首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of the methyl-directed mismatch repair system to recognize and repair the exocyclic adducts propanodeoxyguanosine (PdG) and pyrimido[1,2-alpha]purin-10(3H)-one (M(1)G), the major adduct derived from the endogenous mutagen malondialdehyde, has been assessed both in vivo and in vitro. Both adducts were site-specifically incorporated into M13MB102 DNA, and the adducted genomes were electroporated into wild-type or mutS-deficient Escherichia coli strains. A decrease in mutations caused by both adducts was observed in mutS-deficient strains, suggesting that MutS was binding to the adducts and blocking repair by nucleotide excision repair. This hypothesis was supported by the differences in mutation frequency observed when hemimethylated genomes containing PdG on the (-)-strand were electroporated into a uvrA(-) strain. The ability of purified MutS to bind to PdG- or M(1)G-containing 31-mer duplexes in vitro was assessed using both surface plasmon resonance and gel shift assays. MutS bound to M(1)G:T-containing duplexes with similar affinity to a G:T mismatch but less strongly to M(1)G:C- and PdG-containing duplexes. Dissociation from each of the adduct-containing duplexes occurred at a faster rate than from a G:T mismatch. The present results indicate that MutS can bind to exocyclic adducts resulting from endogenous DNA damage and trigger their removal by mismatch repair or protect them from removal by nucleotide excision repair.  相似文献   

2.
Repair of bulky DNA lesions deriving from polycyclic aromatic hydrocarbons   总被引:1,自引:0,他引:1  
Genomic DNA is damaged by a variety of factors exerting an adverse effect on human health, such as environmental pollution, UV light, ionizing radiation, and toxic compounds. Air pollution with products of incomplete combustion of hydrocarbon fuels and wastes of various industries are main sources of polycyclic aromatic hydrocarbons, whose metabolites can damage DNA by forming bulky DNA adducts, which potentially lead to mutations and cancer. Nucleotide excision repair is the main pathway that eliminates these lesions in eukaryotic cells. The excision efficiency of bulky adducts depends on many factors, including the structure of a bulky substituent and the degree of DNA double helix distortion induced by a lesion. Clustered DNA lesions are the most dangerous for the cell. Several DNA repair systems cooperate to recognize and remove such lesions. The review focuses on the mechanisms that repair DNA with single and clustered bulky lesions, taking the natural carcinogen benzo[a]pyrene as an example.  相似文献   

3.
Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase (MGMT or AGT) that repairs the base in one step. However, the genotoxicity and cytotoxicity of O(6)-meG is mainly due to recognition of O(6)-meG/T (or C) mispairs by the mismatch repair system (MMR) and induction of futile repair cycles, eventually resulting in cytotoxic double-strand breaks. Therefore, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents are complex and require complex repair mechanisms. Thus, primary chloroethyl adducts at O(6)-G are repaired by AGT, while the secondary highly cytotoxic interstrand cross-links (ICLs) require nucleotide excision repair factors (e.g. XPF-ERCC1) for incision and homologous recombination to complete repair. Recently, Escherichia coli protein AlkB and human homologues were shown to be oxidative demethylases that repair cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues. Numerous AlkB homologues are found in viruses, bacteria and eukaryotes, including eight human homologues (hABH1-8). These have distinct locations in subcellular compartments and their functions are only starting to become understood. Surprisingly, AlkB and hABH3 also repair RNA. An evaluation of the biological effects of environmental mutagens, as well as understanding the mechanism of action and resistance to alkylating drugs require a detailed understanding of DNA repair processes.  相似文献   

