首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is no consensus regarding the optimal dosing of recombinant human growth hormone (rhGH) for children with growth hormone deficiency (GHD). Our objective was to evaluate the final adult height (FAH) in children with idiopathic GHD treated with a fixed rhGH dose of 0.18 mg/kg/week. We reviewed all charts of patients with idiopathic GHD treated with rhGH since 1985 who reached FAH. Ninety-six patients were treated for an average of 5.4 years. The mean age was 11.9 years, the mean height -2.87 standard deviation score (SDS) and the mean FAH was -1.04 SDS. Females had a lower predicted adult height than males at the initiation of therapy (-2.0 vs. -1.01 SDS; p = 0.0087) but a higher FAH - predicted adult height (1.08 vs. 0.04 SDS; p = 0.0026). In multiple regression analysis, the FAH SDS was positively related to the midparental height SDS, the height SDS at GH initiation and growth velocity during the first year of therapy, and negatively correlated with peak GH and bone age at initiation (r(2) = 0.51; p < 0.005). Treatment of children with idiopathic GHD with a fixed dose of 0.18 mg/kg/week rhGH is sufficient to reach FAH within 2 SDS of the normal population range (84%) with an average FAH within -0.5 SDS of midparental height.  相似文献   

2.
BACKGROUND: The growth response to recombinant hGH (rhGH) treatment and final height of 61 Belgian children (32 boys) with idiopathic growth hormone deficiency (GHD) were studied. PATIENTS/METHODS: Two patient groups were compared: Group 1 with spontaneous puberty (n = 49), Group 2 with induced puberty (n = 12). The patients were treated with daily subcutaneous injections of rhGH in a dose of 0.5-0.7 IU/kg/week (0.17-0.23 mg/kg/week) from the mean +/- SD age of 11.9 +/- 3.1 years during 5.1 +/- 2.1 years. RESULTS: rhGH treatment induced a doubling of the height velocity during the first year and resulted in a normalisation of height in 53 (87%) patients. Final height was -0.7 +/- 1.1 SDS, being 170.4 +/- 7.2 cm in boys and 158.0 +/- 6.4 cm in girls. Corrected for mid-parental height, final height was 0.0 +/- 1.1 SDS. Ninety-two percent of the patients attained an adult height within the genetically determined target height range. Although height gain during puberty was smaller in the patients with induced puberty (boys: 17.1 +/- 7.0 cm vs. 27.5 +/- 6.6 cm (p < 0.005); girls: 9.6 +/- 7.4 cm vs. 22.2 +/- 6.1 cm (p < 0.005)), no differences in final height after adjustment for mid-parental height were found between patients with spontaneous or induced puberty. CONCLUSIONS: We conclude that patients with idiopathic GHD treated with rhGH administered as daily subcutaneous injections in a dose of 0.5-0.7 IU/kg/week reach their genetic growth potential, resulting in a normalisation of height in the majority of them, irrespective of spontaneous or induced puberty.  相似文献   

3.
Z Zadik  U Mira  H Landau 《Hormone research》1992,37(4-5):150-155
The aim of this study was to test the effect of growth hormone (GH) therapy on final height in peripubertal boys with idiopathic short stature in whom a subnormal integrated concentration of GH (< 3.2 micrograms/l) was found. Twenty-eight peripubertal children were studied. Height was below 2 SD for age, growth velocity was < 4.5 cm/year, bone age was more than 2 SD below mean for age and GH response to provocative tests was more than 10 micrograms/l. Eleven subjects (group B) were treated with recombinant GH 0.75 unit/kg/week, divided into 3 weekly doses for 2 years, and then the same weekly dose divided into daily injections was administered until final height was attained. Seventeen untreated children (group A) who were followed until cessation of growth served as controls. The GH-treated patients reached their target heights (-2.1 +/- 0.5, mean +/- SD in SDS) and predicted heights (-1.8 +/- 0.8) determined by the Bayley and Pinneau method, while the final heights of the untreated patients were significantly lower than their target heights and their predicted final heights (-2.7 +/- 0.7, -1.8 +/- 1.0 and -2.7 +/- 0.7, respectively). The main effect of GH was observed during the 1st year of treatment when height velocity was significantly higher in the GH-treated group than in the untreated one (9.3 +/- 2.1 vs. 5.3 +/- 1.1, respectively, p < 0.001). The high cost of the treatment in this specific age group should be weighed against the results.  相似文献   

