首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seizure predisposition in Genetically Epilepsy-Prone Rats (GEPRs) is characterized by abnormal sensitivity to a number of seizure provoking stimuli. The GEPR model is composed of two independently derived colonies with each exhibiting a characteristic convulsive pattern. In response to a standardized sound stimulus, GEPR-3s exhibit moderate or clonic convulsions while GEPR-9s exhibit more severe tonic extensor convulsions. In order to further characterize the neurochemical abnormalities that underlie seizure predisposition in GEPRs, the current study examined serotonin concentrations in 14 discrete brain areas of controls, GEPR-3s and GEPR-9s. In all areas examined, serotonin concentrations were lower in either one or both GEPR types than in seizure resistant controls. In 6 of the 14 areas both GEPR-3s and GEPR-9s had levels significantly lower than controls. In an additional 7 areas GEPRs had serotonin concentrations of similar magnitude which were significantly lower than control when the GEPR values were combined. In cerebellum, GEPR-3s had significantly lower serotonin concentration than either controls of GEPR-9s while in the striatum, GEPR-9s had significantly lower serotonin levels than either GEPR-3s or controls. In summary, GEPRs have widespread deficits in serotonin concentration and that these abnormalities appear to contribute to the seizure predisposition that characterizes these animals.  相似文献   

2.
Persistent patent ductus arteriosus (PDA) and clinically silent PDAs are relatively common congenital cardiac defects in humans. We report here the occurrence of symptomatic PDA in adults from a colony of genetically epilepsy-prone rats (GEPRs). Affected rats displayed severe ventral edema. Echocardiography revealed PDA in several animals. Necropsy findings included cardiomegaly, hepatic hyperemia and centrilobular necrosis indicative of passive congestion, and vascular changes consistent with pulmonary hypertension. All affected rats were descendants of one of two brother-sister breeding pairs established from a single litter in April 2000. Clinically silent PDAs were also detected in the colony. Histological examination of the ligamentum arteriosus showed normal vascular tissue in asymptomatic GEPR and Sprague-Dawley rats. PDAs are likely to have a genetic component in the GEPR colony and may provide a novel model for the study of pathogenesis and therapy of this condition.  相似文献   

3.
The selective group-III metabotropic glutamate receptor agonist, L-serine-O-phosphate (L-SOP), when injected bilaterally into the inferior colliculus of the sound sensitive genetically epilepsy-prone (GEP) rats produces a short proconvulsant excitation followed by a long phase of protection against sound-induced seizures lasting for 2-4 days. We have studied this prolonged suppression of audiogenic seizures using pharmacological and molecular biological approaches including semiquantitative RT-PCR and western blotting. The intracerebroventricular injection of the protein synthesis inhibitor cycloheximide (120 microg) 30 min beforehand significantly reduces the proconvulsant seizure activity and the prolonged anticonvulsant effect of intracollicular L-SOP (500 nmol/side). The sensitive semiquantitative RT-PCR revealed a significant up-regulation in mGlu(4) and mGlu(7) mRNA levels in the inferior colliculus at 2 days (maximum suppression of audiogenic seizures) after intracollicular L-SOP injection compared with the non-injected, 2-day post-vehicle treated and 7-day (return to expressing audiogenic seizures) post-drug or vehicle-treated groups. No significant changes were observed in mGlu(6) or mGlu(8) mRNA expression levels in drug-treated compared with control groups. Examination of mGlu(4a) and mGlu(7a) protein levels using western blotting showed a significant increase in mGlu(7a) but no significant change in mGlu(4a) protein levels 2 days after L-SOP treatment compared with the control groups (non-injected and 2-day vehicle-injected group). These results suggest that up-regulation of mGlu(7) receptors is involved in the prolonged anticonvulsant effect of L-SOP against sound-induced seizures in GEP rats. The potential use of mGlu(7) agonists as novel anti-epileptic agents merits investigation.  相似文献   

