首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experience gained since 1987, through observation of 85 girls with Turner syndrome under growth hormone (GH) treatment, has enabled the analysis of one of the largest cohorts. Our results show that age, karyotype and height reflect the heterogeneity of the patients examined at our growth centre. In 47 girls, followed over 4 years on GH (median dose 0.72 IU/kg/week), the median age was 9.4 years and mean height SDS was -3.55 (Prader) and -0.14 (Turner-specific), while height and other anthropometrical parameters [weight, body mass index, sitting height (SH), leg length (LL) SH/LL, head circumference, arm span] were documented and compared to normative data as well as to Turner-specific references established on the basis of a larger (n = 165) untreated cohort from Tübingen. The latter data are also documented in this article. Although there was a trend towards normalization of these parameters during the observation period, no inherent alterations in the Turner-specific anthropometric pattern occurred. In 42 girls who started GH treatment at a median age of 11.8 years, final height (bone age >15 years) was achieved at 16.7 years. The overall gain in height SDS (Turner) from start to end of GH therapy was 0.7 (+/- 0.8) SD, but 0.9 (+/- 0.6) SD from GH start to onset of puberty (spontaneous 12.2 years, induced 13.9 years) and -0.2 (+/- 0.8) from onset of puberty to end of growth. Height gain did not occur in 12 patients (29%) and a gain of > 5 cm was only observed in 16 patients (38%). Height gain correlated positively with age at puberty onset, duration, and dose of GH, and negatively with height and bone age at the time GH treatment started. Final height correlated positively with height SDS at GH start and negatively with the ratio of SH/LL (SDS). We conclude that, in the future, GH should be given at higher doses, but oestrogen substitution should be done cautiously, owing to its potentially harmful effect on growth. LL appears to determine height variation in Turner syndrome and the potential to treat short stature successfully with GH.  相似文献   

2.
We report long-term evolution of endocrine functions and the results of GH treatment in 35 patients (26 male and 9 female) with pituitary stalk interruption. At diagnosis, mean chronological age was 4.8 +/- 2.7 years, mean SDS for height -3.1 +/- 0.8 with a bone age retardation of 2.3 +/- 1.3 years and a mean SDS for growth velocity of -0.5 +/- 1.1; 80% presented complete GH deficiency (GHD) and 20% partial GHD; thyroid deficiency was present in 47.1% of children with complete GHD but absent in all partial GHD. Diagnosis was made during the first months of life in only 2 patients while 23% presented with severe neonatal distress; neonatal signs were only observed in the group with pituitary height below 2 mm (45.7% of patients). GHD was isolated in 40.6% of patients below 10 years while multiple hormone deficiencies was consistent at completion of growth in all patients. Height gain was significantly higher in patients who started GH treatment before 4 years (p = 0.002). GH treatment is very effective: in 13 patients, final height was -0.4 +/- 1.0, total height gain 3.2 +/- 1.2 and distance to target height -0.3 +/- 1.6 SDS.  相似文献   

3.
In the Dutch growth hormone (GH) registration database there are currently 552 GH-deficient children being treated, subcutaneously, with recombinant human GH six to seven times per week. Of those, 112 who have been treated for at least 2 years have reached final height. Mean age at start of therapy was 11.70 years. Mean GH dose was 15.5 IU/m(2) body surface per week. Mean final height was 173.2 cm (boys) and 159.7 cm (girls) and -1.36 SD of the population mean. Of the patients, 73.2% and 63.4%, respectively, reached a final height above -2 SD of the population or within target limits. FH-SDS was higher compared with the results of earlier cohorts with different treatment regimens. Target height, GH peak value at diagnosis, age at start of GH therapy, height SDS (HSDS) at start of puberty, and duration of GH therapy were significantly correlated with final height. These results, combined with those of a prospective GH dose-response study, suggest that better long-term results can be obtained with early and prolonged treatment and if the GH dose is individually adapted to the short-term growth response. In an ongoing dose-response study, 68 girls with Turner's syndrome, aged 2-11 years, were randomized into three dosage groups with a daily GH dose of: (group A) 4 IU/m(2) body surface; (group B) 4 IU/m(2) in the first year of therapy and 6 IU/m(2) thereafter; (group C) 4 IU/m(2) in the first year, 6 IU/m(2) in the second year, and 8 IU/m(2) thereafter. After 4 years of GH therapy, girls aged 12 years or older started low-dose oestrogen therapy. After 7 years of GH therapy, mean HSDS in all three groups had increased to values above the third percentile for healthy girls. Mean final height and final height gain of 25 girls was 159.1 and 12.5 cm, 161.8 and 14.6 cm, and 162.7 and 16.0 cm in groups A, B and C respectively. These long-term and final height results are more favourable than the results of earlier Dutch Turner's syndrome studies. Possible explanations are the higher GH doses and/or the younger age at start of GH therapy.  相似文献   