4.
5.
Children with idiopathic short stature (ISS) may have normal or increased growth hormone (GH) responses to provocation tests and achieve a final height (FH) below -2.0 standard deviation score (SDS) if untreated. FH of subjects with high stimulated GH levels has not been studied in detail. AIM: It was the aim of this study to analyse FH in ISS patients with high GH peak responses to the provocation test. PATIENTS AND METHODS: We studied 16 patients (9 pre-pubertal) with ISS and a GH peak >or=40 mU/l to insulin-induced hypoglycaemia. The patients were recalled at age 19.7 +/- 2.5 years for measurement of FH when blood samples were obtained for serum insulin-like growth factor (IGF)-I, IGF binding protein 3, acid-labile subunit and GH binding protein measurements. GH bioactivity was determined using the Nb2 bioassay. RESULTS: FH was -3.1 +/- 1.0 SDS, being significantly lower than target height (TH). At FH, IGF-I levels were within -1.5 and +1.5 SDS for age and sex in 10 patients and higher than +1.5 SDS in 6 patients. IGF binding protein 3, acid-labile subunit, GH binding protein levels and GH bioactivity values were normal. SUMMARY: These data suggest that patients with ISS and high GH levels during a GH stimulation test may have a more compromised FH. The association of severe ISS with a peak GH >40 mU/l might suggest a degree of insensitivity for the GH-IGF-I axis.  相似文献   

6.
OBJECTIVE: We report final heights in a pair of monozygotic twins, one unaffected and the other affected with idiopathic and isolated growth hormone (GH) deficiency treated with human GH, and discuss the effect of GH dosage on the attainment of the genetic height potential in GH deficiency. PATIENTS: Male monozygotic twins were born at 35 weeks of gestation; birth weights were 1,876 g in the unaffected and 1,510 g in the affected twin. At 4.9 years of age, the affected twin was studied for short stature (-3.38 SD) and was diagnosed as having idiopathic and isolated GH deficiency, whereas the unaffected twin was normal in height (+/- 0 SD). GH treatment was started at the age of 5.7 years and continued throughout childhood and adolescence. The average dose of GH administered during the treatment period was 0.35 IU (0.12 mg)/kg/week. The affected twin appeared to grow normally without other hormone replacement and achieved a final height of 165.6 cm (-0.86 SD) compared with that of 166.4 cm (-0.71 SD) in the unaffected twin at 17.5 years of age. CONCLUSION: Our results indicate that a relatively low dose of GH treatment started at an early age may preserve genetic height potential in patients with isolated GH deficiency.  相似文献   

7.
8.
To evaluate the effect of growth hormone (GH) administration on adult height (AH) in two groups of isolated GH-deficient (IGHD) children born either small (birth weight below -2 SD) or appropriate (birth weight above -2 SD) for gestational age (GA). Out of 35 prepubertal IGHD children, 14 small for GA (SGA, group A) and 21 appropriate for GA (AGA, group B) were examined. All patients received continuous GH treatment at a median dose of 0.028 mg/kg/day (range 0.023-0.032) in group A and 0.024 (range 0.023-0.028) in group B. GH treatment was administered for a period of 67.0 months (range 42.37-96.05) in group A and 54.31 months (range 47.14-69.31) in group B. All children were measured using a Harpenden stadiometer every 6 months until they reached AH (growth velocity <1 cm/year). The patients underwent a retesting a few months after stopping GH therapy. A significant difference was found between group A and B as expected for birth weight SD, -2.70 (range -2.87 to -2.29) and -0.73 (range -1.30 to 0.14) respectively (p < 0.000001) and interestingly also for body mass index SDS (BMI SDS) at retesting, 0.08 (range 0.30 to -1.51) and 0.61 (range 0.73 to -1.10) respectively (p < 0.04). We observed no significant differences between groups A and B in height (expressed as the SDS for chronological age, height SDS) at diagnosis (p = 0.75), height SDS at start of puberty (p = 0.51), height SDS at retesting (p = 0.50), target height SDS (TH SDS) (p = 0.47), AH SDS (p = 0.92), corrected height SDS (height SDS - TH SDS) (p = 0.60), BMI SDS at diagnosis (p = 0.25), GH dosage (p = 0.34) and therapy duration (p = 0.52). GH treatment with a standard dose in short IGHD children leads to a normalization of AH without any significant difference between SGA and AGA patients.  相似文献   