4.
The number of GABAergic neurons as determined by GAD immunocytochemistry and total neurons as determined from Nissl preparations were counted and classified at the light microscopic level in the inferior colliculus (IC) of the genetically epilepsy prone rat (GEPR) and the non-epileptic Sprague-Dawley (SD) strain of rat. GAD-positive neurons are abundant in the IC and a significant increase in the number of GAD-positive neurons occurs in the GEPR as compared to the SD in all three subdivisions. However, the most pronounced difference occurs in the ventral lateral portion of the central nucleus, where there is a selective increase in the small (200%) and medium-sized (90%) GABAergic somata (10-15 microns in diameter and 15-25 microns in diameter, respectively). As determined from Nissl preparations an increase in total numbers of neurons also occurs. Thus, a 100% increase in the number of small neurons and a 30% increase in the number of medium-sized neurons occur in the adult GEPR as compared to the SD rat. A statistically significant increase in the numbers of small neurons also occurred in the IC of the young GEPR. At 4 days of age, a 55% increase in the number of small neurons was found, and at 10 days of age this increase was 105%. The numbers of the medium and large neurons were similar in the older group of rats. These data suggest that the increase in cell number observed in the adult GEPR is not compensatory to the seizure activity, but may either be genetically programmed or be a failure of cell death. Based on other studies of genetic models of epilepsy, we propose that the additional GABAergic neurons may disinhibit excitatory projection neurons in the IC.  相似文献   

5.
The sensitivity to intracerebroventricular morphine-induced convulsions was determined in members of the severe seizure (GEPR-9) and moderate seizure (GEPR-3) colonies of genetically epilepsy-prone rats as well as in non-epileptic control rats. GEPR-9s were more sensitive to morphine-induced wet-dog shakes, rearing with bilateral forelimb clonus and generalized clonus than controls of GEPR-3s. GEPR-3s were less sensitive to morphine-induced wet-dog shakes and rearing with bilateral forelimb clonus than controls. Both high and extremely low doses of morphine in GEPR-9s elicited tonic extensor convulsions resembling the characteristic sound-induced convulsion of GEPR-9s. The results suggest that opiotergic systems may contribute to the pathophysiology of the seizure-prone condition in GEPR-9s. Further, differences in responsiveness of opiotergic systems in GEPR-3s and GEPR-9s may partially account for differences in seizure severity in the characteristic sound-induced seizures of these two types of GEPRs.  相似文献   

6.
Changes in systemic and regional hemodynamic during sound-induced convulsions were measured with microsphere technique in genetically epilepsy-prone rats of Krushinsky-Molodkina (KM-rats) strain. Blood pressure increased from 103 till 178 mm Hg and cardiac index rose from 27.3 till 49.3 ml/min/100 g b. w. during convulsions. Blood flow was increased in the brain and in the heart by 140-700%, whereas in most of internal organs it was decreased by 40-94%.  相似文献   

7.
3H-Dihydromorphine (DHM) binding sites were measured in the brain of non-epileptic control and GEPR rats using in vitro autoradiographic techniques. The number of naloxone-sensitive 3H-DHM binding sites was increased 38-57% in the pyramidal cell layer of ventral hippocampal CA3 and Ca1 of GEPR-3 and GEPR-9 rats compared to non-epileptic controls. No significant differences in 3H-DHM binding were observed in dorsal hippocampal formation, lateral entorhinal cortex, lateral geniculate or cerebellum. The results suggest that an increase in the number of opioid receptors in ventral hippocampus of GEPR rats may be one factor contributing to the enhanced sensitivity of GEPR-9 rats to the proconvulsant effects of morphine.  相似文献   