4.
Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders.  相似文献   

5.
Enzymology of repair of etheno-adducts   总被引:2,自引:0,他引:2  
Etheno(epsilon)-adducts such as 1,N(6)-ethenoadenine (epsilon A), 3,N(4)-ethenocytosine (epsilon C), N(2),3-ethenoguanine (N(2),3-epsilon G), and 1,N(2)-ethenoguanine (1,N(2)-epsilon G) are produced in cellular DNA by two independent pathways: (i) by reaction with oxidised metabolites of vinyl chloride, 2-chloroacetaldehyde and 2-chloroethylene oxide; (ii) by endogenous processes through the interaction of lipid peroxidation (LPO)-derived aldehydes and hydroxyalkenals. They have been found in DNA isolated from human and rodent tissues. However, the levels of adducts were significantly increased by cancer risk factors contributing to lipid peroxidation and oxidative stress.The highly mutagenic and genotoxic properties of epsilon-adducts have been established in vitro by analysing steady-state kinetics of primer extension assays and in vivo by site-specific mutagenesis in mammalian cells. Therefore, the repair processes eliminating exocyclic adducts from DNA should play a crucial role in maintaining the stability of genetic information. The epsilon-adducts are eliminated by the base excision repair (BER) pathway, with DNA glycosylases being the key enzymes of this pathway. They remove epsilon-adducts from DNA by hydrolysing the N-glycosidic bond between the damaged base and deoxyribose, leaving an abasic site in DNA. The ethenobase-DNA glycosylases have been identified and their enzymatic properties described. They are specific for a given epsilon-base although they can also excise different types of modified bases, such as alkylated purines, hypoxanthine and uracil. The fact that ethenoadducts are recognised and excised with high efficiency by various DNA glycosylases in vitro suggests that these enzymes may be responsible for repair of these mutagenic lesions in vivo, and thus constitute important contributors to genetic stability.  相似文献   

6.
Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders.  相似文献   

7.
Yang IY  Chan G  Miller H  Huang Y  Torres MC  Johnson F  Moriya M 《Biochemistry》2002,41(46):13826-13832
Acrolein, which is widely spread in the environment and is produced by lipid peroxidation in cells, reacts with DNA to form two exocyclic 1,N2-propanodeoxyguanosine (PdG) adducts. To establish their relative contribution to the acrolein mutagenicity, the genotoxic properties of alpha-OH-PdG and gamma-OH-PdG together with their model DNA adduct, PdG, were studied in human cells. DNA adducts were incorporated site-specifically into a SV40/BK virus origin-based shuttle vector and replicated in xeroderma pigmentosum complementation group A (XPA) cells. Analysis of progeny plasmid revealed that alpha-OH-PdG and PdG strongly block DNA synthesis and that both adducts induced base substitutions with G --> T transversions predominating. Primer extension studies, catalyzed by the 3'-->5' exonuclease-deficient Klenow fragment of Escherichia coli pol I, revealed limited extension from the 3' primer termini opposite these two adducts. In contrast, gamma-OH-PdG did not strongly block DNA synthesis or miscode in XPA cells. Primer extension from a dC terminus opposite gamma-OH-PdG was much more efficient than that opposite alpha-OH-PdG or PdG. These results indicate that the minor alpha-OH-PdG adduct is more genotoxic than the major gamma-OH-PdG. Furthermore, experiments using a HeLa whole cell extract indicate that all three DNA adducts are not efficiently removed from DNA by base excision repair.  相似文献   

8.
Persistent oxidative stress and excess lipid peroxidation (LPO), induced by inflammatory processes, impaired metal storage, and/or dietary imbalance, cause accumulations and massive DNA damage. This massive DNA damage, along with deregulation of cell homeostasis, leads to malignant diseases. Reactive aldehydes produced by LPO, such as 4-hydroxy-2-nonenal, malondialdehyde, acrolein, and crotonaldehyde, react directly with DNA bases or generate bifunctional intermediates which form exocyclic DNA adducts. Modification of DNA bases by these electrophiles, yielding promutagenic exocyclic adducts, is thought to contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. Ultrasensitive detection methods have facilitated studies of the concentrations of promutagenic DNA adducts in human tissues, white blood cells, and urine, where they are excreted as modified nucleosides and bases. Thus, immunoaffinity-(32)P-postlabeling, high-performance liquid chromatography-electrochemical detection, gas chromatography-mass spectrometry, liquid chromatography-tandem mass spectrometry, immunoslotblot assay, and immunohistochemistry have made it possible to detect background concentrations of adducts arising from endogenous LPO products in vivo and studies of their role in carcinogenesis. These background adduct levels in asymptomatic human tissues occur in the order of 1 adduct/10(8) and in organs affected by cancer-prone inflammatory diseases these can be 1 or 2 orders of magnitude higher. In this review, we critically discuss the accuracy of the available methods and their validation and summarize studies in which measurement of exocyclic adducts suggested new mechanisms of cancer causation, providing potential biomarkers for cancer risk assessment in humans with cancer-prone diseases.  相似文献   