9.
M H Connors 《Life sciences》1977,21(10):1505-1510
The plasma TSH and prolactin responses to thyrotropin releasing hormone (TRH) were measured in 5 children with isolated growth hormone deficiency prior to, during and after the administration of human growth hormone (hGH). TSH and prolactin secretory patterns were not uniformly concordant. TSH responses to TRH infusion were suppressed in 4 subjects after 5 days or 1 month of hGH administration despite normal serum thyroxin concentrations. Prolactin responses were suppressed in all 5 subjects after 5 days of hGH administration. After 8 months of hGH therapy both TSH and prolactin responses returned toward pre-hGH values. Our finding that suppression of the TRH-induced TSH and prolactin secretory responses are reversible during hGH administration supports the concept of altered neuroregulation in this form of hypothalamic disorder.  相似文献   

10.
Thirty-four girls with precocious puberty (27 idiopathic, 6 cerebral, 1 McCune-Albright syndrome) were treated with cyproterone acetate (CPA) for 1.2-8.4 years (3.71 +/- 0.31; mean +/- SEM) at a daily dosage of 66-150 mg/m2 (103.7 +/- 6.2). The mean chronological age (CA) and bone age at the beginning of treatment were 5.99 +/- 0.31 and 8.6 +/- 0.39 years, respectively, and 9.78 +/- 0.19 and 12.44 +/- 0.22 years, respectively, at the end of therapy. At the last evaluation, mean CA was 14.23 +/- 0.4 years, and 32 girls had reached final height. The control group consisted of 10 girls with idiopathic precocious puberty who, at their parents' request, were not treated. Mean CA at the onset of pubertal signs was 6.05 +/- 0.25 years. All patients had reached final height at the time of the last observation. There was no significant difference between final height of treated (152.43 +/- 1.36 cm) and untreated (149.55 +/- 1.99 cm) girls. Final height was significantly lower than target height in both treated (155.08 +/- 0.92 cm; p < 0.025) and untreated (156.45 +/- 1.29 cm; p < 0.0005) patients, but the mean height of treated patients is nearer to target height than that of untreated ones. A positive correlation was found between final height and target height both in treated (p < 0.005) and untreated (p < 0.05) patients. After the discontinuation of CPA treatment all girls resumed the progressive course of puberty.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
A few years ago it was reported that some growth-hormone-deficient children had developed leukemia following therapy with human growth hormone. This raised concern that this therapy may stimulate tumor development. Since it is known that the tendency to develop cancer is closely related to chromosome breakage, we decided to investigate whether recombinant human growth hormone (rhGH) therapy can increase chromosome fragility. Ten short normal children were studied during their first year of treatment. Lymphocytes were collected at 0, 6 and 12 months of rhGH therapy, and we assessed the rate of spontaneous chromosome aberrations, the frequency of sister chromatid exchanges, the proliferative rate indices, the expression of common fragile sites induced by aphidicolin, and the sensitivity towards the radiomimetic action of bleomycin. At 6 months of therapy, there was a significant increase in bleomycin-induced chromosome aberrations, which remained unchanged after 1 year of treatment. An increase in spontaneous chromosome rearrangements at 6 and 12 months of therapy was also observed. These findings are further supported by data obtained from the analysis of 16 short normal children already on rhGH therapy.  相似文献   