8.
Pharmacological studies demonstrate a reciprocal relationship between both noradrenergic and serotonergic transmission and audiogenic seizure severity and susceptibility in the genetically epilepsy-prone rat (GEPR). In contrast, drug-induced changes in the neurochemical indices of dopaminergic activity do not result in alterations in seizure severity. These pharmacological investigations led to the hypothesis that both noradrenergic and serotonergic neurons are capable of regulating seizure severity in the GEPR. Pharmacological investigations also provided evidence that monoaminergic neurons serve as determinants of seizure susceptibility in these epileptic animals. The GEPR is susceptible to environmentally-induced seizures which cannot be precipitated in neurologically normal subjects. Drug studies suggest that monoaminergic decrements serve as one set of susceptibility determinants. However, non-monoaminergic abnormalities also play important roles in the seizure predisposition which characterizes the GEPR. Pathophysiological studies have confirmed and extended the concepts generated by the pharmacological investigations. Noradrenergic and serotonergic deficits do indeed characterize the seizure naive state of the GEPR. These studies have provided a basis for tentative identification of areas of the brain in which monoaminergic abnormalities regulate seizure severity and susceptibility. Monoaminergic defects in some areas such as the thalamus may regulate both susceptibility and severity. In other areas, defects may regulate only severity or susceptibility. In the striatum, noradrenergic defects do not appear to be present and probably are not determinants of the epileptic state of the GEPR.  相似文献   

9.
Evidence of immunosuppression in the genetically epilepsy-prone rat   总被引:2,自引:0,他引:2  
Immune system function was examined in the genetically epilepsy prone (GEPR-9) rat and non-epileptic Sprague-Dawley control rats. Significant decreases in direct and indirect plaque-forming cell responses were observed in GEPR-9 rats immunized with sheep erythrocytes. Serum levels of IgM were also decreased in non-immunized GEPR-9 rats, providing additional evidence of immunosuppression. However, total serum levels of IgG were three-fold greater in GEPR-9 rats compared to control. These results suggest that the nature of the immune system deficit in the GEPR-9 is complex and may involve an active T-cell population stimulating an overproduction of IgG leading to a diminished capacity to respond to new antigen challenges. This immunological defect may underlie the enhanced susceptibility of GEPR-9 rats to infectious agents. The specific cause of this immune dysfunction is not known. Possible etiological factors include a breakdown in the communication between cells within the immune system or an alteration of neuroendocrine modulation of immune responses.  相似文献   

10.
Sleep-wake disturbances are common in epilepsy, yet the potential adverse effect of seizures on sleep is not well characterized. Genetically epilepsy-prone rats (GEPRs) are a well-studied model of genetic susceptibility to audiogenic seizures. To assess their suitability for investigating relationships between seizures and disordered sleep, we characterized the sleep, activity, and tempera ture patterns of 2 GEPR strains (designated 3 and 9) and Sprague-Dawley (SD) rats in the basal state, after forced wakefulness, and after exposure to sound-induced seizures at light onset and dark onset. Because of observed differences in rapid-eye-movement sleep (REMS), we also assessed serum levels of prolactin, which is implicated in REMS regulation. The data reveal that under basal conditions, the GEPR3 strain shows less SWS and REMS, higher core temperatures, and higher serum prolactin concentrations than do GEPR9 and SD strains. All 3 strains respond similarly to enforced sleep loss. Seizures induced at light onset delay the onset of SWS in both GEPR strains. Seizures induced at dark onset do not significantly alter sleep. Genotype assessment indicates that although both GEPR strains are inbred (that is, homozygous at 107 genetic markers), they differ from each other at 74 of 107 loci. Differences in basal sleep, temperature, and prolactin between GEPR3 and GEPR9 strains suggest different homeostatic regulation of these functions. Our detection of concurrent alterations in sleep, temperature, and prolactin in these 2 GEPR strains implicates the hypothalamus as a likely site for anatomic or physiologic variation in the control of these homeostatic processes.  相似文献   

11.
Seizure-experienced Genetically Epilepsy-prone Rats (GEPRs) have increased acetylcholine content and choline acetyltransferase activity in the thalamus and striatum. These cholinergic differences are accompanied by a slight but statistically significant reduction in acetylcholinesterase activity in the midbrain. In addition, no abnormalities were found in the numbers of specific 3H-QNB binding sites in the striatum, hippocampus, inferior colliculi or cortex. Other work has shown no difference in muscarinic receptor function as measured by carbachol-stimulated inositol-1-phosphate formation. These data suggest a possible presynaptic defect in the striatal and thalamic cholinergic system which may play some role in the seizure-prone state of the GEPR. However, caution must be used in interpreting these cholinergic derangements since more recent findings show no differences in thalamic acetylcholine content in seizure-naive GEPRs. Thus, the original cholinergic abnormalities detected in the seizure-experienced GEPR may be an enduring response to seizure activity.  相似文献   