9.
We studied the repair of psoralen adducts in the pol I-transcribed ribosomal RNA (rRNA) genes of excision repair competent Chinese hamster ovary (CHO) cell lines, their UV sensitive mutant derivatives, and their UV resistant transformants, which express a human excision repair gene. In the parental cell line CHO-AA8, both monoadducts and interstrand crosslinks are removed efficiently from the rRNA genes, whereas neither adduct is removed in the UV sensitive derivative UV5; removal of both adducts is restored in the UV resistant transformant CHO-5T4 carrying the human excision repair gene ERCC-2. In contrast, removal of psoralen adducts from the rRNA genes is not detected in another parental CHO cell line CHO-9, neither in its UV sensitive derivative 43-3B, nor in its UV resistant transformant 83-G5 carrying the human excision repair gene ERCC-1. In contrast to such intergenomic heterogeneity of repair, persistence of psoralen monoadducts during replication of the rRNA genes occurs equally well in all CHO cell lines tested. From these data, we conclude that: 1) the repair efficiency of DNA damage in the rRNA genes varies between established parental CHO cell lines; 2) the repair pathways of intrastrand adducts and interstrand crosslinks in mammalian cells share, at least, one gene product, i.e., the excision repair gene ERCC-2; 3) replicational bypass of psoralen monoadducts at the CHO rRNA locus occurs similarly on both DNA strands.  相似文献   

10.
The function of the human nucleotide excision repair (NER) apparatus is to remove bulky adducts from damaged DNA. In an effort to gain insights into the molecular mechanisms involved in the recognition and excision of bulky lesions, we investigated a series of site specifically modified oligonucleotides containing single, well-defined polycyclic aromatic hydrocarbon (PAH) diol epoxide-adenine adducts. Covalent adducts derived from the bay region PAH, benzo[a]pyrene, are removed by human NER enzymes in vitro. In contrast, the stereochemically analogous N(6)-dA adducts derived from the topologically different fjord region PAH, benzo[c]phenanthrene, are resistant to repair. The evasion of DNA repair may play a role in the observed higher tumorigenicity of the fjord region PAH diol epoxides. We are elucidating the structural and thermodynamic features of these adducts that may underlie their marked distinction in biologic function, employing high-resolution nuclear magnetic resonance studies, measurements of thermal stabilities of the PAH diol epoxide-modified oligonucleotide duplexes, and molecular dynamics simulations with free energy calculations. Our combined findings suggest that differences in the thermodynamic properties and thermal stabilities are associated with differences in distortions to the DNA induced by the lesions. These structural effects correlate with the differential NER susceptibilities and stem from the intrinsically distinct shapes of the fjord and bay region PAH diol epoxide-N(6)-adenine adducts.  相似文献   

11.
12.
Lipid peroxidation directly reacts with DNA and produces various exocyclic etheno-base DNA adducts, some of which are considered to contribute to carcinogenesis. However, the system for repairing them in humans is largely unknown. We hypothesized that etheno-DNA adducts are repaired by base excision repair initiated by DNA glycosylase. To test this hypothesis, we examined the activities of the DNA glycosylase proteins OGG1, SMUG1, TDG, NEIL1, MUTYH, NTH1, MPG, and UNG2 against double-stranded oligonucleotides containing 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC), butanone-ethenocytosine (BεC), butanone-ethenoguanine (BεG), heptanone-ethenocytosine (HεC), or heptanone-ethenoguanine (HεG) using a DNA cleavage assay. We found that TDG is capable of removing thymine that has mispaired with εC, BεC, BεG, HεC, or HεG in vitro. We next examined the effect of TDG against etheno-DNA adducts in human cells. TDG-knockdown cells exhibited the following characteristics: (a) higher resistance to cell death caused by the induction of etheno-DNA adducts; (b) lower repair activity for εC; and (c) a modest acceleration of mutations caused by εC, compared with the rate in control cells. All these characteristics suggest that TDG exerts a repair activity against etheno-DNA adducts in human cells. These results suggest that TDG has novel repair activities toward etheno-DNA adducts.  相似文献   

