首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of continuous treatments of single L -amino acids (0.1mM) on the free running rhythm from the isolated Aplysia eye was examined. A variation in the change in free running period produced by different amino acids was observed. Two well-known precursors of neurotransmitter (tyrosine, tryptophan) had the largest effects. These amino acids lengthened the period ca. 1.7 h. Another group of amino acids (alanine, threonine, proline) lengthened the period by about 1 h. Smaller effects were produced by aspartic acid and leucine and no effects were caused by lysine, glycine, valine, and serine. Phenylalanine may shorten the period a small amount. Glucose (5mM) lengthens the period a small amount (0.4 h), decreases the effect of tyrosine somewhat, and has no effect on the lengthening of the period produced by tryptophan. Three amino acids not involved in protein synthesis (ornithine, β-alanine, citrulline) had at most small effects on the free running period. Also, D -tryptophan lengthened the period by 0.6 h but the effect of D -tryptophan was considerably smaller than the effect of L -tryptophan. A few of the amino acids had small short-term effects on spike rate and longer-term effects on the amplitudes of the rhythms but these effects did not correlate with the effects of the amino acids on the free running period. Though continuous treatments of certain amino acids lengthened the periods, shorter treatments (tryptophan, 6 h) did not phase-shift the rhythm. Since eyes maintained in a commonly used culture medium have longer periods than eyes in a simple seawater medium, the amino acids of the culture medium must be responsible, at least in part, for the lengthening effect of the culture medium. The mechanism of action of the amino acids is unknown. The magnitude of the effects did not correlate with physical-chemical properties of the amino acids nor with whether the amino acids were “essential” or “nonessential.” The effects of the amino acids may be mediated by their effects on neurotransmitter and/or protein synthesis.  相似文献   

2.
The effects of sulfhydryl inhibitors (iodoacetamide and N-ethylmaleimide) on the electron spin resonance spectra of two maleimide and two iodoacetamide spin labels in erythrocyte ghosts were found to correlate with their relative “lipid”/water partition coefficients. But the spectral characteristics of the maleimide spin labels, and their ghost concentrations after iodoacetamide inhibition, are not consistent with the hypothesis that interprets their spectra solely on the basis of a heterogenous membrane distribution. An alternative hypothesis is suggested which is compatible with relative “lipid solubilities” and the iodoacetamide inhibition spectra.  相似文献   

3.
Phase diagram data at 4 degrees C was determined for the aqueous two-phase systems composed of polyethylene glycol, dextran, and water. The Flory-Huggins theory of polymer thermodynamics was used to correlate partitioning of biomolecules in these aqueous two-phase systems resulting in a simple linear relationship between the natural logarithm of the partition coefficient and the concentration of polymers in the two phases. This relationship was verified by partitioning a series of dipeptides which differ from one another by the addition of a CH(2) group on the c-terminal amino acid residue and by utilizing a set of low-molecular-weight proteins. The slope of the line could be expressed in terms of the interactions of the biomolecule with the phase forming polymers and water. The main result for the dipeptides was that knowledge of the partition coefficient in any of the PEG/dextran/water systems, regardless of polymer molecular weight, enabled prediction of the coefficient in all of the systems. The dipeptides were also used for determination of the Gibbs free energy of transfer of a CH(2) group between the phases. This quantity was correlated with polymer concentration, thus establishing a hydrophobicity profile for the PEG/ dextran/water systems. The methodology for predicting dipeptide partition coefficients was extended to proteins, where it was found that low-molecular-weight proteins gave a linear relationship with the tie line compositions of a phase diagram.  相似文献   