4.
There is no consensus regarding the optimal dosing of recombinant human growth hormone (rhGH) for children with growth hormone deficiency (GHD). Our objective was to evaluate the final adult height (FAH) in children with idiopathic GHD treated with a fixed rhGH dose of 0.18 mg/kg/week. We reviewed all charts of patients with idiopathic GHD treated with rhGH since 1985 who reached FAH. Ninety-six patients were treated for an average of 5.4 years. The mean age was 11.9 years, the mean height -2.87 standard deviation score (SDS) and the mean FAH was -1.04 SDS. Females had a lower predicted adult height than males at the initiation of therapy (-2.0 vs. -1.01 SDS; p = 0.0087) but a higher FAH - predicted adult height (1.08 vs. 0.04 SDS; p = 0.0026). In multiple regression analysis, the FAH SDS was positively related to the midparental height SDS, the height SDS at GH initiation and growth velocity during the first year of therapy, and negatively correlated with peak GH and bone age at initiation (r(2) = 0.51; p < 0.005). Treatment of children with idiopathic GHD with a fixed dose of 0.18 mg/kg/week rhGH is sufficient to reach FAH within 2 SDS of the normal population range (84%) with an average FAH within -0.5 SDS of midparental height.  相似文献   

5.
Z Zadik  U Mira  H Landau 《Hormone research》1992,37(4-5):150-155
The aim of this study was to test the effect of growth hormone (GH) therapy on final height in peripubertal boys with idiopathic short stature in whom a subnormal integrated concentration of GH (< 3.2 micrograms/l) was found. Twenty-eight peripubertal children were studied. Height was below 2 SD for age, growth velocity was < 4.5 cm/year, bone age was more than 2 SD below mean for age and GH response to provocative tests was more than 10 micrograms/l. Eleven subjects (group B) were treated with recombinant GH 0.75 unit/kg/week, divided into 3 weekly doses for 2 years, and then the same weekly dose divided into daily injections was administered until final height was attained. Seventeen untreated children (group A) who were followed until cessation of growth served as controls. The GH-treated patients reached their target heights (-2.1 +/- 0.5, mean +/- SD in SDS) and predicted heights (-1.8 +/- 0.8) determined by the Bayley and Pinneau method, while the final heights of the untreated patients were significantly lower than their target heights and their predicted final heights (-2.7 +/- 0.7, -1.8 +/- 1.0 and -2.7 +/- 0.7, respectively). The main effect of GH was observed during the 1st year of treatment when height velocity was significantly higher in the GH-treated group than in the untreated one (9.3 +/- 2.1 vs. 5.3 +/- 1.1, respectively, p < 0.001). The high cost of the treatment in this specific age group should be weighed against the results.  相似文献   

6.
To evaluate the effect of growth hormone (GH) administration on adult height (AH) in two groups of isolated GH-deficient (IGHD) children born either small (birth weight below -2 SD) or appropriate (birth weight above -2 SD) for gestational age (GA). Out of 35 prepubertal IGHD children, 14 small for GA (SGA, group A) and 21 appropriate for GA (AGA, group B) were examined. All patients received continuous GH treatment at a median dose of 0.028 mg/kg/day (range 0.023-0.032) in group A and 0.024 (range 0.023-0.028) in group B. GH treatment was administered for a period of 67.0 months (range 42.37-96.05) in group A and 54.31 months (range 47.14-69.31) in group B. All children were measured using a Harpenden stadiometer every 6 months until they reached AH (growth velocity <1 cm/year). The patients underwent a retesting a few months after stopping GH therapy. A significant difference was found between group A and B as expected for birth weight SD, -2.70 (range -2.87 to -2.29) and -0.73 (range -1.30 to 0.14) respectively (p < 0.000001) and interestingly also for body mass index SDS (BMI SDS) at retesting, 0.08 (range 0.30 to -1.51) and 0.61 (range 0.73 to -1.10) respectively (p < 0.04). We observed no significant differences between groups A and B in height (expressed as the SDS for chronological age, height SDS) at diagnosis (p = 0.75), height SDS at start of puberty (p = 0.51), height SDS at retesting (p = 0.50), target height SDS (TH SDS) (p = 0.47), AH SDS (p = 0.92), corrected height SDS (height SDS - TH SDS) (p = 0.60), BMI SDS at diagnosis (p = 0.25), GH dosage (p = 0.34) and therapy duration (p = 0.52). GH treatment with a standard dose in short IGHD children leads to a normalization of AH without any significant difference between SGA and AGA patients.  相似文献   