13.
The environmental carcinogen glycidaldehyde (GDA) and therapeutic chloroethylnitrosoureas (CNUs) can form hydroxymethyl etheno and ring-saturated ethano bases, respectively. The mutagenic potential of these adducts relies on their miscoding properties and repair efficiency. In this work, the ability of human thymine-DNA glycosylase (TDG) to excise 8-(hydroxymethyl)-3,N(4)-ethenocytosine (8-hm-varepsilonC) and 3,N(4)-ethanocytosine (EC) was investigated and compared with varepsilonC, a known substrate for TDG. When tested using defined oligonucleotides containing a single adduct, TDG is able to excise 8-hm-varepsilonC but not EC. The 8-hm-varepsilonC activity mainly depends on guanine pairing with the adduct. TDG removes 8-hm-varepsilonC less efficiently than varepsilonC but its activity can be significantly enhanced by human AP endonuclease 1 (APE1), a downstream enzyme in the base excision repair. TDG did not show any detectable activity toward EC when placed in various neighboring sequences, including the 5'-CpG site. Molecular modeling revealed a possible steric clash between the non-planar EC exocyclic ring and residue Asn 191 within the TDG active site, which could account for the lack of TDG activity toward EC. TDG was not active against the bulkier exocyclic adduct 3,N(4)-benzethenocytosine, nor the two adenine derivatives with same modifications as the cytosine derivatives, 7-hm-varepsilonA and EA. These findings expand the TDG substrate range and aid in understanding the structural requirements for TDG substrate specificity.  相似文献   

14.
Monofunctional alkylating agents react with DNA by S(N)1 or S(N)2 mechanisms resulting in formation of a wide spectrum of cytotoxic base adducts. DNA polymerase beta (beta-pol) is required for efficient base excision repair of N-alkyl adducts, and we make use of the hypersensitivity of beta-pol null mouse fibroblasts to investigate such alkylating agents with a view towards understanding the DNA lesions responsible for the cellular phenotype. The inability of O(6)-benzylguanine to sensitize wild-type or beta-pol null cells to S(N)1-type methylating agents indicates that the observed hypersensitivity is not due to differential repair of cytotoxic O-alkyl adducts. Using a 3-methyladenine-specific agent and an inhibitor of such methylation, we find that inefficient repair of 3-methyladenine is not the reason for the hypersensitivity of beta-pol null cells to methylating agents, and further that 3-methyladenine is not the adduct primarily responsible for methyl methanesulfonate (MMS)- and methyl nitrosourea-induced cytotoxicity in wild-type cells. Relating the expected spectrum of DNA adducts and the relative sensitivity of cells to monofunctional alkylating agents, we propose that the hypersensitivity of beta-pol null cells reflects accumulation of cytotoxic repair intermediates, such as the 5'-deoxyribose phosphate group, following removal of 7-alkylguanine from DNA. In support of this conclusion, beta-pol null cells are also hypersensitive to the thymidine analog 5-hydroxymethyl-2'-deoxyuridine (hmdUrd). This agent is incorporated into cellular DNA and elicits cytotoxicity only when removed by glycosylase-initiated base excision repair. Consistent with the hypothesis that there is a common repair intermediate resulting in cytotoxicity following treatment with both types of agents, both MMS and hmdUrd-initiated cell death are preceded by a similar rapid concentration-dependent suppression of DNA synthesis and a later cell cycle arrest in G(0)/G(1) and G(2)M phases.  相似文献   