12.
The kindling phenomenon was examined in genetically epilepsy-prone (GEPR) and non-epileptic control Sprague-Dawley rats. Kindling stimulations were administered three times a day until each rat had exhibited three Class 5 kindled motor seizures. The mean total number of kindling stimulations required for each experimental group to exhibit three motor seizures of each motor seizure class was determined. The results indicated that the early stage of kindling development was accelerated significantly in both the GEPR-3 and GEPR-9 rats, compared to non-epileptic control rats. Later stages of kindling development were accelerated in GEPR-9 but not GEPR-3 rats. Thus a differential acceleration of kindling development was exhibited by GEPR-3 and GEPR-9 rats. The results suggest the possibility that some brain region(s) involved in the early stages of kindling development may be hyperexcitable in both GEPR-3 and GEPR-9 rats. Other brain region(s) involved with the later stages of kindling development may be more excitable in GEPR-9 rats. These putative alterations may, in part, contribute to the seizure prone state of GEPR rats and the differential seizure responses of GEPR-3 and GEPR-9 rats.  相似文献   

13.
Oxidative stress may contribute to epileptogenicity in genetic models of epilepsy. To address this, we examined the enzymatic activity of cytosolic Cu/Zn superoxide dismutase (SOD-1), mitochondrial Mn superoxide dismutase (SOD-2), and glutathione peroxidase (GPx) in the developing hippocampus of genetically epilepsy-prone rats (GEPR-9s). We also measured changes in the GSH/GSSG ratio, lipid peroxidation, and protein oxidation at post-natal days (PD) 7, 30, and 90, respectively. Compared with control Sprague-Dawley (SD) rats, GEPR-9s showed similar SOD-1 and SOD-2 activity but lower GPx activity. Epilepsy-prone rats also showed lower GSH/GSSG ratios than controls, and more lipid peroxidation (as measured by malondialdehyde levels) and protein oxidation (as measured by carbonyl levels). Treatment with kainic acid (KA) resulted in more pronounced seizures, less GPx activity, and lower GSH/GSSG ratios in GEPR-9s than in controls, but KA did not significantly affect SOD-1 or SOD-2 activity, suggesting that GEPR-9s do not compensate for reduced GPx activity by increasing SOD. Moreover, KA treatment resulted in significantly a lower GSH/GSSG ratio and GPx-like immunoreactivity and higher malondialdehyde and carbonyl levels in GEPR-9s than in controls. These findings were more evident in GEPR-9s at PD 90 than at PD 30, indicating that oxidative stress is age-dependent. Double-labeling immunocytochemical analysis demonstrated co-localization of GPx-immunoreactive glia-like cells and reactive astrocytes, as labeled by glial fibrillary acidic protein (GFAP). This suggests that mobilization of astroglial cells for synthesis of GPx protein is a response to KA insult, intended to decrease the neurotoxicity induced by peroxides. These responses were more pronounced in control SD rats than in GEPR-9s. Our results suggest that impairment of the GPx (including glutathione)-mediated antioxidant system contributed to epileptogenesis in GEPR-9s.  相似文献   

14.
The Genetically Epilepsy-Prone Rat (GEPR) is rapidly gaining support as a model of epilepsy. In addition to a marked sensitivity to both sound-induced and hyperthermic seizures, GEPRs exhibit unusual sensitivity to a number of seizure-provoking modalities, including various forms of electrical and chemical stimulation. The existence of a moderate seizure colony (GEPR-3) and a severe seizure colony (GEPR-9) allows pathophysiological studies of seizure susceptibility and severity. The consistency of seizures within each colony allows for comparisons in seizure naive GEPRs and seizure experienced GEPRs. The consistent seizure responses of the GEPR are also ideal for the testing of anticonvulsant drugs. Further, the relative potencies of anticonvulsant drugs between the two colonies of GEPRs predict the clinical efficacies of traditional antiepileptic drugs and may be able to predict novel anticonvulsants.  相似文献   