4.
J C Hansen  J Gorski 《Biochemistry》1989,28(2):623-628
Partitioning of estrogen receptors in aqueous two-phase polymer systems has provided the basis for a detailed kinetic analysis of the effects of temperature on estrogen receptor (ER) structure in vitro. Exposure to temperatures of 0-30 degrees C increased the rate of change in ER partition coefficients by up to 100-fold but did not affect the final extent of the process. The temperature-dependent change in ER partition coefficients was characterized by a linear Arrhenius plot and an activation energy of 25 kcal/mol. The rate of the temperature-dependent ER transition (28 degrees C) was found to be unaffected by greater than 50-fold changes in receptor concentration, which indicates that the temperature-dependent change in partition coefficients reflects a first-order process. The partition coefficients of heated ER were unaffected by subsequent 18-h incubations at 0 degree C, indicating that the temperature-dependent ER transition is irreversible in vitro. Direct heating of the unoccupied ER resulted in both a change in ER partition coefficients and a loss of ER binding sites. The temperature-dependent change in unoccupied ER partition coefficients was complete within 30 min at 28 degrees C and yielded a first-order rate constant that was the same as that obtained for heating the receptor-estradiol complex at 28 degrees C. In contrast, the loss of unoccupied ER binding sites that occurred during 28 degrees C incubations did not reach completion after 150 min of heating and was found to behave as a second-order process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Chlorinated hydrocarbon insecticides quench the fluorescence of N-alkyl derivatives of carbazole. We used phospholipids with covalently attached carbazole as probes for the interactions of chlorinated hydrocarbon insecticides with lipid bilayers, the object being to understand better the toxicities of chlorinated hydrocarbons. Fluorescence quenching measurements revealed the lipid-water partition coefficients of the chlorinated hydrocarbons, their diffusion coefficients in the membranes, and the binding capacities of the membranes for the chlorinated hydrocarbons. Active insecticides were compared with inactive analogues to test whether activities correlated with chlorinated hydrocarbon-membrane interactions. Thus DDT and methoxychlor were compared with inactive DDE, and insecticidal γ-lindane was compared with three less active stereoisomers. The partition coefficients, diffusion coefficients and membrane saturation capacities did not correlate with insecticidal potency. The partition coefficients of these chlorinated hydrocarbons were larger in bilayers containing unsaturated fatty acyl chains as compared to bilayers containing saturated fatty acyl chains. Interestingly, neural membranes are known to contain a large percentage of unsaturated lipids. Our results indicate that the activities of chlorinated hydrocarbons are not a result of specific interactions of these compounds with the lipids of membranes. However, the neurotoxicity of chlorinated hydrocarbons may be amplified by selective partitioning in the unsaturated neural membranes.  相似文献   

6.
In the present study, we examined the mechanisms underlying the cytotoxicity of pitavastatin, a new statin, and we compared the in vitro potencies of muscle cytotoxicity using a prototypic embryonal rhabdomyosarcoma cell line (RD cells), a typical side effect of statins and compared the cholesterol-lowering effects of statins using Hep G2 hepatoma cells. Pitavastatin reduced the number of viable cells and caused caspase-9 and -3/7 activation in a time- and concentration-dependent manner. The comparison of cytotoxities of statins showed that statins significantly reduced cell viability and markedly enhanced activity of caspase-3/7 in concentration-dependent manner. On the other hand, the effects of hydrophilic statins, pravastatin, rosuvastatin were very weak. The rank order of cytotoxicity was cerivastatin > simvastatin acid> fluvastatin > atorvastatin > lovastatin acid > pitavastatin > rosuvastatin, pravastatin. Statin-induced cytotoxicity is associated with these partition coefficients. On the other hand, the cholesterol-lowering effect of statins did not correlate with these partition coefficients and cytotoxicity. Thus, it is necessary to consider the association between risk of myopathy and cholesterol-lowering effect of a statin for precise use of statins.  相似文献   

7.
Energies required to transfer amino acid side chains from water to less polar environments were calculated from results of several studies and compared with several statistical analyses of residue distributions in soluble proteins. An analysis that divides proteins into layers parallel with their surfaces is more informative than those that simply classify residues as exposed or buried. Most residues appear to be distributed as a function of the distance from the protein-water interface in a manner consistent with partition energies calculated from partitioning of amino acids between water and octanol phases and from solubilities of amino acids in water, ethanol, and methanol. Lys, Arg, Tyr, and Trp residues tend to concentrate near the water-protein interface where their apolar side-chain components are more buried than their polar side-chain components. Residue distributions calculated in this manner do not correlate well with side-chain solvation energies calculated from vapor pressures of side-chain analogs over a water phase. Results of statistical studies that classify residues as exposed to solvent or buried inside the protein interior appear to depend on the method used to classify residues. Data from some of these studies correlate better with solvation energies, but other data correlate better with partition energies. Most other statistical methods that have been used to evaluate effects of water on residue distributions yield results that correlate better with partition energies than with solvation energies.  相似文献   