7.
Two methods of determining puberty onset (Preece- Baines model 1 (PB1) and Tanner staging) were used to calculate total pubertal growth (TPG) in adolescents with growth hormone deficiency (GHD). PATIENTS AND METHODS: 34 patients (11 girls) met the following inclusion criteria: isolated GHD, >2 years growth hormone therapy prior to puberty onset, regular weight-adjusted GH dosage, known final height (age >21 years or height velocity <0.5 cm/year), no induction of puberty. PB1 was used to define age and height at onset of the pubertal growth spurt ("take-off"). RESULTS: The results (mean +/- SD) were as follows: in girls, mean age at take-off was 9.8 years; 2.0 +/- 1.1 years before breast stage B2. In boys, mean age at take-off was 11.3 years; 1.4 +/- 0.8 years before testes volume >3 ml. Height at take-off was lower than at Tanner stage 2 by 12.4 +/- 7.6 cm in girls and 7.7 +/- 5.3 cm in boys. TPG was thus markedly greater (p < 0.001) using the PB1 method, as compared with Tanner stage2. Peak height velocity was normal. Final height was -0.5 +/- 0.7 SDS in females and -0.4 +/- 0.9 SDS in males. CONCLUSIONS: The method of measuring TPG from take-off is more objective, and has potentially greater implications for GH therapeutics than the Tanner stage method. In our study, 40% of TPG occurred before "breast stage B2" was attained in GHD girls; whereas 23% of TPG occurred before "testes >3 ml" in GHD boys.  相似文献   

8.
We retrospectively assessed linear growth and final height in a group of 24 patients suffering from juvenile idiopathic arthritis (JIA) during childhood, receiving steroid therapy. In these patients, a significant loss of height (-2.7 +/- 1.5 SDS) occurred in the first years of the disease which was positively correlated with prednisone therapy duration. After remission of the disease and prednisone discontinuation, most of the patients (70%) had catch-up growth but 30% had a persistent loss of height. Their mean final height was strongly correlated with their mean height at the end of steroid therapy and was significantly different between the group of patients with catch-up growth (-1.5 +/- 1.6 SDS) and the group without catch-up growth (-3.6 +/- 1.2 SDS). This pattern of growth observed in JIA patients should help us to define strategies of GH treatment in these patients in order to improve their final height. We have previously reported the beneficial effects on growth and body composition of a 1-year GH treatment in a group of 14 growth-retarded patients suffering from juvenile idiopathic arthritis, receiving glucocorticoid therapy. These patients (n = 13) were treated again with GH at the same dosage (0.46 mg/kg/week) for another 3-year period. GH treatment markedly increased growth velocity in these patients, but had a minor effect on SDS height suggesting that these children will remain short at adult age. Using GH earlier in these patients during the course of their disease may prevent growth deterioration and metabolic complications induced by chronic inflammation and long-term steroid therapy.  相似文献   