13.
OBJECTIVE: To evaluate the factors influencing the growth hormone (GH) response to GH-releasing hormone (GHRH) test in idiopathic GH deficiency. METHODS: 28 patients aged 4.9 +/- 0.7 years with certain GH deficiency were given GHRH (2 microg/kg). RESULTS: The GH peak after GHRH was correlated negatively with age at evaluation (r = -0.37, p < 0.05) and body mass index (r = -0.44, p = 0.02), and positively with anterior pituitary height (r = 0.47, p = 0.02), GH peak after non-GHRH stimulation (r = 0.78, p < 0.0001) and spontaneous GH peak (r = 0.82, p = 0.007). It was lower in the patients aged >5 years than in the youngest (p = 0.04), but it was similar in the patients with and without features suggesting a hypothalamic origin. CONCLUSION: The GH response to GHRH test cannot be used to differentiate between hypothalamic and pituitary forms of idiopathic GH deficiency, probably because the GH response decreases after the first 5 years of life, whatever the origin of the deficiency.  相似文献   

14.
Because growth hormone excess has been reported to accelerate lung growth in acromegalic men and in adult rats, effects of growth hormone were tested in prepuberal guinea-pigs. From week 2 to week 4, five guinea-pigs were injected daily with human growth hormone (0.1 mg/kg) and compared with five injected with saline. At week 4 lung mechanices were measured and the animals sacrificed. Growth hormone-injected guinea-pigs gained more weight than saline ones (P less than 0.01) and had heavier livers (P less than 0.01). However, no difference was observed between both groups for lung weight, volume or distensibility.  相似文献   

15.
Low birth weight has been associated with impaired insulin sensitivity, type 2 diabetes mellitus, hypertension and cardiovascular disease in later life. GH therapy is known to increase fasting and postprandial insulin levels. For this reason concern has been expressed regarding the possible detrimental effects of GH therapy in children born small for gestational age (SGA). To assess the effects of GH therapy on body composition, carbohydrate metabolism and final height in short SGA children, 165 prepubertal short children born SGA were enrolled in either a multicentre, double-blind, randomized, dose-response GH trial (n = 75) or in a GH controlled trial (n = 90). The inclusion criteria were: (1) birth length standard deviation score (SDS) below -2; (2) age 3-8 years; (3) height SDS below -2. The children's mean (SD) age was 7.3 (2.1) years (GH dose-response trial) and 6.0 (1.5) years (GH controlled trial), birth length SDS was -3.6 and height SDS was -3.0 (0.7). In the GH dose-response trial, children were randomly assigned to either 1 mg GH/m(2) per day (group A, n = 41) or 2 mg GH/m(2) per day (group B, n = 38) ( approximately 0.033 or 0.067 mg/kg per day, respectively). In the GH controlled trial, children were randomly assigned to 1 mg GH/m(2) per day (n = 60) or served as controls (n = 30). Subjects underwent standard oral glucose tolerance tests and measurement of body mass index, systolic and diastolic blood pressure and serum lipids at baseline and after 1 and 6 years of GH therapy and again 6 months after discontinuation of GH. Body composition was measured by dual energy x-ray absorptiometry at baseline and again after 3 years in the GH controlled trial. Mean (SD) final height SDS was not significantly different between the two GH dosage groups: -1.2 (0.7) in group A and -0.8 (0.7) in group B. At the start of GH therapy, 8% of children had impaired glucose tolerance (IGT). Systolic blood pressure was significantly higher in comparison with healthy peers. GH therapy induced considerably higher fasting and glucose-stimulated insulin levels after 1 and 6 years, regardless of GH dosage. After 6 years, 4% of children had IGT. Six months after discontinuation of GH, glucose levels remained normal, whereas fasting and glucose-stimulated insulin returned to levels comparable to those of healthy peers. None of the children developed diabetes. During 6 years of GH therapy both systolic and diastolic blood pressure decreased significantly and remained so after discontinuation of GH therapy. At baseline all children had reduced bone mineral content and lean body mass. Fat mass was not significantly lower than normal. Treatment with 1 mg GH/m(2) per day resulted in a significant increase in (and normalization of) bone mineral content and lean body mass in comparison with untreated short SGA controls. Fat mass decreased during the first year of GH but returned to values comparable to those at baseline in the following 2 years of GH therapy. We found that long-term, continuous GH therapy in short children born SGA leads to a normalization of height during childhood and to a normal final height in most children, regardless of GH dosage. Only very short or relatively older children may need a dosage of 2 mg GH/m(2) per day. Long-term GH therapy had no adverse effects on glucose levels and serum lipids and had a positive effect on blood pressure, even with GH dosages of up to 2 mg/m(2) per day. However, as has been reported in other patient groups, GH induced higher fasting and glucose-stimulated insulin levels, indicating insulin resistance. After discontinuation of GH serum insulin levels returned to normal age-reference levels. Short SGA children have a reduction in bone mineral content and lean body mass when compared with healthy controls, which significantly improved (normalized) with GH therapy at a dose of 1 mg/m(2) per day.  相似文献   