8.
9.
10.
The interaction of the tetramisole derivative (+-)-5,6-dihydro-6-phenyl-imidazo[2,1-b]thiazole and a number of its 2-n-alkyl homologues (-ethyl through -n-pentyl and -n-heptyl) with large unilamellar phosphatidylcholine/phosphatidylethanolamine/dipalmitoylphosphatidic acid (2:1:0.06, w/w) vesicles was studied by means of steady-state fluorescence quenching using 8-(2-anthryl)octanoic acid as membrane probe. Linear Stern-Volmer plots were obtained for each derivative, indicating dynamic quenching. The slopes of the plots decreased with increasing liposomal concentration. For four short-chain homologues (-H, -ethyl, -n-propyl and -n-butyl), the respective membrane partition coefficients Kp and bimolecular quenching rate constants kq were determined from the plots of the reciprocal of the apparent quenching rate constant (kappq)-1 against the lipid volume fraction alpha L of the liposomes. The partition coefficients increased with increasing chain-length of the tetramisoles. A linear relationship was found between the free energy of partitioning and the number of methylene units of the homologues (-delta G degrees per methylene group = 1.6 +/- 0.1 kJ mol-1). For the n-pentyl and n-heptyl derivatives, the fluorescence quenching technique did not allow one to determine their membrane partition coefficients. Analysis of the fluorescence intensity measurements with Scatchard plots gave further evidence for the partitioning nature of the tetramisole derivatives' association with the liposomal membranes.  相似文献   

11.
Rodents and primates deprived of early social contact exhibit deficits in learning and behavioural flexibility. They often also exhibit apparent signs of elevated anxiety, although the relationship between these effects has not been studied. To investigate whether dairy calves are similarly affected, we first compared calves housed in standard individual pens (n = 7) to those housed in a dynamic group with access to their mothers (n = 8). All calves learned to approach the correct stimulus in a visual discrimination task. Only one individually housed calf was able to re-learn the task when the stimuli were reversed, compared to all but one calf from the group. A second experiment investigated whether this effect might be explained by anxiety in individually housed animals interfering with their learning, and tested varying degrees of social contact in addition to the complex group: pair housing beginning early (approximately 6 days old) and late (6 weeks old). Again, fewer individually reared calves learned the reversal task (2 of 10 or 20%) compared to early paired and grouped calves (16 of 21 or 76% of calves). Late paired calves had intermediate success. Individually housed calves were slower to touch novel objects, but the magnitude of the fear response did not correlate with reversal performance. We conclude that individually housed calves have learning deficits, but these deficits were not likely associated with increased anxiety.  相似文献   

12.
The angiotensin II receptor of cultured rat hepatocytes was characterized using [3H]angiotensin II as radioligand. Binding at 23 degrees C was rapid (t1/2 = 0.65 min) with equilibrium being reached in 10-12 min. At this time, binding was completely reversible after 20 min (t1/2 = 3.5 min), indicating negligible internalization of the ligand. Analysis of the saturation binding curve showed one population of binding sites with an apparent KD of 8.6 nM and a Bmax of 35 fmol/mg of protein. The time courses of association and dissociation were also consistent with one class of binding sites with an apparent kinetically derived KD of 7.7 nM. The order of potency of different agonists and antagonists to increase cytosolic Ca2+ or phosphorylase a or inhibit the effects of angiotensin II on these parameters was the same as for their mimicry or reversal of angiotensin II inhibition of glucagon-induced cAMP accumulation, and was well correlated with their order of potency to inhibit angiotensin II specific binding. Treatment of cultured hepatocytes with dithiothreitol caused a time- and concentration-dependent inhibition of angiotensin II binding and corresponding alterations of angiotensin II effects on phosphorylase and cAMP. It also inhibited the actions of other hormones on phosphorylase. These results indicate that hepatocytes contain a homogeneous population of angiotensin II receptors that are coupled to two different biological effects apparently mediated by different G-proteins.  相似文献   

13.
The partition coefficient (lambda) between red cell ghosts and buffer has been determined for three barbiturates over a range of pH. Experimental partition coefficients were linearly proportional to the calculated degree of association of the barbiturates. Lambda was 9.5 +/- 0.52 for phenobarbital, 12.7 +/- 0.91 for pentobarbital, and 27 +/- 4.9 for thiopental in their acid forms. Lambda for all three barbiturates in their anionic forms was zero. Our data support the assumption of the pH-partition hypothesis that the dependence of lambda on pH in biological membranes behaves essentially like that in organic solvents. However, the relative magnitudes of the erythrocyte partition coefficients correlate much more closely with the physiological permeability constants than do those of organic solvents, which tend to overestimate the differences between these compounds.  相似文献   