15.
Carello CD  Krauzlis RJ 《Neuron》2004,43(4):575-583
The superior colliculus (SC) is well known for its role in the motor control of saccades. Recent work has shown that it also plays a role in the selection of saccades, but a causal role in the process of target selection has not been demonstrated. We applied subthreshold microstimulation to the SC while monkeys performed a task requiring them to select a stimulus as the target for a pursuit or saccade movement. Stimulation increased the proportion of selections toward the stimulus that appeared contralateral to the site of stimulation and also decreased their latencies. For pursuit, this stimulation-induced contralateral response bias was with respect to the initial target location and not the direction of eye movement, demonstrating a causal effect on target choice distinct from any effect on motor preparation. These results show that the SC helps decide the object of the next movement, beyond its traditional responsibility of saccade production.  相似文献   

16.
Ketamine (1.1 X 10(-5) to 3.7 X 10(-4) M) potentiated catecholamine responses of rat anococcygeus muscle and rabbit aorta in vitro. In the anococcygeus, potentiation was abolished by cocaine (2.9 X 10(-5) M) pretreatment or by chemical sympathectomy using 6-hydroxydopamine (6-OHDA), but was unaffected by pretreatment with the extraneuronal uptake inhibitor cortisol (8.3 X 10(-5) M), or the catechol-O-methyltransferase inhibitor tropolone (2.4 X 10(-4) M). The action of ketamine mimicked the potentiating effect of cocaine on tyramine responses. In contrast, the potentiation by ketamine in rabbit aorta was unaffected by cocaine or 6-OHDA but was abolished by cortisol or tropolone; and ketamine potentiated tyramine responses, whereas cocaine inhibited them. Thus the mechanism of action by which ketamine produces potentiation of catecholamines in these two tissues is completely different. These results suggest that ketamine has the unusual ability to block neuronal and extraneuronal uptake and that the predominating mechanism will depend on the type of tissue examined and the morphology of its adrenergic innervation.  相似文献   

17.
The pattern of cell migration during neuronal turnover in the vomeronasal sensory epithelium (VN-SE) is controversial. In mice, proliferating cells were detected at the edges and were described as migrating to the center of the VN-SE. In rats, in addition to proliferating cells at the margins of the epithelium, dividing cells are also present along the entire basal lamina of the VN-SE. In marsupials, dividing cells have also been observed in the margins and in the center of the VN-SE, the latter of which migrate vertically and become neurons. To investigate whether the process of neuronal turnover in placental mammals consists of horizontal and/or vertical migration, and whether or not this process is common to mammals, adult rats were injected with bromodeoxyuridine (BrdU) and allowed to survive for different periods of time. The distribution of BrdU-labeled cells in the horizontal and vertical dimension of the VN-SE was analyzed as a function of time. Both horizontal and vertical migrations of BrdU-labeled cells were detected. Since cells in the center of the VN-SE migrate vertically, and, as demonstrated by coexpression of markers of neuronal maturity and BrdU, become mature one day after undergoing mitosis, it is very likely that these cells participate in neuronal turnover. Conversely, because cells in the margins of the VN-SE stop migrating horizontally on day 14 before they have reached the center of the VN-SE, and since the VN-SE continues to grow during adulthood, it is likely that most of these latter cells constitute pools for growth.  相似文献   