9.
BACKGROUND/AIMS: Growth hormone (GH) excess in childhood is a rare disorder. Current treatment options such as somatostatin analogues, pituitary surgery or irradiation can have serious side effects. Recently, a GH receptor antagonist, pegvisomant, was introduced for the treatment of adults with acromegaly. We wanted to investigate whether pegvisomant was effective in a child with octreotide-resistant GH excess. CASE: A 4-year-old girl with neurofibromatosis type 1 and GH excess associated with optic glioma received pegvisomant injections (10 mg subcutaneously) with increasing intervals from daily to every 4th day. RESULTS: IGF-I and IGFBP-3 decreased from +6.9 and 4.6 standard deviation scores (SDS), respectively, to within normal range. Height velocity dropped from 12.4 SDS to mean -0.7 SDS (range: -5.0 to 5.0) and height SDS decreased from +1.3 to +0.6 (target height: +0.2). Random non-fasting serum GH values were mean 5.0 mlU/l (range: 1.6-9.5). There was no change in fasting blood glucose (4.6-4.7 mmol/l) or glycosylated haemoglobin (5.5%) and no subjective or biochemical side effects. Repeated tests of thyroid, adrenal and gonadal function showed no alterations during the treatment period. Intracranial tumours remained unchanged in size and visual impairment did not deteriorate. CONCLUSION: Pegvisomant normalized IGF-I and IGFBP-3 levels. Growth velocity was normalized after initial catch-down growth, and it remains to be seen whether this result can be maintained during long-term treatment.  相似文献   

10.
BACKGROUND: A stepwise increment of the GH dose is an approach aimed at avoiding adverse events. We investigated GH sensitivity by studying IGF-I and IGFBP-3 concentrations during the initial phase of GH treatment. METHODS: Our investigation was part of the regular follow-up of prepubertal children with GH deficiency (GHD) (n = 31) and small for gestational age (SGA) (n = 23). Dosage was increased in three steps: one-third at the start, two-thirds after 14 days, and the full dose after 28 days (full dose: GHD = 28 microg/kg body weight (BW)/day; SGA = 60 microg/kg BW/day). Blood samples were taken on days 0, 14 and 28, as well as in conjunction with anthropometrical examinations after 3, 6 and 12 months. IGF-I and IGFBP-3 were measured by means of published in-house RIAs and age-related references were used to calculate standard deviation scores (SDS). Height velocity (cm/year) and Delta HT SDS were taken as growth response parameters. RESULTS: Before GH treatment (GHD vs. SGA; median and p values): age (years) (6.6 vs. 6.0; n.s.), HT SDS (-2.6 vs. -3.2; p < 0.05); GH amount after stepping up (mug/kg BW/day) (28 vs. 60; p < 0.01); BW SDS (-0.5 vs. -2.9; p < 0.01); max. GH stimulated (microg/l) (5.6 vs. 10.8; p < 0.01); IGF-I SDS (-3.5 vs. -1.8; p < 0.01); IGFBP-3 SDS (-2.0 vs. 0.8; p < 0.01). After 1 year of GH therapy: HT velocity (cm/year) (9.8 vs. 9.6; n.s.), Delta HT SDS (0.9 vs. 0.9; n.s.); WT velocity (kg/year) (3.3 vs. 3.5; n.s.). Our results show that changes in growth similar to GHD could be induced in SGA by a dosage that was twice as high as the replacement dose given in GHD. GH dose and HT velocity did not correlate in both groups. IGF-I and IGFBP-3 increased as follows in GHD and SGA during stepping up of the dosage (ng/ml, GHD vs. SGA): at start, 54 vs. 89; at day 14, 78 vs. 132; at day 28, 90 vs. 167; at 3 months, 118 vs. 218. There was the same relationship between dose levels and absolute IGF-I concentrations in both groups. In terms of IGF-I SDS, the dose-response curve in SGA showed a shift to the right in comparison to GHD, thus indicating lower sensitivity to GH. The dynamics of IGF-I and IGFBP-3 differed, as IGFBP-3 peaked earlier (on day 28). In GHD, IGF-I SDS at 3 months was -0.7 vs. +0.9 in SGA. Near-identical levels were found for Delta IGF-I SDS and IGFBP-3 SDS above basal levels for each time-point investigated. First year HT velocity in GHD correlated negatively with basal IGF-I SDS (R(2) = 0.33; p <0.001) and basal IGFBP-3 (R(2) = 0.17; p <0.05) but did not correlate with the IGF-I increment during the 0- to 3-month period. Conversely, first year HT velocity correlated (+) in SGA with the IGF SDS increment during the 0- to 3-month period (R(2) = 0.26; p = <0.05). Height velocity in SGA, however, correlated neither with basal IGF-I and IGFBP-3 nor with the 0- to 3-month increments of IGFBP-3 SDS. CONCLUSIONS: IGFs increase during initial GH therapy, thus raising questions about short-term IGF generation tests. (I) In terms of IGF generation, substantially lower sensitivity to GH was observable in SGA. (II) Higher GH sensitivity during first year catch-up growth is associated with GHD, but in SGA it is attributable to increases in IGF. A wider range of GH dosages needs to be explored in order to gain further insight into the relationship between GH dose, IGF levels, and growth. Monitoring IGFs is a practical means for exploring GH sensitivity during dosage stepping up.  相似文献   