14.
High affinity binding sites for angiotensin II in bovine and rat brain membranes have been identified and characterized using monoiodinated Ile5-angiotensin II of high specific radioactivity. Degradation of labeled and unlabeled peptide by washed brain particulate fractions was prevented by adding glucagon to the final incubation medium and including a proteolytic enzyme inhibitor (phenylmethylsulfonyl fluoride) in preincubation and incubation procedures. 125I-Angiotensin II binding can be studied using either centrifugation or filtration techniques to separate tissue-bound radioactivity. 125I-Angiotensin II binding to calf brain membranes is saturable and reversible, with a dissociation binding constant of 0.2 nM at 37 degrees. A similar binding constant is found in rat brain membranes. Analogues and fragments of angiotensin II compete for these brain binding sites with potencies which correlate with both their in vivo potencies and their binding inhibition protencies at adrenal cortex angiotensin II receptors. Angiotensin I is 1 to 2 orders of magnitude weaker than angiotensin II; the 3-8 hexapeptide and 4-8 pentapeptide are much weaker still. (desAsp1) angiotensin II (angiotensin III) is slightly more potent than angiotensin II, as are several antagonists of angiotensin II with aliphatic amino acids substituted at position 8. In calf brain 125I-angiotensin II binding is restricted almost exclusively to the cerebellum (cortex and deep nuclei). In rat brain, angiotensin II binding is highest in the thalamus-hypothalamus, midbrain, and brainstem, areas which are believed to be involved in mediating angiotensin II-induced central effects. These findings illustrate the presence of high affinity specific binding sites for angiotensin II in rat and bovine brain and suggest a physiological role for angiotensin peptides in the central nervous system.  相似文献   

15.
Several amino acids and peptides were partitioned in poly(ethylene glycol) (PEG)/magnesium sulfate (MgSO4) aqueous two-phase systems. The partition coefficients measured for amino acids and peptides were proportional to the difference in PEG concentration between the phases. The partitioning data were used to calculate the relative hydrophobicities of individual amino acids, which were then used to estimate the hydrophobicities of peptides. The partition coefficients of several dipeptides were predicted from these estimated hydrophobicities. A series of peptide fragments that compose the pentapeptide leucine enkephalin was also partitioned in the PEG/MgSO4 system. Again, the partitioning depended upon the hydrophobicities of the individual exposed amino acids.  相似文献   

16.
2-Deoxy-D-glucose inhibits Fc and complement receptor-mediated phagocytosis of mouse peritoneal macrophages. To understand the mechanism of this inhibition, we analyzed the 2-deoxy-D-glucose metabolites in macrophages under phagocytosis inhibition conditions and conditions of phagocytosis reversal caused by glucose, mannose and 5-thio-D-glucose, and compared their accumulations under these conditions. Macrophages metabolized 2-deoxy-D-glucose to form 2-deoxy-D-glucose 6-phosphate, 2-deoxy-D-glucose 1-phosphate, UDP-2-deoxy-D-glucose, 2-deoxy-D-glucose 1, 6-diphosphate, 2-deoxy-D-gluconic acid and 2-deoxy-6-phospho-D-gluconic acid. The level of bulk accumulation as well as the accumulation of any of these 2-deoxy-D-glucose metabolites did not correlate with changes in macrophage phagocytosis capacities caused by the reversing sugars. 2-Deoxy-D-glucose inhibited glycosylation of thioglycolate-elicited macrophage by 70-80%. This inhibition did not cause phagocytosis inhibition, since (1) the reversal of phagocytosis by 5-thio-D-glucose was not followed by increases in the incorporation of radiolabelled galactose, glucosamine, N-acetylgalactosamine or fucose; (2) cycloheximide at a concentration that inhibited glycosylation by 70-80% did not affect macrophage phagocytosis. The inhibition of protein synthesis by 2-deoxy-D-glucose similarly could not account for phagocytosis inhibition, since cycloheximide, when used at a concentration that inhibited protein synthesis by 95%, did not affect phagocytosis. 2-Deoxy-D-glucose lowered cellular nucleoside triphosphates by 70-99%, but their intracellular levels in the presence of different reversing sugars did not correlate with the magnitude of phagocytosis reversal caused by these sugars. The results show that 2-deoxy-D-glucose inhibits phagocytosis by a mechanism distinct from its usual action of inhibiting glycosylation, protein synthesis and depleting energy supplies, mechanisms by which 2-deoxy-D-glucose inhibits other cellular processes.  相似文献   