18.
Seizure predisposition in the Genetically Epilepsy-Prone Rat (GEPR) is at least partially dependent on central nervous system noradrenergic deficits. We have previously shown that moderate seizure GEPRs (GEPR-3) experience an increase in seizure severity after receiving Ro 4-1284, a monoamine vesicle inactivating drug. We are now reporting the effect of this drug on severe seizure GEPRs (GEPR-9). Motives for this study were: (a) to determine the effects of further depletion of innately deficient monoaminergic stores on seizure latencies and (b) to investigate whether a previously documented seizure severity difference between the sexes is related to the defective monoaminergic system in these subjects. GEPR-9s with known seizure history were tested for latency to onset of running phase and convulsion 45 minutes after Ro 4-1284 or saline administration. Brain norepinephrine levels were also determined. Ro 4-1284 caused severe depletion of monoamines in all brain areas assayed in both sexes of GEPR-9s and also caused a reduction in the latencies for onset of running and convulsion. The drug-induced norepinephrine depletion across the brain areas surveyed was significantly greater in females than in their male littermates. These observations prompt us to postulate that noradrenergic neurons in female GEPR-9s are functionally different from those in males and that this difference is detected in the differential effectiveness of Ro 4-1284 between the two sexes. Also, the influence of gonadal hormones on seizure predisposition and on the neurochemical actions of Ro 4-1284 may be different in GEPR-9 males and females.  相似文献   

19.
Adaptational response to aerobic exercise was artificially selected for across one generation in a founder population of 20 female and 20 male genetically heterogeneous rats (N:NIH). Selection for low and high response was based on the change in treadmill running capacity, assessed by meters (m) run to exhaustion before and after 24 days of modest treadmill running. The training response of the founder population averaged +222 m, with wide variation from a negative gain (-) of -110 m to a positive gain (+) of +430 m. Six pairs of the lowest (+13 m) and highest (+327 m) responders were mated. Mean response to training of the low-line (+242 m) offspring did not differ from the founder. The high-selected line gained 383 m from training, +161 m above the founder population. Narrow sense heritability estimated from regression of offspring on midparent values for response to training was 0.43 (P < 0.007). One generation of selection resulted in a 58% divide between the low and high lines. Selectively bred models of both intrinsic (untrained) and adaptation response can be useful in resolving the genetic basis of variation in aerobic capacity.  相似文献   

20.
BCL1, a spontaneous surface IgM (mu lambda)-positive (sIgM+) B cell leukemia of BALB/c (Igha) origin rarely grows in the Ig heavy chain (Igh) congenic mouse C.B-20 (Ighb) but is highly metastatic and lethal in the host strain of origin. Previous studies indicated that BCL1 tumor immunity in C.B-20 mice was associated with a T cell-mediated immune response against H-40, a minor histocompatibility (H) antigen controlled by a gene linked to the Igh locus. However, we observed that BCL1 leukemia grew progressively in BAB-14 (Igha/b) mice, a strain capable of generating an anti-H-40 immune response. This suggested that anti-H-40 immunity was insufficient for protection and implied that an Igh-V (variable) region gene product was also important for BCL1 growth inhibition. We therefore evaluated the role of two possible Igh-V region-linked gene products in BCL1 growth inhibition; namely, an Igh-V region-linked minor H antigen or alternatively the BCL1 IgM idiotype (Id). We could find no evidence for an Igh-V region-linked minor H antigen because immunosuppressed (500 R) CB-20 mice reconstituted with C.B-20 anti-BAB-14 splenocytes were susceptible to BCL1 growth, whereas recipients reconstituted with C.B-20 anti-BALB/c splenocytes were resistant to BCL1 challenge. In contrast, C.B-20 mice immunized against purified BCL1 IgM protein could adoptively confer BCL1 tumor immunity. C.B-20 mice immunized against other BALB/c IgM myeloma proteins containing either lambda or kappa light chains failed to protect C.B-20 mice suggesting that recognition of a unique determinant (Id) and not an allotype was crucial for tumor immunity. The BCL1 mu-chain appeared to make the major contribution to the idiotypic determinant because a hybridoma product composed of BCL1 mu-chains and BALB/c kappa-chains still elicited BCL1 immunity. Adoptive transfer of C.B-20 anti-BCL1 Id splenocytes into irradiated recipients that prevented an anti-H-40 response due to H-40 tissue expression failed to adoptively confer BCL1 immunity. Thus, these data suggest that BCL1 growth inhibition requires a T cell-mediated response against both H-40 and the BCL1 Id; these responses must be elicited concurrently in the tumor-bearing host to achieve protective BCL1 immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号