11.
OBJECTIVE: We report final heights in a pair of monozygotic twins, one unaffected and the other affected with idiopathic and isolated growth hormone (GH) deficiency treated with human GH, and discuss the effect of GH dosage on the attainment of the genetic height potential in GH deficiency. PATIENTS: Male monozygotic twins were born at 35 weeks of gestation; birth weights were 1,876 g in the unaffected and 1,510 g in the affected twin. At 4.9 years of age, the affected twin was studied for short stature (-3.38 SD) and was diagnosed as having idiopathic and isolated GH deficiency, whereas the unaffected twin was normal in height (+/- 0 SD). GH treatment was started at the age of 5.7 years and continued throughout childhood and adolescence. The average dose of GH administered during the treatment period was 0.35 IU (0.12 mg)/kg/week. The affected twin appeared to grow normally without other hormone replacement and achieved a final height of 165.6 cm (-0.86 SD) compared with that of 166.4 cm (-0.71 SD) in the unaffected twin at 17.5 years of age. CONCLUSION: Our results indicate that a relatively low dose of GH treatment started at an early age may preserve genetic height potential in patients with isolated GH deficiency.  相似文献   

12.
Children with idiopathic short stature (ISS) may have normal or increased growth hormone (GH) responses to provocation tests and achieve a final height (FH) below -2.0 standard deviation score (SDS) if untreated. FH of subjects with high stimulated GH levels has not been studied in detail. AIM: It was the aim of this study to analyse FH in ISS patients with high GH peak responses to the provocation test. PATIENTS AND METHODS: We studied 16 patients (9 pre-pubertal) with ISS and a GH peak >or=40 mU/l to insulin-induced hypoglycaemia. The patients were recalled at age 19.7 +/- 2.5 years for measurement of FH when blood samples were obtained for serum insulin-like growth factor (IGF)-I, IGF binding protein 3, acid-labile subunit and GH binding protein measurements. GH bioactivity was determined using the Nb2 bioassay. RESULTS: FH was -3.1 +/- 1.0 SDS, being significantly lower than target height (TH). At FH, IGF-I levels were within -1.5 and +1.5 SDS for age and sex in 10 patients and higher than +1.5 SDS in 6 patients. IGF binding protein 3, acid-labile subunit, GH binding protein levels and GH bioactivity values were normal. SUMMARY: These data suggest that patients with ISS and high GH levels during a GH stimulation test may have a more compromised FH. The association of severe ISS with a peak GH >40 mU/l might suggest a degree of insensitivity for the GH-IGF-I axis.  相似文献   

13.
BACKGROUND: Elevated plasma ghrelin levels have recently been reported in adults and children with Prader-Willi syndrome (PWS). The aim of the study is to investigate the relationship between obesity, growth hormone (GH) deficiency (GHD) and ghrelinemia in PWS and to examine whether hyperghrelinemia is specific to PWS. METHODS: We measured fasting ghrelinemia in children with PWS, idiopathic GHD (iGHD), obese children, controls and in 6 children presenting another congenital syndrome associated with GHD: pituitary stalk interruption (PSI). RESULTS: Children with PWS exhibited significantly higher ghrelin levels (995 pg/ml (801/1,099, median 1st/3rd quartile)) than iGHD (517 pg/ml (392/775)), obese (396 pg/ml (145/610)) and control (605 ng/ml (413/753)) children. Similar to PWS hyperghrelinemia was found in PSI children (1,029 pg/ml (705/1,151)), and was not modified by GH treatment. CONCLUSION: We conclude that hyperghrelinemia in PWS and PSI is not related to GH secretion. We hypothesize that a major site of ghrelin action is at the hypothalamic level and that a 'ghrelin resistance' syndrome may be present in these patients, primarily due to a hypothalamic defect. Combined alterations such as impaired serotonin receptor regulation associated with abnormal ghrelin responsiveness are probably responsible for obesity in PWS.  相似文献   