16.
The effect of human growth hormone (hGH) on adrenal androgen secretion was assessed in 7 patients (5 males, 2 females) with GH deficiency but normal ACTH-cortisol function. Patients ranged in age from 9 5/12 to 14 8/12 years (median 12 years). Plasma concentrations of dehydroepiandrosterone-sulfate (DHEA-S) and urinary excretion of 17-ketosteroids (17-KS) and free cortisol were determined before, during short-term (2 U/day X 3) and after long-term (6 months) treatment with hGH. No significant change was noted in the plasma concentration or urinary excretion of steroids during the short-term administration of hGH. Despite a significant increase in growth velocity during 6 months of hGH therapy (8.2 vs. 4.5 cm/year, p less than 0.01), the plasma concentrations of DHEA-S and the urinary 17-KS and free cortisol levels were unchanged. These results fail to substantiate a role for hGH in the physiologic control of adrenal androgen secretion. Thus, the low plasma levels of adrenal androgens sometimes seen in GH-deficient patients are not due to the absence of GH per se.  相似文献   

17.
The relative effects of growth hormone (GH) on GH-deficient (GHD) children with and without severely delayed skeletal maturation prior to treatment are unclear. METHODS: Pre-pubertal GHD children enrolled in the National Cooperative Growth Study were divided into two groups: severe pretreatment BA delay (BA Z-score 相似文献   

18.
Growth hormone (GH) has a positive impact on muscle mass, growth and bone formation. It is known to interact with the bone-forming unit, with well-documented increases in markers of bone formation and bone resorption within weeks of the start of GH therapy. These changes relate significantly to short-term growth rate, but it is not evident that they predict long-term response to GH therapy. The consequences of GH deficiency (GHD) and GH replacement therapy on bone mineral density (BMD) have been difficult to interpret in children because of the dependency of areal BMD on height and weight. Some studies have tried to overcome this problem by calculating volumetric BMD, but results are conflicting. The attainment of a normal peak bone mass in an individual is considered important for the future prevention of osteoporosis. From the limited data available, it appears difficult to normalize bone mass totally in GH-deficient individuals, despite GH treatment for long periods. Studies to date examining the interaction between GH and bone have included only small numbers of individuals, making it difficult to interpret the study findings. It is hoped that these issues can be clarified in future research by the direct measurement of bone density (using quantitative computer tomography). Mineralization is only one facet of bone strength, however; other important components (e.g. bone structure and geometry) should be addressed in future paediatric studies. Future studies could also address the importance of the degree of GHD in childhood; how GH dose and insulin-like growth factor-I levels achieved during therapy relate to the final outcome; whether or not the continuation of GH therapy after the attainment of final height may further enhance bone mass; whether the timing and dose of other treatments (e.g. sex hormone replacement therapy) are critical to the outcome; and whether GHD in childhood is associated with an increased risk of fracture.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号