17.
Salinity can affect the quantity and quality of total amino acids (TAAs) in seaweeds indirectly by altering growth rates and thereby diluting or concentrating the amino acid content of the biomass, or directly by altering the synthesis of specific amino acids and osmolytes. This study attempted to partition the indirect and direct effects of salinity on the quantity and quality of TAAs in the green seaweed Ulva ohnoi by culturing it under a range of salinities without nutrient limitation. Both the quantity and quality of TAAs varied across the salinity treatments. Quantity was most strongly related to the growth rate of the seaweed and was highest in the slowest growing seaweed. In contrast, the quality of TAAs (individual amino acids as a proportion of total content) was most strongly related to salinity for all amino acids, although this varied substantially among individual amino acids. Increases in salinity were positively correlated with the proportion of proline (46% increase), tyrosine (36% increase), and histidine (26% increase), whereas there was a negative correlation with alanine (29% decrease). The proportion of methionine, with strong links to the synthesis of the osmolyte dimethylsulfoniopropionate, did not correlate linearly with salinity and instead was moderately higher at the optimal salinities for growth. These results show that salinity simultaneously affects the quantity and quality of TAAs in seaweed through both indirect and direct mechanisms, with growth rates playing the overarching role in determining the quantity of TAAs.  相似文献   

18.
Summary The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10–12–10–13 cm · s–1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 102 more permeable than the hydrophilic forms, reflecting their increased partition coefficient values.External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10–2 cm · s–1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.Abbreviations DCP dicetylphosphate - DMPC dimyristoyl phosphatidylcholine - EPC egg phosphatidylcholine - LUV large unilamellar vesicle - MLV multilamellar vesicle - PLM planar lipid membrane - SUV small unilamellar vesicle - pH transmembrane pH gradient  相似文献   

19.
The objective of this study was to develop non-invasive spectroscopic methods to quantify the partition coefficients of two beta-blockers, atenolol and nadolol, in aqueous solutions of bile salt micelles and to assess the effect of lecithin on the partition coefficients of amphiphilic drugs in mixed bile salt/lecithin micelles, which were used as a simple model for the naturally occurring mixed micelles in the gastrointestinal tract. The partition coefficients (Kp) at 25.0 +/- 0.1degreesC and at 0.1 M NaCl ionic strength were determined by spectrofluorimetry and by derivative spectrophotometry, by fitting equations that relate molar extinction coefficients and relative fluorescence intensities to the partition constant Kp. Drug partition was controlled by the: (i) drug properties, with the more soluble drug in water (atenolol) exhibiting smaller values of Kp, and with both drugs interacting more extensively in the protonated form; and by (ii) the bile salt monomers, with the dihydroxylic salts producing larger values of Kp for the beta-blockers, and with glycine conjugation of the bile acid increasing the values of Kp for the beta-blockers. Addition of lecithin to bile salt micelles decreases the values of Kp of the beta-blockers. Mixed micelles incorporate hydrophobic compounds due to their large size and the fluidity of their core, but amphiphilic drugs, for which the interactions are predominantly polar/electrostatic, are poorly incorporated in mixed micelles of bile salts/lecithin.  相似文献   

20.
As part of an ongoing research effort on aqueous two-phase systems (ATPSs) with volatile salts, this work describes the partitioning behavior of a series of amino acids, namely -serine, glycine, -alanine, -valine, -methionine, -isoleucine, and -phenylalanine, in these systems. The results show that amino acids partition in a similar way in polymer–volatile salt ATPSs and in traditional polymer–salt ATPSs. Increasing amino acid hydrophobicities lead to increasing partition coefficients. Moreover, the common linear relationship between the logarithm of the partition coefficient and the tie line length is observed here as well. Furthermore, the relation between relative partition coefficients and relative hydrophobicities of amino acids in the extraction systems investigated in this work is comparable to that in other extraction systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号