14.
BACKGROUND/AIMS: Two modalities of androgen therapy prevail in the treatment of constitutional delay of growth (CDG): monthly injections of testosterone or daily tablets of the non-aromatizable oxandrolone. The present study was undertaken to prospectively compare both compounds and dose. METHODS: Thirty patients with CDG were the subjects of this study. The protocol required that they all be at age 12-14 years with a bone age delay of more than 2 'years', height less than -2 SDS and growth velocity less than -0.5 SDS. The subjects were at a Tanner stage 1 or 2 and testicular volume were no larger than 4 ml. They were randomly assigned into 3 treatment groups: group 1 patients received monthly injections of 25 mg testosterone propionate-enanthate; group 2 patients received monthly injections of 50 mg testosterone propionate-enanthate; group 3 patients received oral oxandrolone at a weekly dose of 0.7 mg/kg. Treatment was given for a period of 6 months and follow-up commenced 6 months later and yearly thereafter for 2 years. RESULTS: Height velocity and height increased significantly only in groups 2 and 3. Bone age advanced most in group 2. Puberty progressed faster in that group as compared with group 3. The predicted adult height before and 2 years after completion of treatment remained unchanged in the two testosterone groups. It increased significantly in the oxandrolone group from a mean 169.8 cm before therapy to a mean 177.5 cm 2 years after completion of therapy. Peak GH levels were significantly higher on both testosterone 50 mg and oxandrolone, as compared to pretreatment levels. The increment was significantly greater in group 2 as was the increment in serum IGF-1 and IGFBP3. CONCLUSIONS: These results imply that 6 months of testosterone injections at a dose of 50 mg, but not 25 mg, is an effective and safe treatment for patients with CDG, with no considerable impact on final height prediction. On the other hand, daily oxandrolone treatment, starting at age 12-14 years, may increase the predicted final adult height.  相似文献   

15.
《Endocrine practice》2019,25(8):800-808
Objective: To detect a possible correlation between timing of the peak value of growth hormone (GH) during stimulatory tests (STs) and the effectiveness of treatment with recombinant human growth hormone (rhGH) in children with idiopathic GH deficiency (iGHD).Methods: We retrospectively studied 92 patients with iGHD (57 boys; mean age at diagnosis: 9.93 years). Diagnosis was confirmed by 2 different STs, glucagon stimulation test (GST), and clonidine stimulation test (CST). Auxologic parameters were recorded, while observed and predicted (according to KIGS Prediction Model) height velocity during the first year of treatment and the index of responsiveness (IoR) were calculated for the prepubertal children (n = 65).Results: Atypical GST was defined as that with peak GH value at time 0 minutes, 30 minutes, 60 minutes, or 180 minutes, whereas atypical CST was defined as that with peak timing at 0 minutes, 30 minutes, or 120 minutes. Atypical GST was detected in 18 patients (19.57%). IoR was lower in the prepubertal children with atypical GST (-1.81 ± 0.67 versus -1.34 ± 0.85; P = .051). In the CST, the 18 children who had atypical timing, had significantly lower IoR (-1.86 ± 0.66 versus -1.35 ± 0.84; P = .047). When the patients were categorized according to the number of atypical tests, significant differences in the IoR were detected (-2.09 ± 0.68 with 2 atypical STs &lsqb;n = 6], -1.64 ± 0.61 with 1 atypical ST &lsqb;n = 16], and -1.29 ± 0.87 with no atypical ST &lsqb;n = 43], P = .045).Conclusion: The presence of atypical peak GH timing during ST may be a factor that predicts lower growth hormone velocity during the first year of rhGH treatment in prepubertal children with iGHD.Abbreviations: CST = clonidine stimulation test; GH = growth hormone; GHD = growth hormone deficiency; GST = glucagon stimulation test; iGHD = idiopathic growth hormone deficiency; IoR = index of responsiveness; rhGH = recombinant human growth hormone; SDS = standard deviation scores; ST = stimulatory test  相似文献   

16.

Background

Trisomy 9p is an uncommon anomaly characterised by mental retardation, head and facial abnormalities, congenital heart defects, kidney abnormalities, and skeletal malformations. Affected children may also show growth and puberty retardation with delayed bone age. Auxological and endocrinological data are lacking for this syndrome.