15.
Glycidaldehyde (GDA) is a bifunctional alkylating agent that has been shown to be mutagenic in vitro and carcinogenic in rodents. However, the molecular mechanism by which it exerts these effects is not established. GDA is capable of forming exocyclic hydroxymethyl-substituted etheno adducts on base residues in vitro. One of them, 7-(hydroxymethyl)-1,N6-ethenoadenine (7-hm-epsilonA), was identified as the principal adduct in mouse skin treated with GDA or a glycidyl ether. In this work, using defined oligonucleotides containing a site-specific 7-hm-epsilonA, the human and mouse alkylpurine-DNA-N-glycosylases (APNGs), responsible for the removal of the analogous 1,N6-ethenoadenine (epsilonA) adduct, are shown to recognize and excise 7-hm-epsilonA. Such an activity can be significantly modulated by both 5' neighboring and opposite sequence contexts. The efficiency of human or mouse APNG for excision of 7-hm-epsilonA is about half that, or similar to the excision of epsilonA, respectively. When human or mouse cell-free extracts were tested, however, the extent of 7-hm-epsilonA excision is dramatically lower than that for epsilonA, suggesting that, in the crude extracts, the APNG activities toward these two adducts are differentially affected. Using cell-free extracts from APNG deficient mice, this enzyme is shown to be the primary glycosylase excising 7-hm-epsilonA. A structural approach, using molecular modeling, was employed to examine how the structure of the 7-hm-epsilonA adduct affects DNA conformation, as compared to the epsilonA adduct. These novel substrate specificities could have both biological and structural implications.  相似文献   

16.
17.
Studies showing that different types of DNA adducts are repaired in human cells at different rates suggest that DNA adduct conformation is the major determinant of the rate of nucleotide excision repair. However, recent studies of repair of cyclobutane pyrimidine dimers or benzo[a]pyrene diol epoxide (BPDE)-induced adducts at the nucleotide level in DNA of normal human fibroblasts indicate that the rate of repair of the same adduct at different nucleotide positions can vary up to 10-fold, suggesting an important role for local DNA conformation. To see if site-specific DNA repair is a common phenomenon for bulky DNA adducts, we determined the rate of repair of 1-nitrosopyrene (1-NOP)-induced adducts in exon 3 of the hypoxanthine phosphoribosyltransferase gene at the nucleotide level using ligation-mediated PCR. To distinguish between the contributions of adduct conformation and local DNA conformation to the rate of repair, we compared the results obtained with 1-NOP with those we obtained previously using BPDE. The principal DNA adduct formed by either agent involves guanine. We found that rates of repair of 1-NOP-induced adducts also varied significantly at the nucleotide level, but the pattern of site-specific repair differed from that of BPDE-induced adducts at the same guanine positions in the same region of DNA. The average rate of excision repair of 1-NOP adducts in exon 3 was two to three times faster than that of BPDE adducts, but at particular nucleotides the rate was slower or faster than that of BPDE adducts or, in some cases, equal to that of BPDE adducts. These results indicate that the contribution of the local DNA conformation to the rate of repair at a particular nucleotide position depends upon the specific DNA adduct involved. However, the data also indicate that the conformation of the DNA adduct is not the only factor contributing to the rate of repair at different nucleotide positions. Instead, the rate of repair at a particular nucleotide position depends on the interaction between the specific adduct conformation and the local DNA conformation at that nucleotide.  相似文献   

