态系统冬季土壤呼吸对气候变暖如何响应。  相似文献   

12.
陆地生态系统包含一系列时空连续、尺度多元且互相联系的生态学过程。由于大部分生态学过程都受到温度调控, 因此气候变暖会对全球陆地生态系统产生深远的影响。近年来, 全球变化生态学的基本科学问题之一是陆地生态系统的关键过程如何响应与适应全球气候变暖。围绕该问题, 该文梳理了近年来的研究进展, 重点关注植物生理生态过程、物候期、群落动态、生产力及其分配、凋落物与土壤有机质分解、养分循环等过程对温度升高的响应与适应机理。通过定量分析近20年来发表于主流期刊的相关论文, 展望了该领域的前沿方向, 包括物种性状对生态系统过程的预测能力, 生物地球化学循环的耦合过程, 极端高温与低温事件的响应与适应机理, 不对称气候变暖的影响机理和基于过程的生态系统模拟预测等。基于这些研究进展, 该文建议进一步研究陆地生态系统如何适应气候变暖, 更多关注我国的特色生态系统类型, 并整合实验、观测或模型等研究手段开展跨尺度的合作研究。  相似文献   

13.
《植物生态学报》1958,44(5):494
陆地生态系统包含一系列时空连续、尺度多元且互相联系的生态学过程。由于大部分生态学过程都受到温度调控, 因此气候变暖会对全球陆地生态系统产生深远的影响。近年来, 全球变化生态学的基本科学问题之一是陆地生态系统的关键过程如何响应与适应全球气候变暖。围绕该问题, 该文梳理了近年来的研究进展, 重点关注植物生理生态过程、物候期、群落动态、生产力及其分配、凋落物与土壤有机质分解、养分循环等过程对温度升高的响应与适应机理。通过定量分析近20年来发表于主流期刊的相关论文, 展望了该领域的前沿方向, 包括物种性状对生态系统过程的预测能力, 生物地球化学循环的耦合过程, 极端高温与低温事件的响应与适应机理, 不对称气候变暖的影响机理和基于过程的生态系统模拟预测等。基于这些研究进展, 该文建议进一步研究陆地生态系统如何适应气候变暖, 更多关注我国的特色生态系统类型, 并整合实验、观测或模型等研究手段开展跨尺度的合作研究。  相似文献   

14.
全球变化与生态系统研究是一个宏观与微观相互交叉、多学科相互渗透的前沿科学领域, 重点研究生态系统结构和功能对全球变化的响应及反馈作用, 其目标是实现人类对生态系统服务的可持续利用。《植物生态学报》的《全球变化与生态系统》专辑在对国内外全球变化研究进行历史回顾和综合分析的基础上, 总结了全球变化与生态系统研究的阶段性重大进展及存在的主要问题, 并对全球变化研究的前沿方向进行展望和建议。根据研究内容和对象, 该专辑系统地综述了不同全球变化因子, 包括CO2和O3浓度升高、气候变暖、降水格局改变、氮沉降增加、土地利用变化等对陆地植物生理生态、群落结构及生态系统功能等的影响以及全球变化对海洋生态系统的影响; 探讨生态系统关键过程以及生物多样性的变化; 在明确全球变化生态效应的基础上, 阐明这些影响对气候和环境变化的反馈机制, 为构筑全球变化的适应对策提供生态学理论基础。  相似文献   

15.
Global mean temperature is predicted to increase by 2–7 °C and precipitation to change across the globe by the end of this century. To quantify climate effects on ecosystem processes, a number of climate change experiments have been established around the world in various ecosystems. Despite these efforts, general responses of terrestrial ecosystems to changes in temperature and precipitation, and especially to their combined effects, remain unclear. We used meta‐analysis to synthesize ecosystem‐level responses to warming, altered precipitation, and their combination. We focused on plant growth and ecosystem carbon (C) balance, including biomass, net primary production (NPP), respiration, net ecosystem exchange (NEE), and ecosystem photosynthesis, synthesizing results from 85 studies. We found that experimental warming and increased precipitation generally stimulated plant growth and ecosystem C fluxes, whereas decreased precipitation had the opposite effects. For example, warming significantly stimulated total NPP, increased ecosystem photosynthesis, and ecosystem respiration. Experimentally reduced precipitation suppressed aboveground NPP (ANPP) and NEE, whereas supplemental precipitation enhanced ANPP and NEE. Plant productivity and ecosystem C fluxes generally showed higher sensitivities to increased precipitation than to decreased precipitation. Interactive effects of warming and altered precipitation tended to be smaller than expected from additive, single‐factor effects, though low statistical power limits the strength of these conclusions. New experiments with combined temperature and precipitation manipulations are needed to conclusively determine the importance of temperature–precipitation interactions on the C balance of terrestrial ecosystems under future climate conditions.  相似文献   

16.
土壤微生物对气候变暖和大气N沉降的响应   总被引:10,自引:0,他引:10       下载免费PDF全文
气候变暖和大气N沉降是近一、二十年来人们非常关注的全球变化现象,它们所带来的一系列生态问题已成为全球变化研究的重要议题。它们不仅影响地上植被生长和群落组成,还直接或间接地影响土壤微生物过程,而土壤微生物对此做出的响应正是生态系统反馈过程中非常重要的环节。该文分别从气候变化对土壤微生物的影响(土壤微生物量、微生物活动和微生物群落结构)和土壤微生物对气候变化的响应(凋落物分解、养分利用与循环以及养分的固持与流失)两个角度,综述近期土壤微生物对气候变暖和大气N沉降响应与适应的研究进展。气候变暖和大气N沉降对土壤微生物的影响更多地反映在微生物群落的结构和功能上,而土壤微生物量、微生物活动和群落结构的变化又会通过改变凋落物分解、养分利用和C、N循环等重要的土壤生态系统功能和过程做出响应,形成正向或负向反馈,加强或削弱气候变化给整个陆地生态系统带来的影响。然而,到目前为止土壤微生物的响应对陆地生态系统产生的最终结果仍是未决的关键性问题。  相似文献   

17.
《植物生态学报》1958,44(5):449
全球变化与生态系统研究是一个宏观与微观相互交叉、多学科相互渗透的前沿科学领域, 重点研究生态系统结构和功能对全球变化的响应及反馈作用, 其目标是实现人类对生态系统服务的可持续利用。《植物生态学报》的《全球变化与生态系统》专辑在对国内外全球变化研究进行历史回顾和综合分析的基础上, 总结了全球变化与生态系统研究的阶段性重大进展及存在的主要问题, 并对全球变化研究的前沿方向进行展望和建议。根据研究内容和对象, 该专辑系统地综述了不同全球变化因子, 包括CO2和O3浓度升高、气候变暖、降水格局改变、氮沉降增加、土地利用变化等对陆地植物生理生态、群落结构及生态系统功能等的影响以及全球变化对海洋生态系统的影响; 探讨生态系统关键过程以及生物多样性的变化; 在明确全球变化生态效应的基础上, 阐明这些影响对气候和环境变化的反馈机制, 为构筑全球变化的适应对策提供生态学理论基础。  相似文献   

18.
Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century‐ to millennia‐old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ 14C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf‐shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf‐shrubs and graminoids prime microbial decomposition of previously ‘locked‐up’ organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant‐induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号