Methods

We describe three girls and one boy with 9p trisomy showing substantial growth failure, and we evaluate the main causes of their short stature.

Results

The target height was normal in all families, ranging from 0.1 and -1.2 standard deviation scores (SDS). The patients had a low birth-weight (from -1.2 to -2.4 SDS), birth length (from -1.1 to -3.2 SDS), and head circumference (from -0.5 to -1.6 SDS). All patients presented with substantial growth (height) retardation at the time of 9p trisomy diagnosis (from -3.0 to -3.8 SDS). The growth hormone stimulation test revealed a classic growth hormone (GH) deficiency (GHD) in patients 1, 3, and 4. In contrast, patient 2 was determined to have a GH neurosecretory dysfunction (GHNSD). The plasma concentrations of IGF-I and IGFBP-3 were low in all patients for their ages and sexes (from -2.0 to -3.4 SDS, and from -1.9 to -2.8 SDS, respectively). The auxological follow-up showed that those patients who underwent rhGH treatment exhibited a very good response to the GH therapy, whereas patients 3 and 4, whose families chose not to use rhGH treatment, did not experience any significant catch-up growth.

Conclusions

GH deficiency appears to be a possible feature of patients with 9p trisomy syndrome. These patients, particularly those with growth delays, should be evaluated for GH secretion.  相似文献   

17.
BACKGROUND: The aim of this retrospective analysis was to evaluate the effects of growth hormone (GH) treatment on testicular development in boys with idiopathic short stature (ISS) and isolated GH deficiency (IGHD) followed in the KIGS (Pharmacia International Growth Database). METHODS: For inclusion in the study, the patients had to have received more than 1 year of prepubertal GH treatment, at least 4 consecutive years of GH treatment in total, and to have attained their final height, defined as a height velocity of less than 2 cm/year. Data on 107 boys in the KIGS database have been analyzed. RESULTS: No significant differences in duration of GH treatment and testicular volume at the start of treatment or at final height were found between the boys with ISS and those with IGHD. The progression of testicular volume in boys with ISS or IGHD during GH treatment did not differ from the reference population. CONCLUSIONS: This analysis shows that GH treatment does not alter testicular growth in boys with ISS or IGHD. However, prospective controlled studies are needed to rule out moderate attenuating or stimulating effects.  相似文献   

18.
To explore the effects of estrogen replacement therapy (ERT) and recombinant growth hormone (GH) treatment on bone mineral density (BMD) in Turner's syndrome, we assessed volumetric BMD (vBMD), which is less dependent on body and bone sizes, in these patients at final height. The areal BMD (aBMD) was measured in 26 young women with Turner's syndrome (age range 17.5-25.0 years) by dual-energy X-ray absorptiometry, and vBMD was calculated. Patients were subdivided as group 1 (n = 12; ERT alone) and group 2 (n = 14; GH + ERT). Years of estrogen exposure were not different between the groups (group 1: 6. 4 +/- 1.5 years; group 2: 5.3 +/- 1.7 years); in group 2, GH therapy was 5.3 +/- 1.4 years. Final heights were significantly higher in group 2 than in group 1 (148.1 +/- 3.0 vs. 142.0 +/- 2.8 cm; p < 0. 0001) as well as aBMD (1.073 +/- 0.118 vs. 0.968 +/- 0.122 g/cm(2); p < 0.04). vBMD was higher in group 2 but not significantly different from group 1 (0.374 +/- 0.030 vs. 0.358 +/- 0.027 g/cm(3); p = 0.169). aBMD was reduced with respect to the normative values in both groups (group 1: -1.97 +/- 1.04 SDS, p < 0.0001 vs. 0; group 2: -0.93 +/- 1.01 SDS, p < 0.005 vs. 0), whereas vBMD was not (group 1: -0.07 +/- 0.79 SDS; group 2: 0.42 +/- 0.82 SDS). Our data suggest that: in Turner's syndrome GH administration improves final height and aBMD, but it does not significantly increase vBMD; aBMD reduction in Turner's syndrome is likely due to the impaired growth and reduced bone size; Turner's patients on ERT from adolescence show vBMD values in the normal range in young adulthood.  相似文献   