18.
DNA adducts are mutagenic and clastogenic. Because of their harmful nature, lesions are recognized by many proteins involved in DNA repair. However, mounting evidence suggests that lesions also are recognized by proteins with no obvious role in repair processes. One such protein is topoisomerase II, an essential enzyme that removes knots and tangles from the DNA. Because topoisomerase II generates a protein-linked double-stranded DNA break during its catalytic cycle, it has the potential to fragment the genome. Previous studies indicate that abasic sites and other lesions that distort the double helix stimulate topoisomerase II-mediated DNA cleavage. Therefore, to further explore interactions between DNA lesions and the enzyme, the effects of exocyclic adducts on DNA cleavage mediated by human topoisomerase IIalpha were determined. When located within the four-base overhang of a topoisomerase II cleavage site (at the +2 or +3 position 3' relative to the scissile bond), 3,N(4)-ethenodeoxycytidine, 3,N(4)-etheno-2'-ribocytidine, 1,N(2)-ethenodeoxyguanosine, pyrimido[1,2-a]purin-10(3H)-one deoxyribose (M(1)dG), and 1,N(2)-propanodeoxyguanosine increased DNA scission approximately 5-17-fold. Enhanced cleavage did not result from an increased affinity of topoisomerase IIalpha for adducted DNA or a decreased rate of religation. Therefore, it is concluded that these exocyclic lesions act by accelerating the forward rate of enzyme-mediated DNA scission. Finally, treatment of cultured human cells with 2-chloroacetaldehyde, a reactive metabolite of vinyl chloride that generates etheno adducts, increased cellular levels of DNA cleavage by topoisomerase IIalpha. This finding suggests that type II topoisomerases interact with exocyclic DNA lesions in physiological systems.  相似文献   

19.
Human 3-methyladenine-DNA glycosylase (MPG protein) is involved in the base excision repair (BER) pathway responsible mainly for the repair of small DNA base modifications. It initiates BER by recognizing DNA adducts and cleaving the glycosylic bond leaving an abasic site. Here, we explore several of the factors that could influence excision of adducts recognized by MPG, including sequence context, effect of APE1, and interaction with other proteins. To investigate sequence context, we used 13 different 25 bp oligodeoxyribonucleotides containing a unique hypoxanthine residue (Hx) and show that the steady-state specificity of Hx excision by MPG varied by 17-fold. If APE1 protein is used in the reaction for Hx removal by MPG, the steady-state kinetic parameters increase by between fivefold and 27-fold, depending on the oligodeoxyribonucleotide. Since MPG has a role in removing adducts such as 3-methyladenine that block DNA synthesis and there is a potential sequence for proliferating cell nuclear antigen (PCNA) interaction, we hypothesized that MPG protein could interact with PCNA, a protein involved in repair and replication. We demonstrate that PCNA associates with MPG using immunoprecipitation with either purified proteins or whole cell extracts. Moreover, PCNA binds to both APE1 and MPG at different sites, and loading PCNA onto a nicked, closed circular substrate with a unique Hx residue enhances MPG catalyzed excision. These data are consistent with an interaction that facilitates repair by MPG or APE1 by association with PCNA. Thus, PCNA could have a role in short-patch BER as well as in long-patch BER. Overall, the data reported here show how multiple factors contribute to the activity of MPG in cells.  相似文献   

20.
Doxorubicin, a widely used anthracycline anticancer agent, acts as a topoisomerase II poison but can also form formaldehyde-mediated DNA adducts. This has led to the development of doxorubicin derivatives such as doxoform, which can readily form adducts with DNA. This work aimed to determine which DNA repair pathways are involved in the recognition and possible repair of anthracycline-DNA adducts. Cell lines lacking functional proteins involved in each of the five main repair pathways, mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER), homologous recombination (HR) and non-homologous end-joining (NHEJ) were examined for sensitivity to various anthracycline adduct-forming treatments. The treatments used were doxorubicin, barminomycin (a model adduct-forming anthracycline) and doxoform (a doxorubicin-formaldehyde conjugate). Cells with deficiencies in MMR, BER and NHEJ were equally sensitive to adduct-forming treatments compared to wild type cells and therefore these pathways are unlikely to play a role in the repair of these adducts. Some cells with deficiencies in the NER pathway (specifically, those lacking functional XPB, XPD and XPG), displayed tolerance to adducts induced by both barminomycin and doxoform and also exhibited a decreased level of apoptosis in response to adduct-forming treatments. Conversely, two HR deficient cell lines were shown to be more sensitive to barminomycin and doxoform than HR proficient cells, indicating that this pathway is also involved in the repair response to anthracycline-DNA adducts. These results suggest an unusual damage response pathway to anthracycline adducts involving both NER and HR that could be used to optimise cancer therapy for tumours with either high levels of NER or defective HR. Tumours with either of these characteristics would be predicted to respond particularly well to anthracycline-DNA adduct-forming treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号