19.
BACKGROUND: The growth response to recombinant hGH (rhGH) treatment and final height of 61 Belgian children (32 boys) with idiopathic growth hormone deficiency (GHD) were studied. PATIENTS/METHODS: Two patient groups were compared: Group 1 with spontaneous puberty (n = 49), Group 2 with induced puberty (n = 12). The patients were treated with daily subcutaneous injections of rhGH in a dose of 0.5-0.7 IU/kg/week (0.17-0.23 mg/kg/week) from the mean +/- SD age of 11.9 +/- 3.1 years during 5.1 +/- 2.1 years. RESULTS: rhGH treatment induced a doubling of the height velocity during the first year and resulted in a normalisation of height in 53 (87%) patients. Final height was -0.7 +/- 1.1 SDS, being 170.4 +/- 7.2 cm in boys and 158.0 +/- 6.4 cm in girls. Corrected for mid-parental height, final height was 0.0 +/- 1.1 SDS. Ninety-two percent of the patients attained an adult height within the genetically determined target height range. Although height gain during puberty was smaller in the patients with induced puberty (boys: 17.1 +/- 7.0 cm vs. 27.5 +/- 6.6 cm (p < 0.005); girls: 9.6 +/- 7.4 cm vs. 22.2 +/- 6.1 cm (p < 0.005)), no differences in final height after adjustment for mid-parental height were found between patients with spontaneous or induced puberty. CONCLUSIONS: We conclude that patients with idiopathic GHD treated with rhGH administered as daily subcutaneous injections in a dose of 0.5-0.7 IU/kg/week reach their genetic growth potential, resulting in a normalisation of height in the majority of them, irrespective of spontaneous or induced puberty.  相似文献   

20.
Growth is disturbed by adrenal hypersecretion of androgens or cortisol. Androgen excess in virilizing adrenal tumours causes advanced growth and bone age. In 9 girls with virilizing tumours, mean heights at diagnosis and final heights were 1.23 +/- 0.42 and 1.3 +/- 0.37 SDS respectively. In poorly controlled CAH, excess androgens cause early epiphyseal fusion and adult short stature. Increased growth occurs only after 18 months of age, even in untreated CAH, i.e. hydrocortisone >10 mg/m(2)/day is not generally required and may suppress infantile growth, affecting childhood and adult height. Growth was studied in 19 patients, aged 6.4-17.8 years, with Cushing's disease (CD). At diagnosis, mean height SDS was -1.81 (1.2 to -4.17), 53% < -1.8 SDS, height velocity in 6 was 0.9-3.8 cm/year and mean BMI SDS 2.29 (0.7-5.06). From 1983 to 2001, CD was cured in 18 patients (61%) by transsphenoidal surgery (TSS) alone and 39% by TSS plus pituitary irradiation (RT). In 13 patients, growth hormone (GH) was assessed by ITT/glucagons at 1-108 months after cure. Four had severe GH deficiency (<9 mU/l), 7 subnormal (10-29 mU/l) and 2 normal (>30 mU/l) GH status. Subnormal GH was present in 7 subjects >2 years after TSS or RT cure. In 10 subjects, aged 12.9 +/- 3.4 years, growth after cure was studied for 9.1 +/- 5.0 years. Nine had no catch-up growth in the interval of 0.3-1.1 years after cure (mean HV 5.3 +/- 2.4 cm/year). All these had GH deficiency peak GH 0.5-20.9 mU/l, and received hGH 2.7 mg/m(2)/week, 3 with GnRHa. All 10 showed long-term catch-up growth with mean delta SDS at diagnosis (Ht SDS-target Ht SDS) -1.72 +/- 1.26 improving to -0.83 +/- 1.08 (p = 0.0005) at latest of final Ht. At diagnosis, virilization was present in 82% of 17 patients with CD. Mean SDS values of serum androstenedione, DHEA-S and testosterone were normal, i.e. 0.72 (-2.9 to 3.0), -0.8 (6.0 to 2.2), 0.7 (-7.9 to 9.5) respectively, whereas SHBG was reduced at -2.1 (-5.3 to 1.2), increasing free androgen levels. Bone age (BA) was delayed (mean 1.46 years) in 14/16 patients, suggesting cortisol excess contributed more then androgen effect to skeletal maturation. In conclusion, most paediatric patients with CD had subnormal linear growth with delayed BA. After cure by TSS or pituitary irradiation, GH deficiency was frequent and persisted for many years. Treatment with hGH induced significant long-term catch-up growth leading to reasonable final height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号